Math.Exp(Double) Metoda

Definice

Vrátí e umocněné na zadanou mocninu.Returns e raised to the specified power.

public:
 static double Exp(double d);
public static double Exp (double d);
static member Exp : double -> double
Public Shared Function Exp (d As Double) As Double

Parametry

d
Double

Číslo určující napájení.A number specifying a power.

Návraty

Číslo e umocněné na dnapájení.The number e raised to the power d. Pokud d rovná NaN nebo PositiveInfinity, tato hodnota se vrátí.If d equals NaN or PositiveInfinity, that value is returned. Pokud se d rovná NegativeInfinity, vrátí se 0.If d equals NegativeInfinity, 0 is returned.

Příklady

Následující příklad používá Exp k vyhodnocení určitých exponenciálních a logaritmických identit pro vybrané hodnoty.The following example uses Exp to evaluate certain exponential and logarithmic identities for selected values.

// Example for the Math::Exp( double ) method.
using namespace System;

// Evaluate logarithmic/exponential identity with a given argument.
void UseLnExp( double arg )
{
   
   // Evaluate e ^ ln(X) == ln(e ^ X) == X.
   Console::WriteLine( "\n      Math::Exp(Math::Log({0})) == {1:E16}\n"
   "      Math::Log(Math::Exp({0})) == {2:E16}", arg, Math::Exp( Math::Log( arg ) ), Math::Log( Math::Exp( arg ) ) );
}


// Evaluate exponential identities that are functions of two arguments.
void UseTwoArgs( double argX, double argY )
{
   
   // Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
   Console::WriteLine( "\nMath::Exp({0}) * Math::Exp({1}) == {2:E16}"
   "\n           Math::Exp({0} + {1}) == {3:E16}", argX, argY, Math::Exp( argX ) * Math::Exp( argY ), Math::Exp( argX + argY ) );
   
   // Evaluate (e ^ X) ^ Y == e ^ (X * Y).
   Console::WriteLine( " Math::Pow(Math::Exp({0}), {1}) == {2:E16}"
   "\n           Math::Exp({0} * {1}) == {3:E16}", argX, argY, Math::Pow( Math::Exp( argX ), argY ), Math::Exp( argX * argY ) );
   
   // Evaluate X ^ Y == e ^ (Y * ln(X)).
   Console::WriteLine( "            Math::Pow({0}, {1}) == {2:E16}"
   "\nMath::Exp({1} * Math::Log({0})) == {3:E16}", argX, argY, Math::Pow( argX, argY ), Math::Exp( argY * Math::Log( argX ) ) );
}

int main()
{
   Console::WriteLine( "This example of Math::Exp( double ) "
   "generates the following output.\n" );
   Console::WriteLine( "Evaluate [e ^ ln(X) == ln(e ^ X) == X] "
   "with selected values for X:" );
   UseLnExp( 0.1 );
   UseLnExp( 1.2 );
   UseLnExp( 4.9 );
   UseLnExp( 9.9 );
   Console::WriteLine( "\nEvaluate these identities with "
   "selected values for X and Y:" );
   Console::WriteLine( "   (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
   Console::WriteLine( "   (e ^ X) ^ Y == e ^ (X * Y)" );
   Console::WriteLine( "   X ^ Y == e ^ (Y * ln(X))" );
   UseTwoArgs( 0.1, 1.2 );
   UseTwoArgs( 1.2, 4.9 );
   UseTwoArgs( 4.9, 9.9 );
}

/*
This example of Math::Exp( double ) generates the following output.

Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:

      Math::Exp(Math::Log(0.1)) == 1.0000000000000001E-001
      Math::Log(Math::Exp(0.1)) == 1.0000000000000008E-001

      Math::Exp(Math::Log(1.2)) == 1.2000000000000000E+000
      Math::Log(Math::Exp(1.2)) == 1.2000000000000000E+000

      Math::Exp(Math::Log(4.9)) == 4.9000000000000012E+000
      Math::Log(Math::Exp(4.9)) == 4.9000000000000004E+000

      Math::Exp(Math::Log(9.9)) == 9.9000000000000004E+000
      Math::Log(Math::Exp(9.9)) == 9.9000000000000004E+000

Evaluate these identities with selected values for X and Y:
   (e ^ X) * (e ^ Y) == e ^ (X + Y)
   (e ^ X) ^ Y == e ^ (X * Y)
   X ^ Y == e ^ (Y * ln(X))

Math::Exp(0.1) * Math::Exp(1.2) == 3.6692966676192444E+000
           Math::Exp(0.1 + 1.2) == 3.6692966676192444E+000
 Math::Pow(Math::Exp(0.1), 1.2) == 1.1274968515793757E+000
           Math::Exp(0.1 * 1.2) == 1.1274968515793757E+000
            Math::Pow(0.1, 1.2) == 6.3095734448019331E-002
Math::Exp(1.2 * Math::Log(0.1)) == 6.3095734448019344E-002

Math::Exp(1.2) * Math::Exp(4.9) == 4.4585777008251705E+002
           Math::Exp(1.2 + 4.9) == 4.4585777008251716E+002
 Math::Pow(Math::Exp(1.2), 4.9) == 3.5780924170885260E+002
           Math::Exp(1.2 * 4.9) == 3.5780924170885277E+002
            Math::Pow(1.2, 4.9) == 2.4433636334442981E+000
Math::Exp(4.9 * Math::Log(1.2)) == 2.4433636334442981E+000

Math::Exp(4.9) * Math::Exp(9.9) == 2.6764450551890982E+006
           Math::Exp(4.9 + 9.9) == 2.6764450551891015E+006
 Math::Pow(Math::Exp(4.9), 9.9) == 1.1684908531676833E+021
           Math::Exp(4.9 * 9.9) == 1.1684908531676829E+021
            Math::Pow(4.9, 9.9) == 6.8067718210957060E+006
Math::Exp(9.9 * Math::Log(4.9)) == 6.8067718210956985E+006
*/
// Example for the Math.Exp( double ) method.
using System;

class ExpDemo 
{
    public static void Main() 
    {
        Console.WriteLine( 
            "This example of Math.Exp( double ) " +
            "generates the following output.\n" );
        Console.WriteLine( 
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
            "with selected values for X:" );

        UseLnExp(0.1);
        UseLnExp(1.2);
        UseLnExp(4.9);
        UseLnExp(9.9);

        Console.WriteLine( 
            "\nEvaluate these identities with " +
            "selected values for X and Y:" );
        Console.WriteLine( "   (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
        Console.WriteLine( "   (e ^ X) ^ Y == e ^ (X * Y)" );
        Console.WriteLine( "   X ^ Y == e ^ (Y * ln(X))" );

        UseTwoArgs(0.1, 1.2);
        UseTwoArgs(1.2, 4.9);
        UseTwoArgs(4.9, 9.9);
    }

    // Evaluate logarithmic/exponential identity with a given argument.
    static void UseLnExp(double arg)
    {
        // Evaluate e ^ ln(X) == ln(e ^ X) == X.
        Console.WriteLine( 
            "\n      Math.Exp(Math.Log({0})) == {1:E16}\n" +
            "      Math.Log(Math.Exp({0})) == {2:E16}",
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
    }

    // Evaluate exponential identities that are functions of two arguments.
    static void UseTwoArgs(double argX, double argY)
    {
        // Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
        Console.WriteLine( 
            "\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" + 
            "\n          Math.Exp({0} + {1}) == {3:E16}", 
            argX, argY, Math.Exp(argX) * Math.Exp(argY),
            Math.Exp(argX + argY) );

        // Evaluate (e ^ X) ^ Y == e ^ (X * Y).
        Console.WriteLine( 
            " Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
            "\n          Math.Exp({0} * {1}) == {3:E16}",
            argX, argY, Math.Pow(Math.Exp(argX), argY),
            Math.Exp(argX * argY) );

        // Evaluate X ^ Y == e ^ (Y * ln(X)).
        Console.WriteLine( 
            "           Math.Pow({0}, {1}) == {2:E16}" + 
            "\nMath.Exp({1} * Math.Log({0})) == {3:E16}", 
            argX, argY, Math.Pow(argX, argY), 
            Math.Exp(argY * Math.Log(argX)) );
    }
}

/*
This example of Math.Exp( double ) generates the following output.

Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:

      Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001
      Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001

      Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000
      Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000

      Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000
      Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000

      Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000
      Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000

Evaluate these identities with selected values for X and Y:
   (e ^ X) * (e ^ Y) == e ^ (X + Y)
   (e ^ X) ^ Y == e ^ (X * Y)
   X ^ Y == e ^ (Y * ln(X))

Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000
          Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000
 Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000
          Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000
           Math.Pow(0.1, 1.2) == 6.3095734448019331E-002
Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002

Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002
          Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002
 Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002
          Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002
           Math.Pow(1.2, 4.9) == 2.4433636334442981E+000
Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000

Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006
          Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006
 Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021
          Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021
           Math.Pow(4.9, 9.9) == 6.8067718210957060E+006
Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006
*/
' Example for the Math.Exp( Double ) method.
Module ExpDemo
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Exp( Double ) " & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " & _
            "with selected values for X:")

        UseLnExp(0.1)
        UseLnExp(1.2)
        UseLnExp(4.9)
        UseLnExp(9.9)
          
        Console.WriteLine( vbCrLf & _
            "Evaluate these identities with selected values for X and Y:")
        Console.WriteLine("   (e ^ X) * (e ^ Y) = e ^ (X + Y)")
        Console.WriteLine("   (e ^ X) ^ Y = e ^ (X * Y)")
        Console.WriteLine("   X ^ Y = e ^ (Y * ln(X))")
          
        UseTwoArgs(0.1, 1.2)
        UseTwoArgs(1.2, 4.9)
        UseTwoArgs(4.9, 9.9)
    End Sub
       
    ' Evaluate logarithmic/exponential identity with a given argument.
    Sub UseLnExp(arg As Double)

        ' Evaluate e ^ ln(X) = ln(e ^ X) = X.
        Console.WriteLine( _
            vbCrLf & "      Math.Exp(Math.Log({0})) = {1:E16}" + _
            vbCrLf & "      Math.Log(Math.Exp({0})) = {2:E16}", _
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)))
    End Sub
       
    ' Evaluate exponential identities that are functions of two arguments.
    Sub UseTwoArgs(argX As Double, argY As Double)

        ' Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
        Console.WriteLine( _
            vbCrLf & "Math.Exp({0}) * Math.Exp({1}) = {2:E16}" + _
            vbCrLf & "          Math.Exp({0} + {1}) = {3:E16}", _
            argX, argY, Math.Exp(argX) * Math.Exp(argY), _
            Math.Exp((argX + argY)))
          
        ' Evaluate (e ^ X) ^ Y = e ^ (X * Y).
        Console.WriteLine( _
            " Math.Pow(Math.Exp({0}), {1}) = {2:E16}" + _
            vbCrLf & "          Math.Exp({0} * {1}) = {3:E16}", _
            argX, argY, Math.Pow(Math.Exp(argX), argY), _
            Math.Exp((argX * argY)))
          
        ' Evaluate X ^ Y = e ^ (Y * ln(X)).
        Console.WriteLine( _
            "           Math.Pow({0}, {1}) = {2:E16}" + _
            vbCrLf & "Math.Exp({1} * Math.Log({0})) = {3:E16}", _
            argX, argY, Math.Pow(argX, argY), _
            Math.Exp((argY * Math.Log(argX))))

    End Sub
End Module 'ExpDemo

' This example of Math.Exp( Double ) generates the following output.
' 
' Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
' 
'       Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
'       Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
' 
'       Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
'       Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
' 
'       Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
'       Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
' 
'       Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
'       Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
' 
' Evaluate these identities with selected values for X and Y:
'    (e ^ X) * (e ^ Y) = e ^ (X + Y)
'    (e ^ X) ^ Y = e ^ (X * Y)
'    X ^ Y = e ^ (Y * ln(X))
' 
' Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
'           Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
'  Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
'           Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
'            Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
' Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
' 
' Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
'           Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
'  Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
'           Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
'            Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
' Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
' 
' Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
'           Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
'  Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
'           Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
'            Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
' Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006

Poznámky

e je matematickou konstantou, jejíž hodnota je přibližně 2,71828.e is a mathematical constant whose value is approximately 2.71828.

Pomocí metody Pow můžete vypočítat mocniny jiných základů.Use the Pow method to calculate powers of other bases.

Exp je inverzní Log.Exp is the inverse of Log.

Platí pro

Viz také