Gewusst wie: Hinzufügen von Begrenzungs- und Blockadefunktionen zu einer Auflistung

Dieses Beispiel zeigt, wie eine Begrenzungs- und Blockadefunktion zu einer benutzerdefinierten Auflistungsklasse hinzugefügt werden kann, indem die System.Collections.Concurrent.IProducerConsumerCollection<T>-Schnittstelle in die Klasse implementiert und anschließend eine Klasseninstanz als interner Speichermechanismus für ein System.Collections.Concurrent.BlockingCollection<T>-Objekt verwendet wird. Weitere Informationen zu Begrenzungen und Blockierungen finden Sie unter Übersicht über BlockingCollection.

Beispiel

Die benutzerdefinierte Auflistungsklasse ist eine grundlegende Prioritätswarteschlange, in der die Prioritätsstufen als Array von System.Collections.Concurrent.ConcurrentQueue<T>-Objekten dargestellt werden. Innerhalb der Warteschlangen erfolgt keine weitere Sortierung.

Im Clientcode werden drei Tasks gestartet. Der erste Task fragt nur Tastenanschläge ab, um zu jedem Zeitpunkt während der Ausführung einen Abbruch zu ermöglichen. Der zweite Task ist der Producerthread, der neue Elemente zur blockierenden Auflistung hinzufügt und jedem Element basierend auf einem zufälligen Wert eine Priorität zuweist. Der dritte Task entfernt Elemente aus der Auflistung, sobald sie verfügbar werden.

Sie können das Verhalten einer Anwendung anpassen, indem Sie dafür sorgen, dass ein Thread schneller ausgeführt wird als der andere. Wenn der Producer schneller ausgeführt wird, macht sich die begrenzende Funktionalität bemerkbar, da die blockierende Auflistung verhindert, dass Elemente hinzugefügt werden, wenn bereits die im Konstruktor angegebene Anzahl von Elementen in der Auflistung enthalten ist. Wenn der Consumer schneller ausgeführt wird, macht sich die blockierende Funktionalität bemerkbar, da der Consumer darauf wartet, dass ein neues Element hinzugefügt wird.

namespace ProdConsumerCS
{
    using System;
    using System.Collections;
    using System.Collections.Concurrent;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Linq;
    using System.Text;
    using System.Threading;
    using System.Threading.Tasks;

    // Implementation of a priority queue that has bounding and blocking functionality.
    public class SimplePriorityQueue<TPriority, TValue> : IProducerConsumerCollection<KeyValuePair<int, TValue>>
    {
        // Each internal queue in the array represents a priority level. 
        // All elements in a given array share the same priority.
        private ConcurrentQueue<KeyValuePair<int, TValue>>[] _queues = null;

        // The number of queues we store internally.
        private int priorityCount = 0;
        private int m_count = 0;

        public SimplePriorityQueue(int priCount)
        {
            this.priorityCount = priCount;
            _queues = new ConcurrentQueue<KeyValuePair<int, TValue>>[priorityCount];
            for (int i = 0; i < priorityCount; i++)
                _queues[i] = new ConcurrentQueue<KeyValuePair<int, TValue>>();
        }

        // IProducerConsumerCollection members
        public bool TryAdd(KeyValuePair<int, TValue> item)
        {
            _queues[item.Key].Enqueue(item);
            Interlocked.Increment(ref m_count);
            return true;
        }

        public bool TryTake(out KeyValuePair<int, TValue> item)
        {
            bool success = false;

            // Loop through the queues in priority order
            // looking for an item to dequeue.
            for (int i = 0; i < priorityCount; i++)
            {
                // Lock the internal data so that the Dequeue
                // operation and the updating of m_count are atomic.
                lock (_queues)
                {
                    success = _queues[i].TryDequeue(out item);
                    if (success)
                    {
                        Interlocked.Decrement(ref m_count);
                        return true;
                    }
                }
            }

            // If we get here, we found nothing. 
            // Assign the out parameter to its default value and return false.
            item = new KeyValuePair<int, TValue>(0, default(TValue));
            return false;
        }

        public int Count
        {
            get { return m_count; }
        }

        // Required for ICollection
        void ICollection.CopyTo(Array array, int index)
        {
            CopyTo(array as KeyValuePair<int, TValue>[], index);
        }

        // CopyTo is problematic in a producer-consumer.
        // The destination array might be shorter or longer than what 
        // we get from ToArray due to adds or takes after the destination array was allocated.
        // Therefore, all we try to do here is fill up destination with as much
        // data as we have without running off the end.                
        public void CopyTo(KeyValuePair<int, TValue>[] destination, int destStartingIndex)
        {
            if (destination == null) throw new ArgumentNullException();
            if (destStartingIndex < 0) throw new ArgumentOutOfRangeException();

            int remaining = destination.Length;
            KeyValuePair<int, TValue>[] temp = this.ToArray();
            for (int i = 0; i < destination.Length && i < temp.Length; i++)
                destination[i] = temp[i];
        }

        public KeyValuePair<int, TValue>[] ToArray()
        {
            KeyValuePair<int, TValue>[] result;

            lock (_queues)
            {
                result = new KeyValuePair<int, TValue>[this.Count];
                int index = 0;
                foreach (var q in _queues)
                {
                    if (q.Count > 0)
                    {
                        q.CopyTo(result, index);
                        index += q.Count;
                    }
                }
                return result;
            }
        }

        IEnumerator IEnumerable.GetEnumerator()
        {
            return GetEnumerator();
        }

        public IEnumerator<KeyValuePair<int, TValue>> GetEnumerator()
        {
            for (int i = 0; i < priorityCount; i++)
            {
                foreach (var item in _queues[i])
                    yield return item;
            }
        }

        public bool IsSynchronized
        {
            get
            {
                throw new NotSupportedException();
            }
        }

        public object SyncRoot
        {
            get { throw new NotSupportedException(); }
        }
    }

    public class TestBlockingCollection
    {
        static void Main()
        {

            int priorityCount = 7;
            SimplePriorityQueue<int, int> queue = new SimplePriorityQueue<int, int>(priorityCount);
            var bc = new BlockingCollection<KeyValuePair<int, int>>(queue, 50);


            CancellationTokenSource cts = new CancellationTokenSource();

            Task.Run(() =>
                {
                    if (Console.ReadKey(true).KeyChar == 'c')
                        cts.Cancel();
                });

            // Create a Task array so that we can Wait on it
            // and catch any exceptions, including user cancellation.
            Task[] tasks = new Task[2];

            // Create a producer thread. You can change the code to 
            // make the wait time a bit slower than the consumer 
            // thread to demonstrate the blocking capability.
            tasks[0] = Task.Run(() =>
            {
                // We randomize the wait time, and use that value
                // to determine the priority level (Key) of the item.
                Random r = new Random();

                int itemsToAdd = 40;
                int count = 0;
                while (!cts.Token.IsCancellationRequested && itemsToAdd-- > 0)
                {
                    int waitTime = r.Next(2000);
                    int priority = waitTime % priorityCount;
                    var item = new KeyValuePair<int, int>(priority, count++);

                    bc.Add(item);
                    Console.WriteLine("added pri {0}, data={1}", item.Key, item.Value);
                }
                Console.WriteLine("Producer is done adding.");
                bc.CompleteAdding();
            },
             cts.Token);

            //Give the producer a chance to add some items.
            Thread.SpinWait(1000000);

            // Create a consumer thread. The wait time is
            // a bit slower than the producer thread to demonstrate
            // the bounding capability at the high end. Change this value to see
            // the consumer run faster to demonstrate the blocking functionality
            // at the low end.

            tasks[1] = Task.Run(() =>
                {
                    while (!bc.IsCompleted && !cts.Token.IsCancellationRequested)
                    {
                        Random r = new Random();
                        int waitTime = r.Next(2000);
                        Thread.SpinWait(waitTime * 70);

                        // KeyValuePair is a value type. Initialize to avoid compile error in if(success)
                        KeyValuePair<int, int> item = new KeyValuePair<int, int>();
                        bool success = false;
                        success = bc.TryTake(out item);
                        if (success)
                        {
                            // Do something useful with the data.
                            Console.WriteLine("removed Pri = {0} data = {1} collCount= {2}", item.Key, item.Value, bc.Count);
                        }
                        else
                            Console.WriteLine("No items to retrieve. count = {0}", bc.Count);
                    }
                    Console.WriteLine("Exited consumer loop");
                },
                cts.Token);

            try {
                Task.WaitAll(tasks, cts.Token);
            }
            catch (OperationCanceledException e) {
                if (e.CancellationToken == cts.Token)
                    Console.WriteLine("Operation was canceled by user. Press any key to exit");
            }
            catch (AggregateException ae) {
                foreach (var v in ae.InnerExceptions)
                    Console.WriteLine(v.Message);
            }
            finally {
                cts.Dispose();
            }

            Console.ReadKey(true);

        }
    }

}

In der Standardeinstellung ist der Speicher für ein System.Collections.Concurrent.BlockingCollection<T>-Objekt System.Collections.Concurrent.ConcurrentQueue<T>.

Siehe auch

threadsichere Auflistungen