TypeBuilder-Klasse

Definiert und erstellt neue Instanzen von Klassen zur Laufzeit.

Namespace: System.Reflection.Emit
Assembly: mscorlib (in mscorlib.dll)

Syntax

'Declaration
<ClassInterfaceAttribute(ClassInterfaceType.None)> _
<ComVisibleAttribute(True)> _
Public NotInheritable Class TypeBuilder
    Inherits Type
    Implements _TypeBuilder
'Usage
Dim instance As TypeBuilder
[ClassInterfaceAttribute(ClassInterfaceType.None)] 
[ComVisibleAttribute(true)] 
public sealed class TypeBuilder : Type, _TypeBuilder
[ClassInterfaceAttribute(ClassInterfaceType::None)] 
[ComVisibleAttribute(true)] 
public ref class TypeBuilder sealed : public Type, _TypeBuilder
/** @attribute ClassInterfaceAttribute(ClassInterfaceType.None) */ 
/** @attribute ComVisibleAttribute(true) */ 
public final class TypeBuilder extends Type implements _TypeBuilder
ClassInterfaceAttribute(ClassInterfaceType.None) 
ComVisibleAttribute(true) 
public final class TypeBuilder extends Type implements _TypeBuilder

Hinweise

Hinweis

Das auf diese Klasse angewendete HostProtectionAttribute-Attribut besitzt den Resources-Eigenschaftenwert MayLeakOnAbort. Das HostProtectionAttribute hat keine Auswirkungen auf Desktopanwendungen (die normalerweise durch Doppelklicken auf ein Symbol, Eingeben eines Befehls oder eines URL in einem Browser gestartet werden). Weitere Informationen finden Sie unter der HostProtectionAttribute-Klasse oder unter SQL Server-Programmierung und Hostschutzattribute.

TypeBuilder ist die Stammklasse, die das Erstellen von dynamischen Klassen in der Laufzeit steuert. TypeBuilderstellt einen Satz von Routinen zum Definieren von Klassen, Hinzufügen von Methoden und Feldern und zum Erstellen der Klasse in der Laufzeit bereit. Ein neuer TypeBuilder kann aus einem dynamischen Modul erstellt werden.

Zum Abrufen eines Type-Objekts für einen unvollständigen Typ verwenden Sie ModuleBuilder.GetType mit einer Zeichenfolge, die den Typnamen darstellt (z. B. "MyType" oder "MyType[]").

Beispiel

Im folgenden Codebeispiel wird das Erstellen eines dynamischen Typs mit TypeBuilder veranschaulicht.

Imports System
Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _


Class TestILGenerator
   
   
   Public Shared Function DynamicDotProductGen() As Type
      
      Dim ivType As Type = Nothing
      Dim ctorParams() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      
      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "IntVectorAsm"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
                        myAsmName, _
                        AssemblyBuilderAccess.RunAndSave)
      
      Dim IntVectorModule As ModuleBuilder = myAsmBuilder.DefineDynamicModule( _
                         "IntVectorModule", _
                         "Vector.dll")
      
      Dim ivTypeBld As TypeBuilder = IntVectorModule.DefineType("IntVector", TypeAttributes.Public)
      
      Dim xField As FieldBuilder = ivTypeBld.DefineField("x", _
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      Dim yField As FieldBuilder = ivTypeBld.DefineField("y", _ 
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      Dim zField As FieldBuilder = ivTypeBld.DefineField("z", _
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      
      
      Dim objType As Type = Type.GetType("System.Object")
      Dim objCtor As ConstructorInfo = objType.GetConstructor(New Type() {})
      
      Dim ivCtor As ConstructorBuilder = ivTypeBld.DefineConstructor( _
                     MethodAttributes.Public, _
                     CallingConventions.Standard, _
                     ctorParams)
      Dim ctorIL As ILGenerator = ivCtor.GetILGenerator()
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Call, objCtor)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_1)
      ctorIL.Emit(OpCodes.Stfld, xField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_2)
      ctorIL.Emit(OpCodes.Stfld, yField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_3)
      ctorIL.Emit(OpCodes.Stfld, zField)
      ctorIL.Emit(OpCodes.Ret)
     

      ' Now, you'll construct the method find the dot product of two vectors. First,
      ' let's define the parameters that will be accepted by the method. In this case,
      ' it's an IntVector itself!

      Dim dpParams() As Type = {ivTypeBld}
      
      ' Here, you create a MethodBuilder containing the
      ' name, the attributes (public, static, private, and so on),
      ' the return type (int, in this case), and a array of Type
      ' indicating the type of each parameter. Since the sole parameter
      ' is a IntVector, the very class you're creating, you will
      ' pass in the TypeBuilder (which is derived from Type) instead of 
      ' a Type object for IntVector, avoiding an exception. 
      ' -- This method would be declared in VB.NET as:
      '    Public Function DotProduct(IntVector aVector) As Integer

      Dim dotProductMthd As MethodBuilder = ivTypeBld.DefineMethod("DotProduct", _
                        MethodAttributes.Public, GetType(Integer), _
                                            dpParams)
      
      ' A ILGenerator can now be spawned, attached to the MethodBuilder.
      Dim mthdIL As ILGenerator = dotProductMthd.GetILGenerator()
      
      ' Here's the body of our function, in MSIL form. We're going to find the
      ' "dot product" of the current vector instance with the passed vector 
      ' instance. For reference purposes, the equation is:
      ' (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
      ' First, you'll load the reference to the current instance "this"
      ' stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
      ' instruction, will pop the reference off the stack and look up the
      ' field "x", specified by the FieldInfo token "xField".
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' That completed, the value stored at field "x" is now atop the stack.
      ' Now, you'll do the same for the object reference we passed as a
      ' parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
      ' you'll have the value stored in field "x" for the passed instance
      ' atop the stack.
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' There will now be two values atop the stack - the "x" value for the
      ' current vector instance, and the "x" value for the passed instance.
      ' You'll now multiply them, and push the result onto the evaluation stack.
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Now, repeat this for the "y" fields of both vectors.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' At this time, the results of both multiplications should be atop
      ' the stack. You'll now add them and push the result onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' Multiply both "z" field and push the result onto the stack.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Finally, add the result of multiplying the "z" fields with the
      ' result of the earlier addition, and push the result - the dot product -
      ' onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' The "ret" opcode will pop the last value from the stack and return it
      ' to the calling method. You're all done!
      mthdIL.Emit(OpCodes.Ret)
      
      
      ivType = ivTypeBld.CreateType()
      
      Return ivType
   End Function 'DynamicDotProductGen
    
   
   Public Shared Sub Main()
      
      Dim IVType As Type = Nothing
      Dim aVector1 As Object = Nothing
      Dim aVector2 As Object = Nothing
      Dim aVtypes() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      Dim aVargs1() As Object = {10, 10, 10}
      Dim aVargs2() As Object = {20, 20, 20}
      
      ' Call the  method to build our dynamic class.
      IVType = DynamicDotProductGen()
      
      
      Dim myDTctor As ConstructorInfo = IVType.GetConstructor(aVtypes)
      aVector1 = myDTctor.Invoke(aVargs1)
      aVector2 = myDTctor.Invoke(aVargs2)
      
      Console.WriteLine("---")
      Dim passMe(0) As Object
      passMe(0) = CType(aVector2, Object)
      
      Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}", _
                        IVType.InvokeMember("DotProduct", BindingFlags.InvokeMethod, _
                        Nothing, aVector1, passMe))
   End Sub 'Main
End Class 'TestILGenerator



' +++ OUTPUT +++
' ---
' (10, 10, 10) . (20, 20, 20) = 600 

using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;


class TestILGenerator {
 
    public static Type DynamicDotProductGen() {
      
       Type ivType = null;
       Type[] ctorParams = new Type[] { typeof(int),
                                typeof(int),
                        typeof(int)};
    
       AppDomain myDomain = Thread.GetDomain();
       AssemblyName myAsmName = new AssemblyName();
       myAsmName.Name = "IntVectorAsm";
    
       AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
                      myAsmName, 
                      AssemblyBuilderAccess.RunAndSave);

       ModuleBuilder IntVectorModule = myAsmBuilder.DefineDynamicModule("IntVectorModule",
                                        "Vector.dll");

       TypeBuilder ivTypeBld = IntVectorModule.DefineType("IntVector",
                                      TypeAttributes.Public);

       FieldBuilder xField = ivTypeBld.DefineField("x", typeof(int),
                                                       FieldAttributes.Private);
       FieldBuilder yField = ivTypeBld.DefineField("y", typeof(int), 
                                                       FieldAttributes.Private);
       FieldBuilder zField = ivTypeBld.DefineField("z", typeof(int),
                                                       FieldAttributes.Private);


           Type objType = Type.GetType("System.Object"); 
           ConstructorInfo objCtor = objType.GetConstructor(new Type[0]);

       ConstructorBuilder ivCtor = ivTypeBld.DefineConstructor(
                      MethodAttributes.Public,
                      CallingConventions.Standard,
                      ctorParams);
       ILGenerator ctorIL = ivCtor.GetILGenerator();
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Call, objCtor);
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_1);
           ctorIL.Emit(OpCodes.Stfld, xField); 
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_2);
           ctorIL.Emit(OpCodes.Stfld, yField); 
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_3);
           ctorIL.Emit(OpCodes.Stfld, zField); 
       ctorIL.Emit(OpCodes.Ret); 


       // This method will find the dot product of the stored vector
       // with another.

       Type[] dpParams = new Type[] { ivTypeBld };

           // Here, you create a MethodBuilder containing the
       // name, the attributes (public, static, private, and so on),
       // the return type (int, in this case), and a array of Type
       // indicating the type of each parameter. Since the sole parameter
       // is a IntVector, the very class you're creating, you will
       // pass in the TypeBuilder (which is derived from Type) instead of 
       // a Type object for IntVector, avoiding an exception. 

       // -- This method would be declared in C# as:
       //    public int DotProduct(IntVector aVector)

           MethodBuilder dotProductMthd = ivTypeBld.DefineMethod(
                                  "DotProduct", 
                          MethodAttributes.Public,
                                          typeof(int), 
                                          dpParams);

       // A ILGenerator can now be spawned, attached to the MethodBuilder.

       ILGenerator mthdIL = dotProductMthd.GetILGenerator();
       
       // Here's the body of our function, in MSIL form. We're going to find the
       // "dot product" of the current vector instance with the passed vector 
       // instance. For reference purposes, the equation is:
       // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product

       // First, you'll load the reference to the current instance "this"
       // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
       // instruction, will pop the reference off the stack and look up the
       // field "x", specified by the FieldInfo token "xField".

       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, xField);

       // That completed, the value stored at field "x" is now atop the stack.
       // Now, you'll do the same for the object reference we passed as a
       // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
       // you'll have the value stored in field "x" for the passed instance
       // atop the stack.

       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, xField);

           // There will now be two values atop the stack - the "x" value for the
       // current vector instance, and the "x" value for the passed instance.
       // You'll now multiply them, and push the result onto the evaluation stack.

       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // Now, repeat this for the "y" fields of both vectors.

       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, yField);
       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, yField);
       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // At this time, the results of both multiplications should be atop
       // the stack. You'll now add them and push the result onto the stack.

       mthdIL.Emit(OpCodes.Add_Ovf_Un);

       // Multiply both "z" field and push the result onto the stack.
       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, zField);
       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, zField);
       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // Finally, add the result of multiplying the "z" fields with the
       // result of the earlier addition, and push the result - the dot product -
       // onto the stack.
       mthdIL.Emit(OpCodes.Add_Ovf_Un);

       // The "ret" opcode will pop the last value from the stack and return it
       // to the calling method. You're all done!

       mthdIL.Emit(OpCodes.Ret);


       ivType = ivTypeBld.CreateType();

       return ivType;

    }

    public static void Main() {
    
       Type IVType = null;
           object aVector1 = null;
           object aVector2 = null;
       Type[] aVtypes = new Type[] {typeof(int), typeof(int), typeof(int)};
           object[] aVargs1 = new object[] {10, 10, 10};
           object[] aVargs2 = new object[] {20, 20, 20};
    
       // Call the  method to build our dynamic class.

       IVType = DynamicDotProductGen();

           Console.WriteLine("---");

       ConstructorInfo myDTctor = IVType.GetConstructor(aVtypes);
       aVector1 = myDTctor.Invoke(aVargs1);
       aVector2 = myDTctor.Invoke(aVargs2);

       object[] passMe = new object[1];
           passMe[0] = (object)aVector2; 

       Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}",
                 IVType.InvokeMember("DotProduct",
                          BindingFlags.InvokeMethod,
                          null,
                          aVector1,
                          passMe));

        

       // +++ OUTPUT +++
       // ---
       // (10, 10, 10) . (20, 20, 20) = 600 
        
    }
    
}
using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ DynamicDotProductGen()
{
   Type^ ivType = nullptr;
   array<Type^>^temp0 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^ctorParams = temp0;
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "IntVectorAsm";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::RunAndSave );
   ModuleBuilder^ IntVectorModule = myAsmBuilder->DefineDynamicModule( "IntVectorModule", "Vector.dll" );
   TypeBuilder^ ivTypeBld = IntVectorModule->DefineType( "IntVector", TypeAttributes::Public );
   FieldBuilder^ xField = ivTypeBld->DefineField( "x", int::typeid, FieldAttributes::Private );
   FieldBuilder^ yField = ivTypeBld->DefineField( "y", int::typeid, FieldAttributes::Private );
   FieldBuilder^ zField = ivTypeBld->DefineField( "z", int::typeid, FieldAttributes::Private );
   Type^ objType = Type::GetType( "System.Object" );
   ConstructorInfo^ objCtor = objType->GetConstructor( gcnew array<Type^>(0) );
   ConstructorBuilder^ ivCtor = ivTypeBld->DefineConstructor( MethodAttributes::Public, CallingConventions::Standard, ctorParams );
   ILGenerator^ ctorIL = ivCtor->GetILGenerator();
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Call, objCtor );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_1 );
   ctorIL->Emit( OpCodes::Stfld, xField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_2 );
   ctorIL->Emit( OpCodes::Stfld, yField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_3 );
   ctorIL->Emit( OpCodes::Stfld, zField );
   ctorIL->Emit( OpCodes::Ret );
   
   // This method will find the dot product of the stored vector
   // with another.
   array<Type^>^temp1 = {ivTypeBld};
   array<Type^>^dpParams = temp1;
   
   // Here, you create a MethodBuilder containing the
   // name, the attributes (public, static, private, and so on),
   // the return type (int, in this case), and a array of Type
   // indicating the type of each parameter. Since the sole parameter
   // is a IntVector, the very class you're creating, you will
   // pass in the TypeBuilder (which is derived from Type) instead of
   // a Type object for IntVector, avoiding an exception.
   // -- This method would be declared in C# as:
   //    public int DotProduct(IntVector aVector)
   MethodBuilder^ dotProductMthd = ivTypeBld->DefineMethod( "DotProduct", MethodAttributes::Public, int::typeid, dpParams );
   
   // A ILGenerator can now be spawned, attached to the MethodBuilder.
   ILGenerator^ mthdIL = dotProductMthd->GetILGenerator();
   
   // Here's the body of our function, in MSIL form. We're going to find the
   // "dot product" of the current vector instance with the passed vector
   // instance. For reference purposes, the equation is:
   // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
   // First, you'll load the reference to the current instance "this"
   // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
   // instruction, will pop the reference off the stack and look up the
   // field "x", specified by the FieldInfo token "xField".
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // That completed, the value stored at field "x" is now atop the stack.
   // Now, you'll do the same for the Object reference we passed as a
   // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
   // you'll have the value stored in field "x" for the passed instance
   // atop the stack.
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // There will now be two values atop the stack - the "x" value for the
   // current vector instance, and the "x" value for the passed instance.
   // You'll now multiply them, and push the result onto the evaluation stack.
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Now, repeat this for the "y" fields of both vectors.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // At this time, the results of both multiplications should be atop
   // the stack. You'll now add them and push the result onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // Multiply both "z" field and push the result onto the stack.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Finally, add the result of multiplying the "z" fields with the
   // result of the earlier addition, and push the result - the dot product -
   // onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // The "ret" opcode will pop the last value from the stack and return it
   // to the calling method. You're all done!
   mthdIL->Emit( OpCodes::Ret );
   ivType = ivTypeBld->CreateType();
   return ivType;
}

int main()
{
   Type^ IVType = nullptr;
   Object^ aVector1 = nullptr;
   Object^ aVector2 = nullptr;
   array<Type^>^temp2 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^aVtypes = temp2;
   array<Object^>^temp3 = {10,10,10};
   array<Object^>^aVargs1 = temp3;
   array<Object^>^temp4 = {20,20,20};
   array<Object^>^aVargs2 = temp4;
   
   // Call the  method to build our dynamic class.
   IVType = DynamicDotProductGen();
   Console::WriteLine( "---" );
   ConstructorInfo^ myDTctor = IVType->GetConstructor( aVtypes );
   aVector1 = myDTctor->Invoke( aVargs1 );
   aVector2 = myDTctor->Invoke( aVargs2 );
   array<Object^>^passMe = gcnew array<Object^>(1);
   passMe[ 0 ] = dynamic_cast<Object^>(aVector2);
   Console::WriteLine( "(10, 10, 10) . (20, 20, 20) = {0}", IVType->InvokeMember( "DotProduct", BindingFlags::InvokeMethod, nullptr, aVector1, passMe ) );
}

// +++ OUTPUT +++
// ---
// (10, 10, 10) . (20, 20, 20) = 600
import System.*;
import System.Threading.*;
import System.Reflection.*;
import System.Reflection.Emit.*;

class TestILGenerator
{
   public static Type DynamicDotProductGen() 
   {
        Type ivType = null;
        Type ctorParams[] = new Type[]{int.class.ToType(),
            int.class.ToType(), int.class.ToType()};

        AppDomain myDomain = System.Threading.Thread.GetDomain();
        AssemblyName myAsmName =  new AssemblyName();
        myAsmName.set_Name("IntVectorAsm");

        AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly
            (myAsmName, AssemblyBuilderAccess.RunAndSave);

        ModuleBuilder IntVectorModule = myAsmBuilder.DefineDynamicModule
            ("IntVectorModule", "Vector.dll");

        TypeBuilder ivTypeBld = IntVectorModule.DefineType("IntVector",
            TypeAttributes.Public);

        FieldBuilder xField = ivTypeBld.DefineField("x",
            int.class.ToType(), FieldAttributes.Private);
        FieldBuilder yField = ivTypeBld.DefineField("y",
            int.class.ToType(), FieldAttributes.Private);
        FieldBuilder zField = ivTypeBld.DefineField("z",
            int.class.ToType(), FieldAttributes.Private);

        Type objType = Type.GetType("System.Object");
        ConstructorInfo objCtor = objType.GetConstructor(new Type[0]);
        ConstructorBuilder ivCtor = 
            ivTypeBld.DefineConstructor(MethodAttributes.Public,
            CallingConventions.Standard, ctorParams);

        ILGenerator ctorIL = ivCtor.GetILGenerator();

        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Call, objCtor);
        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Ldarg_1);
        ctorIL.Emit(OpCodes.Stfld, xField);
        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Ldarg_2);
        ctorIL.Emit(OpCodes.Stfld, yField);
        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Ldarg_3);
        ctorIL.Emit(OpCodes.Stfld, zField);
        ctorIL.Emit(OpCodes.Ret);
      
        // This method will find the dot product of the stored vector
        // with another.
        Type dpParams[] = new Type[]{ivTypeBld};
              
        // Here, you create a MethodBuilder containing the
        // name, the attributes (public, static, private, and so on),
        // the return type (int, in this case), and a array of Type
        // indicating the type of each parameter. Since the sole parameter
        // is a IntVector, the very class you're creating, you will
        // pass in the TypeBuilder (which is derived from Type) instead of 
        // a Type object for IntVector, avoiding an exception. 
        // -- This method would be declared in VJ# as:
        //    public int DotProduct(IntVector aVector)
        MethodBuilder dotProductMthd = ivTypeBld.DefineMethod("DotProduct",
            MethodAttributes.Public, int .class.ToType(), dpParams);
              
        // A ILGenerator can now be spawned, attached to the MethodBuilder.
        ILGenerator mthdIL = dotProductMthd.GetILGenerator();
              
        // Here's the body of our function, in MSIL form. We're going to 
        // find the "dot product" of the current vector instance with the 
        // passed vector instance. For reference purposes, the equation is:
        // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
        // First, you'll load the reference to the current instance "this"
        // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the 
        // subsequent instruction, will pop the reference off the stack and 
        // look up the field "x",specified by the FieldInfo token "xField".
        mthdIL.Emit(OpCodes.Ldarg_0);
        mthdIL.Emit(OpCodes.Ldfld, xField);
      
        // That completed, the value stored at field "x" is now atop the 
        // stack.Now, you'll do the same for the object reference we passed 
        // as a parameter, stored in argument 1 (ldarg.1). After Ldfld 
        // executed,you'll have the value stored in field "x" for the 
        // passed instance atop the stack.
        mthdIL.Emit(OpCodes.Ldarg_1);
        mthdIL.Emit(OpCodes.Ldfld, xField);
              
        // There will now be two values atop the stack - the "x" value for 
        // the current vector instance, and the "x" value for the passed 
        // instance.You'll now multiply them, and push the result onto the
        // evaluation stack.
        mthdIL.Emit(OpCodes.Mul_Ovf_Un);
            
        // Now, repeat this for the "y" fields of both vectors.
        mthdIL.Emit(OpCodes.Ldarg_0);
        mthdIL.Emit(OpCodes.Ldfld, yField);
        mthdIL.Emit(OpCodes.Ldarg_1);
        mthdIL.Emit(OpCodes.Ldfld, yField);
        mthdIL.Emit(OpCodes.Mul_Ovf_Un);
            
        // At this time, the results of both multiplications should be atop
        // the stack. You'll now add them and push the result
        // onto the stack.
        mthdIL.Emit(OpCodes.Add_Ovf_Un);
            
        // Multiply both "z" field and push the result onto the stack.
        mthdIL.Emit(OpCodes.Ldarg_0);
        mthdIL.Emit(OpCodes.Ldfld, zField);
        mthdIL.Emit(OpCodes.Ldarg_1);
        mthdIL.Emit(OpCodes.Ldfld, zField);
        mthdIL.Emit(OpCodes.Mul_Ovf_Un);
            
        // Finally, add the result of multiplying the "z" fields with the
        // result of the earlier addition, and push the result 
        // - the dot product - onto the stack.
        mthdIL.Emit(OpCodes.Add_Ovf_Un);
        // The "ret" opcode will pop the last value from the stack and 
        // return it to the calling method. You're all done!
        mthdIL.Emit(OpCodes.Ret);
        ivType = ivTypeBld.CreateType();
        return ivType ;
   } //DynamicDotProductGen
     
    public static void main(String[] args)
    {
        Type ivType = null;
        Object aVector1 = null;
        Object aVector2 = null;
        Type aVtypes[] = new Type[] {
            int.class.ToType(), int.class.ToType(), int.class.ToType()};
        Object aVargs1[] = new Object[] { (Int32)10, (Int32)10, (Int32)10};
        Object aVargs2[] = new Object[] { (Int32)20, (Int32)20, (Int32)20};

        // Call the  method to build our dynamic class.
        ivType = DynamicDotProductGen();
        Console.WriteLine("---");
        ConstructorInfo myDTctor = ivType.GetConstructor(aVtypes);
        aVector1 = myDTctor.Invoke(aVargs1);
        aVector2 = myDTctor.Invoke(aVargs2);
        Object passMe[] = new Object[1];
        passMe.set_Item(0, ((Object)(aVector2)));
        Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}",
            ivType.InvokeMember("DotProduct", BindingFlags.InvokeMethod,
            null, aVector1, passMe));
    } //main
} //TestILGenerator
// +++ OUTPUT +++
// ---
// (10, 10, 10) . (20, 20, 20) = 600 

Vererbungshierarchie

System.Object
   System.Reflection.MemberInfo
     System.Type
      System.Reflection.Emit.TypeBuilder

Threadsicherheit

Alle öffentlichen statischen (Shared in Visual Basic) Member dieses Typs sind threadsicher. Bei Instanzmembern ist die Threadsicherheit nicht gewährleistet.

Plattformen

Windows 98, Windows 2000 SP4, Windows Millennium Edition, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition

.NET Framework unterstützt nicht alle Versionen sämtlicher Plattformen. Eine Liste der unterstützten Versionen finden Sie unter Systemanforderungen.

Versionsinformationen

.NET Framework

Unterstützt in: 2.0, 1.1, 1.0

Siehe auch

Referenz

TypeBuilder-Member
System.Reflection.Emit-Namespace

Weitere Ressourcen

Definieren eines Typs mittels Reflektionsausgabe
Gewusst wie: Definieren eines generischen Typs mit Reflektionsausgabe