Math.Exp(Double) Methode
Definition
Gibt die angegebene Potenz von e
zurück.Returns e
raised to the specified power.
public:
static double Exp(double d);
public static double Exp (double d);
static member Exp : double -> double
Public Shared Function Exp (d As Double) As Double
Parameter
- d
- Double
Eine Zahl, die einen Exponenten angibt.A number specifying a power.
Gibt zurück
Die Zahl e
hoch d
.The number e
raised to the power d
. Wenn d
gleich NaN oder PositiveInfinity ist, wird dieser Wert zurückgegeben.If d
equals NaN or PositiveInfinity, that value is returned. Wenn d
gleich NegativeInfinity ist, wird 0 zurückgegeben.If d
equals NegativeInfinity, 0 is returned.
Beispiele
Im folgenden Beispiel wird verwendet Exp , um bestimmte exponentielle und logarithmische Identitäten für ausgewählte Werte auszuwerten.The following example uses Exp to evaluate certain exponential and logarithmic identities for selected values.
// Example for the Math::Exp( double ) method.
using namespace System;
// Evaluate logarithmic/exponential identity with a given argument.
void UseLnExp( double arg )
{
// Evaluate e ^ ln(X) == ln(e ^ X) == X.
Console::WriteLine( "\n Math::Exp(Math::Log({0})) == {1:E16}\n"
" Math::Log(Math::Exp({0})) == {2:E16}", arg, Math::Exp( Math::Log( arg ) ), Math::Log( Math::Exp( arg ) ) );
}
// Evaluate exponential identities that are functions of two arguments.
void UseTwoArgs( double argX, double argY )
{
// Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
Console::WriteLine( "\nMath::Exp({0}) * Math::Exp({1}) == {2:E16}"
"\n Math::Exp({0} + {1}) == {3:E16}", argX, argY, Math::Exp( argX ) * Math::Exp( argY ), Math::Exp( argX + argY ) );
// Evaluate (e ^ X) ^ Y == e ^ (X * Y).
Console::WriteLine( " Math::Pow(Math::Exp({0}), {1}) == {2:E16}"
"\n Math::Exp({0} * {1}) == {3:E16}", argX, argY, Math::Pow( Math::Exp( argX ), argY ), Math::Exp( argX * argY ) );
// Evaluate X ^ Y == e ^ (Y * ln(X)).
Console::WriteLine( " Math::Pow({0}, {1}) == {2:E16}"
"\nMath::Exp({1} * Math::Log({0})) == {3:E16}", argX, argY, Math::Pow( argX, argY ), Math::Exp( argY * Math::Log( argX ) ) );
}
int main()
{
Console::WriteLine( "This example of Math::Exp( double ) "
"generates the following output.\n" );
Console::WriteLine( "Evaluate [e ^ ln(X) == ln(e ^ X) == X] "
"with selected values for X:" );
UseLnExp( 0.1 );
UseLnExp( 1.2 );
UseLnExp( 4.9 );
UseLnExp( 9.9 );
Console::WriteLine( "\nEvaluate these identities with "
"selected values for X and Y:" );
Console::WriteLine( " (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
Console::WriteLine( " (e ^ X) ^ Y == e ^ (X * Y)" );
Console::WriteLine( " X ^ Y == e ^ (Y * ln(X))" );
UseTwoArgs( 0.1, 1.2 );
UseTwoArgs( 1.2, 4.9 );
UseTwoArgs( 4.9, 9.9 );
}
/*
This example of Math::Exp( double ) generates the following output.
Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
Math::Exp(Math::Log(0.1)) == 1.0000000000000001E-001
Math::Log(Math::Exp(0.1)) == 1.0000000000000008E-001
Math::Exp(Math::Log(1.2)) == 1.2000000000000000E+000
Math::Log(Math::Exp(1.2)) == 1.2000000000000000E+000
Math::Exp(Math::Log(4.9)) == 4.9000000000000012E+000
Math::Log(Math::Exp(4.9)) == 4.9000000000000004E+000
Math::Exp(Math::Log(9.9)) == 9.9000000000000004E+000
Math::Log(Math::Exp(9.9)) == 9.9000000000000004E+000
Evaluate these identities with selected values for X and Y:
(e ^ X) * (e ^ Y) == e ^ (X + Y)
(e ^ X) ^ Y == e ^ (X * Y)
X ^ Y == e ^ (Y * ln(X))
Math::Exp(0.1) * Math::Exp(1.2) == 3.6692966676192444E+000
Math::Exp(0.1 + 1.2) == 3.6692966676192444E+000
Math::Pow(Math::Exp(0.1), 1.2) == 1.1274968515793757E+000
Math::Exp(0.1 * 1.2) == 1.1274968515793757E+000
Math::Pow(0.1, 1.2) == 6.3095734448019331E-002
Math::Exp(1.2 * Math::Log(0.1)) == 6.3095734448019344E-002
Math::Exp(1.2) * Math::Exp(4.9) == 4.4585777008251705E+002
Math::Exp(1.2 + 4.9) == 4.4585777008251716E+002
Math::Pow(Math::Exp(1.2), 4.9) == 3.5780924170885260E+002
Math::Exp(1.2 * 4.9) == 3.5780924170885277E+002
Math::Pow(1.2, 4.9) == 2.4433636334442981E+000
Math::Exp(4.9 * Math::Log(1.2)) == 2.4433636334442981E+000
Math::Exp(4.9) * Math::Exp(9.9) == 2.6764450551890982E+006
Math::Exp(4.9 + 9.9) == 2.6764450551891015E+006
Math::Pow(Math::Exp(4.9), 9.9) == 1.1684908531676833E+021
Math::Exp(4.9 * 9.9) == 1.1684908531676829E+021
Math::Pow(4.9, 9.9) == 6.8067718210957060E+006
Math::Exp(9.9 * Math::Log(4.9)) == 6.8067718210956985E+006
*/
// Example for the Math.Exp( double ) method.
using System;
class ExpDemo
{
public static void Main()
{
Console.WriteLine(
"This example of Math.Exp( double ) " +
"generates the following output.\n" );
Console.WriteLine(
"Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
"with selected values for X:" );
UseLnExp(0.1);
UseLnExp(1.2);
UseLnExp(4.9);
UseLnExp(9.9);
Console.WriteLine(
"\nEvaluate these identities with " +
"selected values for X and Y:" );
Console.WriteLine( " (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
Console.WriteLine( " (e ^ X) ^ Y == e ^ (X * Y)" );
Console.WriteLine( " X ^ Y == e ^ (Y * ln(X))" );
UseTwoArgs(0.1, 1.2);
UseTwoArgs(1.2, 4.9);
UseTwoArgs(4.9, 9.9);
}
// Evaluate logarithmic/exponential identity with a given argument.
static void UseLnExp(double arg)
{
// Evaluate e ^ ln(X) == ln(e ^ X) == X.
Console.WriteLine(
"\n Math.Exp(Math.Log({0})) == {1:E16}\n" +
" Math.Log(Math.Exp({0})) == {2:E16}",
arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
}
// Evaluate exponential identities that are functions of two arguments.
static void UseTwoArgs(double argX, double argY)
{
// Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
Console.WriteLine(
"\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" +
"\n Math.Exp({0} + {1}) == {3:E16}",
argX, argY, Math.Exp(argX) * Math.Exp(argY),
Math.Exp(argX + argY) );
// Evaluate (e ^ X) ^ Y == e ^ (X * Y).
Console.WriteLine(
" Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
"\n Math.Exp({0} * {1}) == {3:E16}",
argX, argY, Math.Pow(Math.Exp(argX), argY),
Math.Exp(argX * argY) );
// Evaluate X ^ Y == e ^ (Y * ln(X)).
Console.WriteLine(
" Math.Pow({0}, {1}) == {2:E16}" +
"\nMath.Exp({1} * Math.Log({0})) == {3:E16}",
argX, argY, Math.Pow(argX, argY),
Math.Exp(argY * Math.Log(argX)) );
}
}
/*
This example of Math.Exp( double ) generates the following output.
Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001
Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001
Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000
Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000
Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000
Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000
Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000
Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000
Evaluate these identities with selected values for X and Y:
(e ^ X) * (e ^ Y) == e ^ (X + Y)
(e ^ X) ^ Y == e ^ (X * Y)
X ^ Y == e ^ (Y * ln(X))
Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000
Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000
Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000
Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000
Math.Pow(0.1, 1.2) == 6.3095734448019331E-002
Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002
Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002
Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002
Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002
Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002
Math.Pow(1.2, 4.9) == 2.4433636334442981E+000
Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000
Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006
Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006
Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021
Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021
Math.Pow(4.9, 9.9) == 6.8067718210957060E+006
Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006
*/
' Example for the Math.Exp( Double ) method.
Module ExpDemo
Sub Main()
Console.WriteLine( _
"This example of Math.Exp( Double ) " & _
"generates the following output." & vbCrLf)
Console.WriteLine( _
"Evaluate [e ^ ln(X) == ln(e ^ X) == X] " & _
"with selected values for X:")
UseLnExp(0.1)
UseLnExp(1.2)
UseLnExp(4.9)
UseLnExp(9.9)
Console.WriteLine( vbCrLf & _
"Evaluate these identities with selected values for X and Y:")
Console.WriteLine(" (e ^ X) * (e ^ Y) = e ^ (X + Y)")
Console.WriteLine(" (e ^ X) ^ Y = e ^ (X * Y)")
Console.WriteLine(" X ^ Y = e ^ (Y * ln(X))")
UseTwoArgs(0.1, 1.2)
UseTwoArgs(1.2, 4.9)
UseTwoArgs(4.9, 9.9)
End Sub
' Evaluate logarithmic/exponential identity with a given argument.
Sub UseLnExp(arg As Double)
' Evaluate e ^ ln(X) = ln(e ^ X) = X.
Console.WriteLine( _
vbCrLf & " Math.Exp(Math.Log({0})) = {1:E16}" + _
vbCrLf & " Math.Log(Math.Exp({0})) = {2:E16}", _
arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)))
End Sub
' Evaluate exponential identities that are functions of two arguments.
Sub UseTwoArgs(argX As Double, argY As Double)
' Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
Console.WriteLine( _
vbCrLf & "Math.Exp({0}) * Math.Exp({1}) = {2:E16}" + _
vbCrLf & " Math.Exp({0} + {1}) = {3:E16}", _
argX, argY, Math.Exp(argX) * Math.Exp(argY), _
Math.Exp((argX + argY)))
' Evaluate (e ^ X) ^ Y = e ^ (X * Y).
Console.WriteLine( _
" Math.Pow(Math.Exp({0}), {1}) = {2:E16}" + _
vbCrLf & " Math.Exp({0} * {1}) = {3:E16}", _
argX, argY, Math.Pow(Math.Exp(argX), argY), _
Math.Exp((argX * argY)))
' Evaluate X ^ Y = e ^ (Y * ln(X)).
Console.WriteLine( _
" Math.Pow({0}, {1}) = {2:E16}" + _
vbCrLf & "Math.Exp({1} * Math.Log({0})) = {3:E16}", _
argX, argY, Math.Pow(argX, argY), _
Math.Exp((argY * Math.Log(argX))))
End Sub
End Module 'ExpDemo
' This example of Math.Exp( Double ) generates the following output.
'
' Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
'
' Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
' Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
'
' Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
' Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
'
' Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
' Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
'
' Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
' Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
'
' Evaluate these identities with selected values for X and Y:
' (e ^ X) * (e ^ Y) = e ^ (X + Y)
' (e ^ X) ^ Y = e ^ (X * Y)
' X ^ Y = e ^ (Y * ln(X))
'
' Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
' Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
' Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
' Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
' Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
' Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
'
' Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
' Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
' Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
' Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
' Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
' Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
'
' Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
' Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
' Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
' Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
' Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
' Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006
Hinweise
e
ist eine mathematische Konstante, deren Wert ungefähr 2,71828 ist.e
is a mathematical constant whose value is approximately 2.71828.
Verwenden Sie die- Pow Methode, um die Fähigkeiten anderer Basen zu berechnen.Use the Pow method to calculate powers of other bases.
Exp ist die Umkehrung von Log .Exp is the inverse of Log.
Diese Methode ruft die zugrunde liegende C-Laufzeit auf, und das genaue Ergebnis oder der gültige Eingabebereich kann sich zwischen verschiedenen Betriebssystemen oder Architekturen unterscheiden.This method calls into the underlying C runtime, and the exact result or valid input range may differ between different operating systems or architectures.