Math.Cos(Double) Math.Cos(Double) Math.Cos(Double) Math.Cos(Double) Method

Definition

Gibt den Kosinus des angegebenen Winkels zurück.Returns the cosine of the specified angle.

public:
 static double Cos(double d);
public static double Cos (double d);
static member Cos : double -> double
Public Shared Function Cos (d As Double) As Double

Parameter

d
Double Double Double Double

Ein im Bogenmaß angegebener Winkel.An angle, measured in radians.

Gibt zurück

Der Kosinus von d.The cosine of d. Wenn d gleich NaN, NegativeInfinity oder PositiveInfinity ist, wird NaN von dieser Methode zurückgegeben.If d is equal to NaN, NegativeInfinity, or PositiveInfinity, this method returns NaN.

Beispiele

Im folgenden Beispiel wird Cos verwendet, um bestimmte selektische Identitäten für ausgewählte Winkel auszuwerten.The following example uses Cos to evaluate certain trigonometric identities for selected angles.

// Example for the trigonometric Math.Sin( double ) 
// and Math.Cos( double ) methods.
using namespace System;

// Evaluate trigonometric identities with a given angle.
void UseSineCosine( double degrees )
{
   double angle = Math::PI * degrees / 180.0;
   double sinAngle = Math::Sin( angle );
   double cosAngle = Math::Cos( angle );
   
   // Evaluate sin^2(X) + cos^2(X) == 1.
   Console::WriteLine( "\n                            Math::Sin({0} deg) == {1:E16}\n"
   "                            Math::Cos({0} deg) == {2:E16}", degrees, Math::Sin( angle ), Math::Cos( angle ) );
   Console::WriteLine( "(Math::Sin({0} deg))^2 + (Math::Cos({0} deg))^2 == {1:E16}", degrees, sinAngle * sinAngle + cosAngle * cosAngle );
   
   // Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
   Console::WriteLine( "                            Math::Sin({0} deg) == {1:E16}", 2.0 * degrees, Math::Sin( 2.0 * angle ) );
   Console::WriteLine( "    2 * Math::Sin({0} deg) * Math::Cos({0} deg) == {1:E16}", degrees, 2.0 * sinAngle * cosAngle );
   
   // Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
   Console::WriteLine( "                            Math::Cos({0} deg) == {1:E16}", 2.0 * degrees, Math::Cos( 2.0 * angle ) );
   Console::WriteLine( "(Math::Cos({0} deg))^2 - (Math::Sin({0} deg))^2 == {1:E16}", degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}


// Evaluate trigonometric identities that are functions of two angles.
void UseTwoAngles( double degreesX, double degreesY )
{
   double angleX = Math::PI * degreesX / 180.0;
   double angleY = Math::PI * degreesY / 180.0;
   
   // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
   Console::WriteLine( "\n        Math::Sin({0} deg) * Math::Cos({1} deg) +\n"
   "        Math::Cos({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Sin( angleX ) * Math::Cos( angleY ) + Math::Cos( angleX ) * Math::Sin( angleY ) );
   Console::WriteLine( "                            Math::Sin({0} deg) == {1:E16}", degreesX + degreesY, Math::Sin( angleX + angleY ) );
   
   // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
   Console::WriteLine( "        Math::Cos({0} deg) * Math::Cos({1} deg) -\n"
   "        Math::Sin({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Cos( angleX ) * Math::Cos( angleY ) - Math::Sin( angleX ) * Math::Sin( angleY ) );
   Console::WriteLine( "                            Math::Cos({0} deg) == {1:E16}", degreesX + degreesY, Math::Cos( angleX + angleY ) );
}

int main()
{
   Console::WriteLine( "This example of trigonometric "
   "Math::Sin( double ) and Math::Cos( double )\n"
   "generates the following output.\n" );
   Console::WriteLine( "Convert selected values for X to radians \n"
   "and evaluate these trigonometric identities:" );
   Console::WriteLine( "   sin^2(X) + cos^2(X) == 1\n"
   "   sin(2 * X) == 2 * sin(X) * cos(X)" );
   Console::WriteLine( "   cos(2 * X) == cos^2(X) - sin^2(X)" );
   UseSineCosine( 15.0 );
   UseSineCosine( 30.0 );
   UseSineCosine( 45.0 );
   Console::WriteLine( "\nConvert selected values for X and Y to radians \n"
   "and evaluate these trigonometric identities:" );
   Console::WriteLine( "   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
   Console::WriteLine( "   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
   UseTwoAngles( 15.0, 30.0 );
   UseTwoAngles( 30.0, 45.0 );
}

/*
This example of trigonometric Math::Sin( double ) and Math::Cos( double )
generates the following output.

Convert selected values for X to radians
and evaluate these trigonometric identities:
   sin^2(X) + cos^2(X) == 1
   sin(2 * X) == 2 * sin(X) * cos(X)
   cos(2 * X) == cos^2(X) - sin^2(X)

                            Math::Sin(15 deg) == 2.5881904510252074E-001
                            Math::Cos(15 deg) == 9.6592582628906831E-001
(Math::Sin(15 deg))^2 + (Math::Cos(15 deg))^2 == 1.0000000000000000E+000
                            Math::Sin(30 deg) == 4.9999999999999994E-001
    2 * Math::Sin(15 deg) * Math::Cos(15 deg) == 4.9999999999999994E-001
                            Math::Cos(30 deg) == 8.6602540378443871E-001
(Math::Cos(15 deg))^2 - (Math::Sin(15 deg))^2 == 8.6602540378443871E-001

                            Math::Sin(30 deg) == 4.9999999999999994E-001
                            Math::Cos(30 deg) == 8.6602540378443871E-001
(Math::Sin(30 deg))^2 + (Math::Cos(30 deg))^2 == 1.0000000000000000E+000
                            Math::Sin(60 deg) == 8.6602540378443860E-001
    2 * Math::Sin(30 deg) * Math::Cos(30 deg) == 8.6602540378443860E-001
                            Math::Cos(60 deg) == 5.0000000000000011E-001
(Math::Cos(30 deg))^2 - (Math::Sin(30 deg))^2 == 5.0000000000000022E-001

                            Math::Sin(45 deg) == 7.0710678118654746E-001
                            Math::Cos(45 deg) == 7.0710678118654757E-001
(Math::Sin(45 deg))^2 + (Math::Cos(45 deg))^2 == 1.0000000000000000E+000
                            Math::Sin(90 deg) == 1.0000000000000000E+000
    2 * Math::Sin(45 deg) * Math::Cos(45 deg) == 1.0000000000000000E+000
                            Math::Cos(90 deg) == 6.1230317691118863E-017
(Math::Cos(45 deg))^2 - (Math::Sin(45 deg))^2 == 2.2204460492503131E-016

Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)

        Math::Sin(15 deg) * Math::Cos(30 deg) +
        Math::Cos(15 deg) * Math::Sin(30 deg) == 7.0710678118654746E-001
                            Math::Sin(45 deg) == 7.0710678118654746E-001
        Math::Cos(15 deg) * Math::Cos(30 deg) -
        Math::Sin(15 deg) * Math::Sin(30 deg) == 7.0710678118654757E-001
                            Math::Cos(45 deg) == 7.0710678118654757E-001

        Math::Sin(30 deg) * Math::Cos(45 deg) +
        Math::Cos(30 deg) * Math::Sin(45 deg) == 9.6592582628906831E-001
                            Math::Sin(75 deg) == 9.6592582628906820E-001
        Math::Cos(30 deg) * Math::Cos(45 deg) -
        Math::Sin(30 deg) * Math::Sin(45 deg) == 2.5881904510252085E-001
                            Math::Cos(75 deg) == 2.5881904510252096E-001
*/
// Example for the trigonometric Math.Sin( double ) 
// and Math.Cos( double ) methods.
using System;

class SinCos 
{
    public static void Main() 
    {
        Console.WriteLine( 
            "This example of trigonometric " +
            "Math.Sin( double ) and Math.Cos( double )\n" +
            "generates the following output.\n" );
        Console.WriteLine( 
            "Convert selected values for X to radians \n" +
            "and evaluate these trigonometric identities:" );
        Console.WriteLine( "   sin^2(X) + cos^2(X) == 1\n" +
                           "   sin(2 * X) == 2 * sin(X) * cos(X)" );
        Console.WriteLine( "   cos(2 * X) == cos^2(X) - sin^2(X)" );

        UseSineCosine(15.0);
        UseSineCosine(30.0);
        UseSineCosine(45.0);

        Console.WriteLine( 
            "\nConvert selected values for X and Y to radians \n" +
            "and evaluate these trigonometric identities:" );
        Console.WriteLine( "   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
        Console.WriteLine( "   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );

        UseTwoAngles(15.0, 30.0);
        UseTwoAngles(30.0, 45.0);
    }

    // Evaluate trigonometric identities with a given angle.
    static void UseSineCosine(double degrees)
    {
        double angle    = Math.PI * degrees / 180.0;
        double sinAngle = Math.Sin(angle);
        double cosAngle = Math.Cos(angle);

        // Evaluate sin^2(X) + cos^2(X) == 1.
        Console.WriteLine( 
            "\n                           Math.Sin({0} deg) == {1:E16}\n" +
            "                           Math.Cos({0} deg) == {2:E16}",
            degrees, Math.Sin(angle), Math.Cos(angle) );
        Console.WriteLine( 
            "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}", 
            degrees, sinAngle * sinAngle + cosAngle * cosAngle );

        // Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
        Console.WriteLine( 
            "                           Math.Sin({0} deg) == {1:E16}", 
            2.0 * degrees, Math.Sin(2.0 * angle) );
        Console.WriteLine( 
            "    2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}", 
            degrees, 2.0 * sinAngle * cosAngle );

        // Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
        Console.WriteLine( 
            "                           Math.Cos({0} deg) == {1:E16}", 
            2.0 * degrees, Math.Cos(2.0 * angle) );
        Console.WriteLine( 
            "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}", 
            degrees, cosAngle * cosAngle - sinAngle * sinAngle );
    }

    // Evaluate trigonometric identities that are functions of two angles.
    static void UseTwoAngles(double degreesX, double degreesY)
    {
        double  angleX  = Math.PI * degreesX / 180.0;
        double  angleY  = Math.PI * degreesY / 180.0;

        // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
        Console.WriteLine( 
            "\n        Math.Sin({0} deg) * Math.Cos({1} deg) +\n" + 
            "        Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}", 
            degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
            Math.Cos(angleX) * Math.Sin(angleY));
        Console.WriteLine( 
            "                           Math.Sin({0} deg) == {1:E16}",
            degreesX + degreesY, Math.Sin(angleX + angleY));

        // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
        Console.WriteLine( 
            "        Math.Cos({0} deg) * Math.Cos({1} deg) -\n" + 
            "        Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}", 
            degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
            Math.Sin(angleX) * Math.Sin(angleY));
        Console.WriteLine( 
            "                           Math.Cos({0} deg) == {1:E16}",
            degreesX + degreesY, Math.Cos(angleX + angleY));
    }
}

/*
This example of trigonometric Math.Sin( double ) and Math.Cos( double )
generates the following output.

Convert selected values for X to radians
and evaluate these trigonometric identities:
   sin^2(X) + cos^2(X) == 1
   sin(2 * X) == 2 * sin(X) * cos(X)
   cos(2 * X) == cos^2(X) - sin^2(X)

                           Math.Sin(15 deg) == 2.5881904510252074E-001
                           Math.Cos(15 deg) == 9.6592582628906831E-001
(Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(30 deg) == 4.9999999999999994E-001
    2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001
                           Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001

                           Math.Sin(30 deg) == 4.9999999999999994E-001
                           Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(60 deg) == 8.6602540378443860E-001
    2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001
                           Math.Cos(60 deg) == 5.0000000000000011E-001
(Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001

                           Math.Sin(45 deg) == 7.0710678118654746E-001
                           Math.Cos(45 deg) == 7.0710678118654757E-001
(Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(90 deg) == 1.0000000000000000E+000
    2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000
                           Math.Cos(90 deg) == 6.1230317691118863E-017
(Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016

Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)

        Math.Sin(15 deg) * Math.Cos(30 deg) +
        Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001
                           Math.Sin(45 deg) == 7.0710678118654746E-001
        Math.Cos(15 deg) * Math.Cos(30 deg) -
        Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001
                           Math.Cos(45 deg) == 7.0710678118654757E-001

        Math.Sin(30 deg) * Math.Cos(45 deg) +
        Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001
                           Math.Sin(75 deg) == 9.6592582628906820E-001
        Math.Cos(30 deg) * Math.Cos(45 deg) -
        Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001
                           Math.Cos(75 deg) == 2.5881904510252096E-001
*/
' Example for the trigonometric Math.Sin( Double ) and Math.Cos( Double ) methods.
Module SinCos
   
    Sub Main()
        Console.WriteLine( _
            "This example of trigonometric " & _
            "Math.Sin( double ) and Math.Cos( double )" & vbCrLf & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Convert selected values for X to radians " & vbCrLf & _
            "and evaluate these trigonometric identities:")
        Console.WriteLine( _
            "   sin^2(X) + cos^2(X) = 1" & vbCrLf & _ 
            "   sin(2 * X) = 2 * sin(X) * cos(X)")
        Console.WriteLine("   cos(2 * X) = cos^2(X) - sin^2(X)")
          
        UseSineCosine(15.0)
        UseSineCosine(30.0)
        UseSineCosine(45.0)
          
        Console.WriteLine( _
            vbCrLf & "Convert selected values for X and Y to radians" & _ 
            vbCrLf & "and evaluate these trigonometric identities:")
        Console.WriteLine("   sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)")
        Console.WriteLine("   cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)")
          
        UseTwoAngles(15.0, 30.0)
        UseTwoAngles(30.0, 45.0)
    End Sub
      
    ' Evaluate trigonometric identities with a given angle.
    Sub UseSineCosine(degrees As Double)

        Dim angle As Double = Math.PI * degrees / 180.0
        Dim sinAngle As Double = Math.Sin(angle)
        Dim cosAngle As Double = Math.Cos(angle)
          
        ' Evaluate sin^2(X) + cos^2(X) = 1.
        Console.WriteLine( _
            vbCrLf & "                           Math.Sin({0} deg) = {1:E16}" & _ 
            vbCrLf & "                           Math.Cos({0} deg) = {2:E16}", _
            degrees, Math.Sin(angle), Math.Cos(angle))
        Console.WriteLine( _
            "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 = {1:E16}", _ 
            degrees, sinAngle * sinAngle + cosAngle * cosAngle)
          
        ' Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
        Console.WriteLine( _
            "                           Math.Sin({0} deg) = {1:E16}", _ 
            2.0 * degrees, Math.Sin(2.0 * angle))
        Console.WriteLine( _
            "    2 * Math.Sin({0} deg) * Math.Cos({0} deg) = {1:E16}", _ 
            degrees, 2.0 * sinAngle * cosAngle)
          
        ' Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
        Console.WriteLine( _
            "                           Math.Cos({0} deg) = {1:E16}", _ 
            2.0 * degrees, Math.Cos(2.0 * angle))
        Console.WriteLine( _
            "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 = {1:E16}", _ 
            degrees, cosAngle * cosAngle - sinAngle * sinAngle)

    End Sub
       
    ' Evaluate trigonometric identities that are functions of two angles.
    Sub UseTwoAngles(degreesX As Double, degreesY As Double)

        Dim angleX As Double = Math.PI * degreesX / 180.0
        Dim angleY As Double = Math.PI * degreesY / 180.0
          
        ' Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
        Console.WriteLine( _
            vbCrLf & "        Math.Sin({0} deg) * Math.Cos({1} deg) +" & _ 
            vbCrLf & "        Math.Cos({0} deg) * Math.Sin({1} deg) = {2:E16}", _
            degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + _
            Math.Cos(angleX) * Math.Sin(angleY))
        Console.WriteLine( _
            "                           Math.Sin({0} deg) = {1:E16}", _
            degreesX + degreesY, Math.Sin(angleX + angleY))
          
        ' Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
        Console.WriteLine( _
            "        Math.Cos({0} deg) * Math.Cos({1} deg) -" & vbCrLf & _ 
            "        Math.Sin({0} deg) * Math.Sin({1} deg) = {2:E16}", _
            degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - _
            Math.Sin(angleX) * Math.Sin(angleY))
        Console.WriteLine( _
            "                           Math.Cos({0} deg) = {1:E16}", _
            degreesX + degreesY, Math.Cos(angleX + angleY))

    End Sub
End Module 'SinCos

' This example of trigonometric Math.Sin( double ) and Math.Cos( double )
' generates the following output.
' 
' Convert selected values for X to radians
' and evaluate these trigonometric identities:
'    sin^2(X) + cos^2(X) = 1
'    sin(2 * X) = 2 * sin(X) * cos(X)
'    cos(2 * X) = cos^2(X) - sin^2(X)
' 
'                            Math.Sin(15 deg) = 2.5881904510252074E-001
'                            Math.Cos(15 deg) = 9.6592582628906831E-001
' (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
'                            Math.Sin(30 deg) = 4.9999999999999994E-001
'     2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
'                            Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
' 
'                            Math.Sin(30 deg) = 4.9999999999999994E-001
'                            Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
'                            Math.Sin(60 deg) = 8.6602540378443860E-001
'     2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
'                            Math.Cos(60 deg) = 5.0000000000000011E-001
' (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
' 
'                            Math.Sin(45 deg) = 7.0710678118654746E-001
'                            Math.Cos(45 deg) = 7.0710678118654757E-001
' (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
'                            Math.Sin(90 deg) = 1.0000000000000000E+000
'     2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
'                            Math.Cos(90 deg) = 6.1230317691118863E-017
' (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
' 
' Convert selected values for X and Y to radians
' and evaluate these trigonometric identities:
'    sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
'    cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
' 
'         Math.Sin(15 deg) * Math.Cos(30 deg) +
'         Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
'                            Math.Sin(45 deg) = 7.0710678118654746E-001
'         Math.Cos(15 deg) * Math.Cos(30 deg) -
'         Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
'                            Math.Cos(45 deg) = 7.0710678118654757E-001
' 
'         Math.Sin(30 deg) * Math.Cos(45 deg) +
'         Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
'                            Math.Sin(75 deg) = 9.6592582628906820E-001
'         Math.Cos(30 deg) * Math.Cos(45 deg) -
'         Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
'                            Math.Cos(75 deg) = 2.5881904510252096E-001

Hinweise

Der Winkel, d, muss sich im Bogenmaße befinden.The angle, d, must be in radians. Multiplizieren Sie um/180, um Grad in Bogenmaß zu konvertieren. Math.PIMultiply by Math.PI/180 to convert degrees to radians.

Zulässige Werte für d den Bereich von ungefähr-9223372036854775295 bis etwa 9223372036854775295.Acceptable values of d range from approximately -9223372036854775295 to approximately 9223372036854775295. Bei Werten außerhalb dieses Bereichs gibt die Cos Methode unverändert d zurück, anstatt eine Ausnahme auszulösen.For values outside this range, the Cos method returns d unchanged rather than throwing an exception.

Gilt für: