Databricks Runtime 5,5 LTS mlDatabricks Runtime 5.5 LTS ML

Databricks hat dieses Image im Juli 2019 veröffentlicht.Databricks released this image in July 2019.

Databricks Runtime 5,5 LTS für Machine Learning bietet eine sofort einsatzbereite Umgebung für Machine Learning und Data Science, die auf Databricks Runtime 5,5 LTSbasiert.Databricks Runtime 5.5 LTS for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 5.5 LTS. Databricks Runtime für ml enthält viele beliebte Machine Learning-Bibliotheken, einschließlich tensorflow, pytorch, keras und xgboost.Databricks Runtime for ML contains many popular machine learning libraries, including TensorFlow, PyTorch, Keras, and XGBoost. Außerdem wird das verteilte Deep Learning-Training mit Horovod unterstützt.It also supports distributed deep learning training using Horovod.

Weitere Informationen, einschließlich Anweisungen zum Erstellen eines Databricks Runtime ml-Clusters, finden Sie unter Databricks Runtime für Machine Learning.For more information, including instructions for creating a Databricks Runtime ML cluster, see Databricks Runtime for Machine Learning.

Neue FunktionenNew features

Databricks Runtime 5,5 LTS ml auf Databricks Runtime 5,5 LTS basiert.Databricks Runtime 5.5 LTS ML is built on top of Databricks Runtime 5.5 LTS. Informationen zu den Neuerungen in Databricks Runtime 5,5 LTS finden Sie in den Anmerkungen zu dieser Version von Databricks Runtime 5,5 LTS .For information on what’s new in Databricks Runtime 5.5 LTS, see the Databricks Runtime 5.5 LTS release notes.

Zusätzlich zu Bibliotheksaktualisierungenführt Databricks Runtime 5,5 LTS ml die folgenden neuen Funktionen ein:In addition to library updates, Databricks Runtime 5.5 LTS ML introduces the following new features:

  • Hinzufügen des python-Pakets " mlflow 1,0"Added the MLflow 1.0 Python package

VerbesserungenImprovements

  • Aktualisierte Machine Learning-BibliothekenUpgraded machine learning libraries

    • Tensorflow-Upgrade von 1.12.0 auf 1.13.1Tensorflow upgraded from 1.12.0 to 1.13.1
    • Pytorch-Upgrade von 0.4.1 auf 1.1.0PyTorch upgraded from 0.4.1 to 1.1.0
    • scikit-Lern Upgrade von 0.19.1 auf 0.20.3scikit-learn upgraded from 0.19.1 to 0.20.3
  • Einzelknoten Vorgang für horovodrunnerSingle-node operation for HorovodRunner

    Horovodrunner muss nur auf dem Treiber Knoten ausgeführt werden.Enabled HorovodRunner to run on only the driver node. Zuvor mussten Sie zum Verwenden von horovodrunner einen Treiber und mindestens einen workerknoten ausführen.Previously, to use HorovodRunner you would have to run a driver and at least one worker node. Mit dieser Änderung können Sie nun das Training innerhalb eines einzelnen Knotens (d. h. eines multigpu-Knotens) verteilen und damit Compute-Ressourcen effizienter nutzen.With this change, you can now distribute training within a single node (that is, a multi-GPU node) and thus use compute resources more efficiently.

Eingestellte UnterstützungDeprecation

In der hyperopt -Bibliothek haben wir die folgenden Eigenschaften von als veraltet markiert hyperopt.SparkTrials :In the hyperopt library, we deprecated the following properties of hyperopt.SparkTrials:

  • SparkTrials.successful_trials_count
  • SparkTrials.failed_trials_count
  • SparkTrials.cancelled_trials_count
  • SparkTrials.total_trials_count

und haben die Eigenschaften durch die folgenden Funktionen ersetzt:and replaced the properties with the following functions:

  • SparkTrials.count_successful_trials()
  • SparkTrials.count_failed_trials()
  • SparkTrials.count_cancelled_trials()
  • SparkTrials.count_total_trials()

SystemumgebungSystem environment

Die Systemumgebung in Databricks Runtime 5,5 LTS ml unterscheidet sich wie folgt von Databricks Runtime 5,5:The system environment in Databricks Runtime 5.5 LTS ML differs from Databricks Runtime 5.5 as follows:

  • Python: 3.6.5 für python 3-Cluster und 2.7.15 für python 2-Cluster.Python: 3.6.5 for Python 3 clusters and 2.7.15 for Python 2 clusters.
  • Dbutils: enthält keine Bibliotheks Dienstprogramme.DBUtils: Does not contain Library utilities.
  • Für GPU-Cluster die folgenden NVIDIA-GPU-Bibliotheken:For GPU clusters, the following NVIDIA GPU libraries:
    • CUDA 10,0CUDA 10.0
    • Cudnn 7.6.0CUDNN 7.6.0

Bibliotheken Libraries

In den folgenden Abschnitten sind die Bibliotheken aufgeführt, die in Databricks Runtime 5,5 LTS ml enthalten sind und sich von den in Databricks Runtime 5,5 enthaltenen Bibliotheken unterscheiden.The following sections list the libraries included in Databricks Runtime 5.5 LTS ML that differ from those included in Databricks Runtime 5.5.

Bibliotheken der obersten EbeneTop-tier libraries

Databricks Runtime 5,5 LTS ml umfasst die folgenden Bibliothekender obersten Ebene:Databricks Runtime 5.5 LTS ML includes the following top-tier libraries:

Python-BibliothekenPython libraries

Databricks Runtime 5,5 LTS ml verwendet für die python-Paketverwaltung die-Verwaltung.Databricks Runtime 5.5 LTS ML uses Conda for Python package management. Demzufolge gibt es im Vergleich zu Databricks Runtime wesentliche Unterschiede in den installierten Python-Bibliotheken.As a result, there are major differences in installed Python libraries compared to Databricks Runtime. In den folgenden Abschnitten werden die Configuration Manager-Umgebungen für Databricks Runtime 5,5 LTS ml-Cluster mit Python 2 oder 3 und CPU-oder GPU-fähige Computer beschrieben.The following sections describe the Conda environments for Databricks Runtime 5.5 LTS ML clusters using Python 2 or 3, and CPU or GPU-enabled machines.

Python 3 auf CPU-ClusternPython 3 on CPU clusters

name: null
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.7.1=py36_0
  - asn1crypto=0.24.0=py36_0
  - astor=0.7.1=py36_0
  - backcall=0.1.0=py36_0
  - backports=1.0=py_2
  - bcrypt=3.1.6=py36h7b6447c_0
  - blas=1.0=mkl
  - bleach=2.1.3=py36_0
  - boto=2.48.0=py36_1
  - boto3=1.7.62=py36h28b3542_1
  - botocore=1.10.62=py36h28b3542_0
  - ca-certificates=2018.03.07=0
  - certifi=2018.4.16=py36_0
  - cffi=1.11.5=py36he75722e_1
  - chardet=3.0.4=py36_1
  - click=7.0=py36_0
  - cloudpickle=0.8.0=py36_0
  - colorama=0.3.9=py36h489cec4_0
  - configparser=3.7.3=py36_1
  - cryptography=2.2.2=py36h14c3975_0
  - cycler=0.10.0=py36h93f1223_0
  - cython=0.28.2=py36h14c3975_0
  - decorator=4.3.0=py36_0
  - docutils=0.14=py36hb0f60f5_0
  - entrypoints=0.2.3=py36_2
  - et_xmlfile=1.0.1=py36hd6bccc3_0
  - flask=1.0.2=py36_1
  - freetype=2.8=hab7d2ae_1
  - gast=0.2.2=py36_0
  - gitdb2=2.0.5=py36_0
  - gitpython=2.1.11=py36_0
  - gmp=6.1.2=h6c8ec71_1
  - grpcio=1.12.1=py36hdbcaa40_0
  - gunicorn=19.9.0=py36_0
  - h5py=2.8.0=py36h989c5e5_3
  - hdf5=1.10.2=hba1933b_1
  - html5lib=1.0.1=py36_0
  - icu=58.2=h9c2bf20_1
  - idna=2.6=py36h82fb2a8_1
  - intel-openmp=2018.0.0=8
  - ipython=6.4.0=py36_1
  - ipython_genutils=0.2.0=py36_0
  - itsdangerous=0.24=py36_1
  - jdcal=1.4=py36_0
  - jedi=0.12.0=py36_1
  - jinja2=2.10=py36_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jsonschema=2.6.0=py36_0
  - jupyter_client=5.2.3=py36_0
  - jupyter_core=4.4.0=py36_0
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py36_0
  - keras-preprocessing=1.1.0=py_1
  - krb5=1.16.1=hc83ff2d_6
  - libedit=3.1.20170329=h6b74fdf_2
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=7.3.0=hdf63c60_0
  - libgfortran-ng=7.2.0=hdf63c60_3
  - libpng=1.6.34=hb9fc6fc_0
  - libpq=10.4=h1ad7b7a_0
  - libprotobuf=3.8.0=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=7.3.0=hdf63c60_0
  - libtiff=4.0.9=he85c1e1_2
  - libxgboost=0.90=he6710b0_0
  - libxml2=2.9.8=h26e45fe_1
  - libxslt=1.1.32=h1312cb7_0
  - llvmlite=0.23.1=py36hdbcaa40_0
  - lxml=4.2.1=py36h23eabaa_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py36_0
  - markupsafe=1.0=py36h14c3975_1
  - mistune=0.8.3=py36h14c3975_1
  - mkl=2019.4=243
  - mkl_fft=1.0.12=py36ha843d7b_0
  - mkl_random=1.0.2=py36hd81dba3_0
  - mock=3.0.5=py36_0
  - msgpack-python=0.5.6=py36h6bb024c_1
  - nbconvert=5.3.1=py36_0
  - nbformat=4.4.0=py36h31c9010_0
  - ncurses=6.1=he6710b0_1
  - ninja=1.9.0=py36hfd86e86_0
  - numba=0.38.0=py36h637b7d7_0
  - numpy=1.16.2=py36h7e9f1db_0
  - numpy-base=1.16.2=py36hde5b4d6_0
  - olefile=0.45.1=py36_0
  - openpyxl=2.5.3=py36_0
  - openssl=1.0.2o=h14c3975_1
  - pandas=0.23.0=py36h637b7d7_0
  - pandocfilters=1.4.2=py36_1
  - paramiko=2.4.2=py36_0
  - parso=0.2.0=py36_0
  - pathlib2=2.3.2=py36_0
  - patsy=0.5.0=py36_0
  - pexpect=4.5.0=py36_0
  - pickleshare=0.7.4=py36_0
  - pillow=5.1.0=py36h3deb7b8_0
  - pip=10.0.1=py36_0
  - ply=3.11=py36_0
  - prompt_toolkit=1.0.15=py36h17d85b1_0
  - protobuf=3.8.0=py36he6710b0_0
  - psycopg2=2.7.5=py36hb7f436b_0
  - ptyprocess=0.5.2=py36h69acd42_0
  - py-xgboost=0.90=py36he6710b0_0
  - py-xgboost-cpu=0.90=py36_0
  - pyasn1=0.4.5=py_0
  - pycparser=2.18=py36_1
  - pygments=2.2.0=py36_0
  - pynacl=1.3.0=py36h7b6447c_0
  - pyopenssl=18.0.0=py36_0
  - pyparsing=2.2.0=py36_1
  - pysocks=1.6.8=py36_0
  - python=3.6.5=hc3d631a_2
  - python-dateutil=2.7.3=py36_0
  - python-editor=1.0.4=py_0
  - pytz=2018.4=py36_0
  - pyyaml=5.1=py36h7b6447c_0
  - pyzmq=17.0.0=py36h14c3975_3
  - readline=7.0=h7b6447c_5
  - requests=2.18.4=py36he2e5f8d_1
  - s3transfer=0.1.13=py36_0
  - scikit-learn=0.20.3=py36hd81dba3_0
  - scipy=1.1.0=py36h7c811a0_2
  - setuptools=39.1.0=py36_0
  - simplegeneric=0.8.1=py36_2
  - simplejson=3.16.0=py36h14c3975_0
  - singledispatch=3.4.0.3=py36_0
  - six=1.11.0=py36_1
  - smmap2=2.0.5=py36_0
  - sqlite=3.23.1=he433501_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py36h035aef0_0
  - tabulate=0.8.3=py36_0
  - tensorboard=1.13.1=py36hf484d3e_0
  - tensorflow=1.13.1=mkl_py36h27d456a_0
  - tensorflow-base=1.13.1=mkl_py36h7ce6ba3_0
  - tensorflow-estimator=1.13.0=py_0
  - tensorflow-mkl=1.13.1=h4fcabd2_0
  - termcolor=1.1.0=py36_1
  - testpath=0.3.1=py36h8cadb63_0
  - tk=8.6.7=hc745277_3
  - tornado=5.0.2=py36h14c3975_0
  - traitlets=4.3.2=py36_0
  - urllib3=1.22=py36hbe7ace6_0
  - virtualenv=16.0.0=py36_0
  - wcwidth=0.1.7=py36hdf4376a_0
  - webencodings=0.5.1=py36_1
  - werkzeug=0.14.1=py36_0
  - wheel=0.31.1=py36_0
  - wrapt=1.11.1=py36h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.2.5=hf484d3e_1
  - zlib=1.2.11=h7b6447c_3
  - pytorch-cpu=1.1.0=py3.6_cpu_0
  - torchvision-cpu=0.3.0=py36_cuNone_1
  - pip:
    - databricks-cli==0.8.7
    - docker==4.0.2
    - fusepy==2.0.4
    - future==0.17.1
    - horovod==0.16.4
    - hyperopt==0.1.2.db6
    - kiwisolver==1.1.0
    - matplotlib==2.2.2
    - mleap==0.8.1
    - mlflow==1.0.0
    - msgpack==0.5.6
    - networkx==2.2
    - nose==1.3.7
    - nose-exclude==0.5.0
    - psutil==5.6.3
    - pyarrow==0.13.0
    - pymongo==3.8.0
    - querystring-parser==1.2.3
    - seaborn==0.8.1
    - tensorboardx==1.7
    - torchvision==0.3.0
    - tqdm==4.32.2
    - websocket-client==0.56.0
prefix: /databricks/python3

Python 3 auf GPU-ClusternPython 3 on GPU clusters

name: null
channels:
  - pytorch
  - Databricks
  - defaults
dependencies:
  - tensorflow=1.13.1.db1=gpu_py36h2903d8e_0
  - tensorflow-base=1.13.1.db1=gpu_py36he292aa2_0
  - tensorflow-gpu=1.13.1.db1=h0d30ee6_0
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=1.0=gpu_0
  - _tflow_select=2.1.0=gpu
  - absl-py=0.7.1=py36_0
  - asn1crypto=0.24.0=py36_0
  - astor=0.7.1=py36_0
  - backcall=0.1.0=py36_0
  - backports=1.0=py_2
  - bcrypt=3.1.6=py36h7b6447c_0
  - blas=1.0=mkl
  - bleach=2.1.3=py36_0
  - boto=2.48.0=py36_1
  - boto3=1.7.62=py36h28b3542_1
  - botocore=1.10.62=py36h28b3542_0
  - ca-certificates=2018.03.07=0
  - certifi=2018.4.16=py36_0
  - cffi=1.11.5=py36he75722e_1
  - chardet=3.0.4=py36_1
  - click=7.0=py36_0
  - cloudpickle=0.8.0=py36_0
  - colorama=0.3.9=py36h489cec4_0
  - configparser=3.7.3=py36_1
  - cryptography=2.2.2=py36h14c3975_0
  - cudnn=7.6.0=cuda10.0_0
  - cupti=10.0.130=0
  - cycler=0.10.0=py36_0
  - cython=0.28.2=py36h14c3975_0
  - decorator=4.3.0=py36_0
  - docutils=0.14=py36_0
  - entrypoints=0.2.3=py36_2
  - et_xmlfile=1.0.1=py36hd6bccc3_0
  - flask=1.0.2=py36_1
  - freetype=2.8=hab7d2ae_1
  - gast=0.2.2=py36_0
  - gitdb2=2.0.5=py36_0
  - gitpython=2.1.11=py36_0
  - gmp=6.1.2=h6c8ec71_1
  - grpcio=1.12.1=py36hdbcaa40_0
  - gunicorn=19.9.0=py36_0
  - h5py=2.8.0=py36h989c5e5_3
  - hdf5=1.10.2=hba1933b_1
  - html5lib=1.0.1=py36_0
  - icu=58.2=h9c2bf20_1
  - idna=2.6=py36h82fb2a8_1
  - intel-openmp=2018.0.0=8
  - ipython=6.4.0=py36_1
  - ipython_genutils=0.2.0=py36hb52b0d5_0
  - itsdangerous=0.24=py36_1
  - jdcal=1.4=py36_0
  - jedi=0.12.0=py36_1
  - jinja2=2.10=py36_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jsonschema=2.6.0=py36_0
  - jupyter_client=5.2.3=py36_0
  - jupyter_core=4.4.0=py36_0
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py36_0
  - keras-preprocessing=1.1.0=py_1
  - krb5=1.16.1=hc83ff2d_6
  - libedit=3.1.20170329=h6b74fdf_2
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=7.3.0=hdf63c60_0
  - libgfortran-ng=7.2.0=hdf63c60_3
  - libpng=1.6.34=hb9fc6fc_0
  - libpq=10.4=h1ad7b7a_0
  - libprotobuf=3.8.0=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=7.3.0=hdf63c60_0
  - libtiff=4.0.9=he85c1e1_2
  - libxgboost=0.90=h688424c_0
  - libxml2=2.9.8=h26e45fe_1
  - libxslt=1.1.32=h1312cb7_0
  - llvmlite=0.23.1=py36hdbcaa40_0
  - lxml=4.2.1=py36h23eabaa_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py36_0
  - markupsafe=1.0=py36h14c3975_1
  - mistune=0.8.3=py36h14c3975_1
  - mkl=2019.4=243
  - mkl_fft=1.0.12=py36ha843d7b_0
  - mkl_random=1.0.2=py36hd81dba3_0
  - mock=3.0.5=py36_0
  - msgpack-python=0.5.6=py36h6bb024c_1
  - nbconvert=5.3.1=py36_0
  - nbformat=4.4.0=py36h31c9010_0
  - ncurses=6.1=he6710b0_1
  - ninja=1.9.0=py36hfd86e86_0
  - numba=0.38.0=py36h637b7d7_0
  - numpy=1.16.2=py36h7e9f1db_0
  - numpy-base=1.16.2=py36hde5b4d6_0
  - olefile=0.45.1=py36_0
  - openpyxl=2.5.3=py36_0
  - openssl=1.0.2o=h14c3975_1
  - pandas=0.23.0=py36h637b7d7_0
  - pandocfilters=1.4.2=py36_1
  - paramiko=2.4.2=py36_0
  - parso=0.2.0=py36_0
  - pathlib2=2.3.2=py36_0
  - patsy=0.5.0=py36_0
  - pexpect=4.5.0=py36_0
  - pickleshare=0.7.4=py36h63277f8_0
  - pillow=5.1.0=py36h3deb7b8_0
  - pip=10.0.1=py36_0
  - ply=3.11=py36_0
  - prompt_toolkit=1.0.15=py36_0
  - protobuf=3.8.0=py36he6710b0_0
  - psycopg2=2.7.5=py36hb7f436b_0
  - ptyprocess=0.5.2=py36h69acd42_0
  - py-xgboost=0.90=py36h688424c_0
  - py-xgboost-gpu=0.90=py36h28bbb66_0
  - pyasn1=0.4.5=py_0
  - pycparser=2.18=py36_1
  - pygments=2.2.0=py36_0
  - pynacl=1.3.0=py36h7b6447c_0
  - pyopenssl=18.0.0=py36_0
  - pyparsing=2.2.0=py36_1
  - pysocks=1.6.8=py36_0
  - python=3.6.5=hc3d631a_2
  - python-dateutil=2.7.3=py36_0
  - python-editor=1.0.4=py_0
  - pytz=2018.4=py36_0
  - pyyaml=5.1=py36h7b6447c_0
  - pyzmq=17.0.0=py36h14c3975_3
  - readline=7.0=h7b6447c_5
  - requests=2.18.4=py36he2e5f8d_1
  - s3transfer=0.1.13=py36_0
  - scikit-learn=0.20.3=py36hd81dba3_0
  - scipy=1.1.0=py36h7c811a0_2
  - setuptools=39.1.0=py36_0
  - simplegeneric=0.8.1=py36_2
  - simplejson=3.16.0=py36h14c3975_0
  - singledispatch=3.4.0.3=py36h7a266c3_0
  - six=1.11.0=py36_1
  - smmap2=2.0.5=py36_0
  - sqlite=3.23.1=he433501_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py36h035aef0_0
  - tabulate=0.8.3=py36_0
  - tensorboard=1.13.1=py36hf484d3e_0
  - tensorflow-estimator=1.13.0=py_0
  - termcolor=1.1.0=py36_1
  - testpath=0.3.1=py36_0
  - tk=8.6.7=hc745277_3
  - tornado=5.0.2=py36h14c3975_0
  - traitlets=4.3.2=py36h674d592_0
  - urllib3=1.22=py36hbe7ace6_0
  - virtualenv=16.0.0=py36_0
  - wcwidth=0.1.7=py36hdf4376a_0
  - webencodings=0.5.1=py36_1
  - werkzeug=0.14.1=py36_0
  - wheel=0.31.1=py36_0
  - wrapt=1.11.1=py36h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.2.5=hf484d3e_1
  - zlib=1.2.11=h7b6447c_3
  - pytorch=1.1.0=py3.6_cuda10.0.130_cudnn7.5.1_0
  - torchvision=0.3.0=py36_cu10.0.130_1
  - pip:
    - databricks-cli==0.8.7
    - docker==4.0.2
    - fusepy==2.0.4
    - future==0.17.1
    - horovod==0.16.4
    - hyperopt==0.1.2.db6
    - kiwisolver==1.1.0
    - matplotlib==2.2.2
    - mleap==0.8.1
    - mlflow==1.0.0
    - msgpack==0.5.6
    - networkx==2.2
    - nose==1.3.7
    - nose-exclude==0.5.0
    - psutil==5.6.3
    - pyarrow==0.13.0
    - pymongo==3.8.0
    - querystring-parser==1.2.3
    - seaborn==0.8.1
    - tensorboardx==1.7
    - tqdm==4.32.2
    - websocket-client==0.56.0
prefix: /databricks/python3

Python 2 auf CPU-ClusternPython 2 on CPU clusters

name: null
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.7.1=py27_0
  - asn1crypto=0.24.0=py27_0
  - astor=0.7.1=py27_0
  - backports=1.0=py_2
  - backports.shutil_get_terminal_size=1.0.0=py27_2
  - backports.weakref=1.0.post1=py_1
  - backports_abc=0.5=py_0
  - bcrypt=3.1.6=py27h7b6447c_0
  - blas=1.0=mkl
  - bleach=2.1.3=py27_0
  - boto=2.48.0=py27_1
  - boto3=1.7.62=py27h28b3542_1
  - botocore=1.10.62=py27h28b3542_0
  - ca-certificates=2018.03.07=0
  - certifi=2018.4.16=py27_0
  - cffi=1.11.5=py27he75722e_1
  - chardet=3.0.4=py27_1
  - click=7.0=py27_0
  - cloudpickle=0.8.0=py27_0
  - colorama=0.3.9=py27h5cde069_0
  - configparser=3.7.3=py27_1
  - cryptography=2.2.2=py27h14c3975_0
  - cycler=0.10.0=py27hc7354d3_0
  - cython=0.28.2=py27h14c3975_0
  - decorator=4.3.0=py27_0
  - docutils=0.14=py27_0
  - entrypoints=0.2.3=py27_2
  - enum34=1.1.6=py27_1
  - et_xmlfile=1.0.1=py27_0
  - flask=1.0.2=py27_1
  - freetype=2.8=hab7d2ae_1
  - funcsigs=1.0.2=py27_0
  - functools32=3.2.3.2=py27_1
  - future=0.17.1=py27_0
  - futures=3.2.0=py27_0
  - gast=0.2.2=py27_0
  - gitdb2=2.0.5=py27_0
  - gitpython=2.1.11=py27_0
  - gmp=6.1.2=h6c8ec71_1
  - grpcio=1.12.1=py27hdbcaa40_0
  - gunicorn=19.9.0=py27_0
  - h5py=2.8.0=py27h989c5e5_3
  - hdf5=1.10.2=hba1933b_1
  - html5lib=1.0.1=py27_0
  - icu=58.2=h9c2bf20_1
  - idna=2.6=py27h5722d68_1
  - intel-openmp=2018.0.0=8
  - ipaddress=1.0.22=py27_0
  - ipython=5.7.0=py27_0
  - ipython_genutils=0.2.0=py27_0
  - itsdangerous=0.24=py27_1
  - jdcal=1.4=py27_0
  - jinja2=2.10=py27_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jsonschema=2.6.0=py27h7ed5aa4_0
  - jupyter_client=5.2.3=py27_0
  - jupyter_core=4.4.0=py27_0
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py27_0
  - keras-preprocessing=1.1.0=py_1
  - krb5=1.16.1=hc83ff2d_6
  - libedit=3.1.20170329=h6b74fdf_2
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=7.3.0=hdf63c60_0
  - libgfortran-ng=7.2.0=hdf63c60_3
  - libpng=1.6.34=hb9fc6fc_0
  - libpq=10.4=h1ad7b7a_0
  - libprotobuf=3.8.0=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=7.3.0=hdf63c60_0
  - libtiff=4.0.9=he85c1e1_2
  - libxgboost=0.90=he6710b0_0
  - libxml2=2.9.8=h26e45fe_1
  - libxslt=1.1.32=h1312cb7_0
  - linecache2=1.0.0=py27_0
  - llvmlite=0.23.1=py27hdbcaa40_0
  - lxml=4.2.1=py27h23eabaa_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py27_0
  - markupsafe=1.0=py27h14c3975_1
  - mistune=0.8.3=py27h14c3975_1
  - mkl=2019.4=243
  - mkl_fft=1.0.12=py27ha843d7b_0
  - mkl_random=1.0.2=py27hd81dba3_0
  - mock=3.0.5=py27_0
  - msgpack-python=0.5.6=py27h6bb024c_1
  - nbconvert=5.3.1=py27_0
  - nbformat=4.4.0=py27hed7f2b2_0
  - ncurses=6.1=he6710b0_1
  - ninja=1.9.0=py27hfd86e86_0
  - numba=0.38.0=py27h637b7d7_0
  - numpy=1.16.2=py27h7e9f1db_0
  - numpy-base=1.16.2=py27hde5b4d6_0
  - olefile=0.45.1=py27_0
  - openpyxl=2.5.3=py27_0
  - openssl=1.0.2o=h14c3975_1
  - pandas=0.23.0=py27h637b7d7_0
  - pandocfilters=1.4.2=py27_1
  - paramiko=2.4.2=py27_0
  - pathlib2=2.3.2=py27_0
  - patsy=0.5.0=py27_0
  - pexpect=4.5.0=py27_0
  - pickleshare=0.7.4=py27_0
  - pillow=5.1.0=py27h3deb7b8_0
  - pip=10.0.1=py27_0
  - ply=3.11=py27_0
  - prompt_toolkit=1.0.15=py27_0
  - protobuf=3.8.0=py27he6710b0_0
  - psycopg2=2.7.5=py27hb7f436b_0
  - ptyprocess=0.5.2=py27h4ccb14c_0
  - py-xgboost=0.90=py27he6710b0_0
  - py-xgboost-cpu=0.90=py27_0
  - pyasn1=0.4.5=py_0
  - pycparser=2.18=py27_1
  - pygments=2.2.0=py27_0
  - pynacl=1.3.0=py27h7b6447c_0
  - pyopenssl=18.0.0=py27_0
  - pyparsing=2.2.0=py27_1
  - pysocks=1.6.8=py27_0
  - python=2.7.15=h1571d57_0
  - python-dateutil=2.7.3=py27_0
  - python-editor=1.0.4=py_0
  - pytz=2018.4=py27_0
  - pyyaml=5.1=py27h7b6447c_0
  - pyzmq=17.0.0=py27h14c3975_3
  - readline=7.0=h7b6447c_5
  - requests=2.18.4=py27hc5b0589_1
  - s3transfer=0.1.13=py27_0
  - scandir=1.7=py27h14c3975_0
  - scikit-learn=0.20.3=py27hd81dba3_0
  - scipy=1.1.0=py27h7c811a0_2
  - setuptools=39.1.0=py27_0
  - simplegeneric=0.8.1=py27_2
  - simplejson=3.16.0=py27h14c3975_0
  - singledispatch=3.4.0.3=py27_0
  - six=1.11.0=py27_1
  - smmap2=2.0.5=py27_0
  - sqlite=3.23.1=he433501_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py27h035aef0_0
  - tabulate=0.8.3=py27_0
  - tensorboard=1.13.1=py27hf484d3e_0
  - tensorflow=1.13.1=mkl_py27h74ee40f_0
  - tensorflow-base=1.13.1=mkl_py27h7ce6ba3_0
  - tensorflow-estimator=1.13.0=py_0
  - tensorflow-mkl=1.13.1=h4fcabd2_0
  - termcolor=1.1.0=py27_1
  - testpath=0.3.1=py27hc38d2c4_0
  - tk=8.6.7=hc745277_3
  - tornado=5.0.2=py27h14c3975_0
  - traceback2=1.4.0=py27_0
  - traitlets=4.3.2=py27_0
  - unittest2=1.1.0=py27_0
  - urllib3=1.22=py27ha55213b_0
  - virtualenv=16.0.0=py27_0
  - wcwidth=0.1.7=py27h9e3e1ab_0
  - webencodings=0.5.1=py27_1
  - werkzeug=0.14.1=py27_0
  - wheel=0.31.1=py27_0
  - wrapt=1.11.1=py27h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.2.5=hf484d3e_1
  - zlib=1.2.11=h7b6447c_3
  - pytorch-cpu=1.1.0=py2.7_cpu_0
  - torchvision-cpu=0.3.0=py27_cuNone_1
  - pip:
    - backports.functools-lru-cache==1.5
    - backports.ssl-match-hostname==3.7.0.1
    - databricks-cli==0.8.7
    - docker==4.0.2
    - fusepy==2.0.4
    - horovod==0.16.4
    - hyperopt==0.1.2.db6
    - kiwisolver==1.1.0
    - matplotlib==2.2.2
    - mleap==0.8.1
    - mlflow==1.0.0
    - msgpack==0.5.6
    - networkx==2.2
    - nose==1.3.7
    - nose-exclude==0.5.0
    - psutil==5.6.3
    - pyarrow==0.13.0
    - pymongo==3.8.0
    - querystring-parser==1.2.3
    - seaborn==0.8.1
    - subprocess32==3.5.4
    - tensorboardx==1.7
    - torchvision==0.3.0
    - tqdm==4.32.2
    - websocket-client==0.56.0
prefix: /databricks/python2

Python 2 auf GPU-ClusternPython 2 on GPU clusters

name: null
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - tensorflow=1.13.1.db1=gpu_py27h8e347d7_0
  - tensorflow-base=1.13.1.db1=gpu_py27he292aa2_0
  - tensorflow-gpu=1.13.1.db1=h0d30ee6_0
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=1.0=gpu_0
  - _tflow_select=2.1.0=gpu
  - absl-py=0.7.1=py27_0
  - asn1crypto=0.24.0=py27_0
  - astor=0.7.1=py27_0
  - backports=1.0=py_2
  - backports.shutil_get_terminal_size=1.0.0=py27_2
  - backports.weakref=1.0.post1=py_1
  - backports_abc=0.5=py_0
  - bcrypt=3.1.6=py27h7b6447c_0
  - blas=1.0=mkl
  - bleach=2.1.3=py27_0
  - boto=2.48.0=py27_1
  - boto3=1.7.62=py27h28b3542_1
  - botocore=1.10.62=py27h28b3542_0
  - ca-certificates=2018.03.07=0
  - certifi=2018.4.16=py27_0
  - cffi=1.11.5=py27he75722e_1
  - chardet=3.0.4=py27_1
  - click=7.0=py27_0
  - cloudpickle=0.8.0=py27_0
  - colorama=0.3.9=py27_0
  - configparser=3.7.3=py27_1
  - cryptography=2.2.2=py27h14c3975_0
  - cudnn=7.6.0=cuda10.0_0
  - cupti=10.0.130=0
  - cycler=0.10.0=py27_0
  - cython=0.28.2=py27h14c3975_0
  - decorator=4.3.0=py27_0
  - docutils=0.14=py27hae222c1_0
  - entrypoints=0.2.3=py27_2
  - enum34=1.1.6=py27_1
  - et_xmlfile=1.0.1=py27h75840f5_0
  - flask=1.0.2=py27_1
  - freetype=2.8=hab7d2ae_1
  - funcsigs=1.0.2=py27_0
  - functools32=3.2.3.2=py27_1
  - future=0.17.1=py27_0
  - futures=3.2.0=py27_0
  - gast=0.2.2=py27_0
  - gitdb2=2.0.5=py27_0
  - gitpython=2.1.11=py27_0
  - gmp=6.1.2=h6c8ec71_1
  - grpcio=1.12.1=py27hdbcaa40_0
  - gunicorn=19.9.0=py27_0
  - h5py=2.8.0=py27h989c5e5_3
  - hdf5=1.10.2=hba1933b_1
  - html5lib=1.0.1=py27_0
  - icu=58.2=h9c2bf20_1
  - idna=2.6=py27h5722d68_1
  - intel-openmp=2018.0.0=8
  - ipaddress=1.0.22=py27_0
  - ipython=5.7.0=py27_0
  - ipython_genutils=0.2.0=py27h89fb69b_0
  - itsdangerous=0.24=py27_1
  - jdcal=1.4=py27_0
  - jinja2=2.10=py27_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jsonschema=2.6.0=py27h7ed5aa4_0
  - jupyter_client=5.2.3=py27_0
  - jupyter_core=4.4.0=py27_0
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py27_0
  - keras-preprocessing=1.1.0=py_1
  - krb5=1.16.1=hc83ff2d_6
  - libedit=3.1.20170329=h6b74fdf_2
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=7.3.0=hdf63c60_0
  - libgfortran-ng=7.2.0=hdf63c60_3
  - libpng=1.6.34=hb9fc6fc_0
  - libpq=10.4=h1ad7b7a_0
  - libprotobuf=3.8.0=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=7.3.0=hdf63c60_0
  - libtiff=4.0.9=he85c1e1_2
  - libxgboost=0.90=h688424c_0
  - libxml2=2.9.8=h26e45fe_1
  - libxslt=1.1.32=h1312cb7_0
  - linecache2=1.0.0=py27_0
  - llvmlite=0.23.1=py27hdbcaa40_0
  - lxml=4.2.1=py27h23eabaa_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py27_0
  - markupsafe=1.0=py27h14c3975_1
  - mistune=0.8.3=py27h14c3975_1
  - mkl=2019.4=243
  - mkl_fft=1.0.12=py27ha843d7b_0
  - mkl_random=1.0.2=py27hd81dba3_0
  - mock=3.0.5=py27_0
  - msgpack-python=0.5.6=py27h6bb024c_1
  - nbconvert=5.3.1=py27_0
  - nbformat=4.4.0=py27hed7f2b2_0
  - ncurses=6.1=he6710b0_1
  - ninja=1.9.0=py27hfd86e86_0
  - numba=0.38.0=py27h637b7d7_0
  - numpy=1.16.2=py27h7e9f1db_0
  - numpy-base=1.16.2=py27hde5b4d6_0
  - olefile=0.45.1=py27_0
  - openpyxl=2.5.3=py27_0
  - openssl=1.0.2o=h14c3975_1
  - pandas=0.23.0=py27h637b7d7_0
  - pandocfilters=1.4.2=py27_1
  - paramiko=2.4.2=py27_0
  - pathlib2=2.3.2=py27_0
  - patsy=0.5.0=py27_0
  - pexpect=4.5.0=py27_0
  - pickleshare=0.7.4=py27h09770e1_0
  - pillow=5.1.0=py27h3deb7b8_0
  - pip=10.0.1=py27_0
  - ply=3.11=py27_0
  - prompt_toolkit=1.0.15=py27_0
  - protobuf=3.8.0=py27he6710b0_0
  - psycopg2=2.7.5=py27hb7f436b_0
  - ptyprocess=0.5.2=py27h4ccb14c_0
  - py-xgboost=0.90=py27h688424c_0
  - py-xgboost-gpu=0.90=py27h28bbb66_0
  - pyasn1=0.4.5=py_0
  - pycparser=2.18=py27_1
  - pygments=2.2.0=py27_0
  - pynacl=1.3.0=py27h7b6447c_0
  - pyopenssl=18.0.0=py27_0
  - pyparsing=2.2.0=py27_1
  - pysocks=1.6.8=py27_0
  - python=2.7.15=h1571d57_0
  - python-dateutil=2.7.3=py27_0
  - python-editor=1.0.4=py_0
  - pytz=2018.4=py27_0
  - pyyaml=5.1=py27h7b6447c_0
  - pyzmq=17.0.0=py27h14c3975_3
  - readline=7.0=h7b6447c_5
  - requests=2.18.4=py27hc5b0589_1
  - s3transfer=0.1.13=py27_0
  - scandir=1.7=py27h14c3975_0
  - scikit-learn=0.20.3=py27hd81dba3_0
  - scipy=1.1.0=py27h7c811a0_2
  - setuptools=39.1.0=py27_0
  - simplegeneric=0.8.1=py27_2
  - simplejson=3.16.0=py27h14c3975_0
  - singledispatch=3.4.0.3=py27h9bcb476_0
  - six=1.11.0=py27_1
  - smmap2=2.0.5=py27_0
  - sqlite=3.23.1=he433501_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py27h035aef0_0
  - tabulate=0.8.3=py27_0
  - tensorboard=1.13.1=py27hf484d3e_0
  - tensorflow-estimator=1.13.0=py_0
  - termcolor=1.1.0=py27_1
  - testpath=0.3.1=py27_0
  - tk=8.6.7=hc745277_3
  - tornado=5.0.2=py27h14c3975_0
  - traceback2=1.4.0=py27_0
  - traitlets=4.3.2=py27hd6ce930_0
  - unittest2=1.1.0=py27_0
  - urllib3=1.22=py27ha55213b_0
  - virtualenv=16.0.0=py27_0
  - wcwidth=0.1.7=py27_0
  - webencodings=0.5.1=py27_1
  - werkzeug=0.14.1=py27_0
  - wheel=0.31.1=py27_0
  - wrapt=1.11.1=py27h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.2.5=hf484d3e_1
  - zlib=1.2.11=h7b6447c_3
  - pytorch=1.1.0=py2.7_cuda10.0.130_cudnn7.5.1_0
  - torchvision=0.3.0=py27_cu10.0.130_1
  - pip:
    - backports.functools-lru-cache==1.5
    - backports.ssl-match-hostname==3.7.0.1
    - databricks-cli==0.8.7
    - docker==4.0.2
    - fusepy==2.0.4
    - horovod==0.16.4
    - hyperopt==0.1.2.db6
    - kiwisolver==1.1.0
    - matplotlib==2.2.2
    - mleap==0.8.1
    - mlflow==1.0.0
    - msgpack==0.5.6
    - networkx==2.2
    - nose==1.3.7
    - nose-exclude==0.5.0
    - psutil==5.6.3
    - pyarrow==0.13.0
    - pymongo==3.8.0
    - querystring-parser==1.2.3
    - seaborn==0.8.1
    - subprocess32==3.5.4
    - tensorboardx==1.7
    - tqdm==4.32.2
    - websocket-client==0.56.0
prefix: /databricks/python2

Spark-Pakete mit Python-ModulenSpark packages containing Python modules

Spark-PaketSpark Package Python-ModulPython Module -VersionVersion
graphframesgraphframes graphframesgraphframes 0.7.0-DB1-Spark 2.40.7.0-db1-spark2.4
Spark-Deep-Learningspark-deep-learning sparkdlsparkdl 1.5.0-db4-Spark 2.41.5.0-db4-spark2.4
tensorframestensorframes tensorframestensorframes 0.7.0-s_2.110.7.0-s_2.11

R-BibliothekenR libraries

Die r-Bibliotheken sind identisch mit den r-Bibliotheken in Databricks Runtime 5,5.The R libraries are identical to the R Libraries in Databricks Runtime 5.5.

Java-und Scala-Bibliotheken (Scala 2,11-Cluster)Java and Scala libraries (Scala 2.11 cluster)

Zusätzlich zu den Java-und Scala-Bibliotheken in Databricks Runtime 5,5 enthält Databricks Runtime 5,5 LTS ml die folgenden jar-Informationen:In addition to Java and Scala libraries in Databricks Runtime 5.5, Databricks Runtime 5.5 LTS ML contains the following JARs:

Gruppen-IDGroup ID ArtefaktkennungArtifact ID -VersionVersion
com. databrickscom.databricks Spark-Deep-Learningspark-deep-learning 1.5.0-db4-Spark 2.41.5.0-db4-spark2.4
com. typesafe. Akkacom.typesafe.akka Akka-actor_2.11akka-actor_2.11 2.3.112.3.11
ml. combust. mleapml.combust.mleap mleap-databricks-runtime_2.11mleap-databricks-runtime_2.11 0.13.00.13.0
ml. dmlcml.dmlc xgboost4jxgboost4j 0.900.90
ml. dmlcml.dmlc xgboost4j-Sparkxgboost4j-spark 0.900.90
org. graphframesorg.graphframes graphframes_2.11graphframes_2.11 0.7.0-DB1-Spark 2.40.7.0-db1-spark2.4
org. tensorfloworg.tensorflow libtensorflowlibtensorflow 1.13.11.13.1
org. tensorfloworg.tensorflow libtensorflow_jnilibtensorflow_jni 1.13.11.13.1
org. tensorfloworg.tensorflow Spark-tensorflow-connector_2.11spark-tensorflow-connector_2.11 1.13.11.13.1
org. tensorfloworg.tensorflow tensorflowtensorflow 1.13.11.13.1
org. tensorframesorg.tensorframes tensorframestensorframes 0.7.0-s_2.110.7.0-s_2.11