# Math.Ceiling Method

## Definition

Returns the smallest integral value greater than or equal to the specified number.

 Ceiling(Decimal) Returns the smallest integral value that is greater than or equal to the specified decimal number. Ceiling(Double) Returns the smallest integral value that is greater than or equal to the specified double-precision floating-point number.

## Remarks

The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity.

## Ceiling(Decimal)

Returns the smallest integral value that is greater than or equal to the specified decimal number.

``````public:
static System::Decimal Ceiling(System::Decimal d);``````
``public static decimal Ceiling (decimal d);``
``static member Ceiling : decimal -> decimal``
``Public Shared Function Ceiling (d As Decimal) As Decimal``

#### Parameters

d
Decimal

A decimal number.

#### Returns

Decimal

The smallest integral value that is greater than or equal to `d`. Note that this method returns a Decimal instead of an integral type.

### Examples

The following example illustrates the Math.Ceiling(Decimal) method and contrasts it with the Floor(Decimal) method.

``````decimal[] values = {7.03m, 7.64m, 0.12m, -0.12m, -7.1m, -7.6m};
Console.WriteLine("  Value          Ceiling          Floor\n");
foreach (decimal value in values)
Console.WriteLine("{0,7} {1,16} {2,14}",
value, Math.Ceiling(value), Math.Floor(value));
// The example displays the following output to the console:
//         Value          Ceiling          Floor
//
//          7.03                8              7
//          7.64                8              7
//          0.12                1              0
//         -0.12                0             -1
//          -7.1               -7             -8
//          -7.6               -7             -8
``````
``````Dim values() As Decimal = {7.03d, 7.64d, 0.12d, -0.12d, -7.1d, -7.6d}
Console.WriteLine("  Value          Ceiling          Floor")
Console.WriteLine()
For Each value As Decimal In values
Console.WriteLine("{0,7} {1,16} {2,14}", _
value, Math.Ceiling(value), Math.Floor(value))
Next
' The example displays the following output to the console:
'         Value          Ceiling          Floor
'
'          7.03                8              7
'          7.64                8              7
'          0.12                1              0
'         -0.12                0             -1
'          -7.1               -7             -8
'          -7.6               -7             -8
``````

### Remarks

The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity. In other words, if `d` is positive, the presence of any fractional component causes `d` to be rounded to the next highest integer. If `d` is negative, the rounding operation causes any fractional component of `d` to be discarded. The operation of this method differs from the Floor(Decimal) method, which supports rounding toward negative infinity.

## Ceiling(Double)

Returns the smallest integral value that is greater than or equal to the specified double-precision floating-point number.

``````public:
static double Ceiling(double a);``````
``public static double Ceiling (double a);``
``static member Ceiling : double -> double``
``Public Shared Function Ceiling (a As Double) As Double``

#### Parameters

a
Double

A double-precision floating-point number.

#### Returns

Double

The smallest integral value that is greater than or equal to `a`. If `a` is equal to NaN, NegativeInfinity, or PositiveInfinity, that value is returned. Note that this method returns a Double instead of an integral type.

### Examples

The following example illustrates the Math.Ceiling(Double) method and contrasts it with the Floor(Double) method.

``````double[] values = {7.03, 7.64, 0.12, -0.12, -7.1, -7.6};
Console.WriteLine("  Value          Ceiling          Floor\n");
foreach (double value in values)
Console.WriteLine("{0,7} {1,16} {2,14}",
value, Math.Ceiling(value), Math.Floor(value));
// The example displays the following output to the console:
//         Value          Ceiling          Floor
//
//          7.03                8              7
//          7.64                8              7
//          0.12                1              0
//         -0.12                0             -1
//          -7.1               -7             -8
//          -7.6               -7             -8
``````
``````Dim values() As Double = {7.03, 7.64, 0.12, -0.12, -7.1, -7.6}
Console.WriteLine("  Value          Ceiling          Floor")
Console.WriteLine()
For Each value As Double In values
Console.WriteLine("{0,7} {1,16} {2,14}", _
value, Math.Ceiling(value), Math.Floor(value))
Next
' The example displays the following output to the console:
'         Value          Ceiling          Floor
'
'          7.03                8              7
'          7.64                8              7
'          0.12                1              0
'         -0.12                0             -1
'          -7.1               -7             -8
'          -7.6               -7             -8
``````

### Remarks

The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity. In other words, if `a` is positive, the presence of any fractional component causes `a` to be rounded to the next highest integer. If `a` is negative, the rounding operation causes any fractional component of `a` to be discarded. The operation of this method differs from the Floor(Double) method, which supports rounding toward negative infinity.

Starting with Visual Basic 15.8, the performance of Double-to-integer conversion is optimized if you pass the value returned by the `Ceiling` method to the any of the integral conversion functions, or if the Double value returned by `Ceiling` is automatically converted to an integer with Option Strict set to Off. This optimization allows code to run faster -- up to twice as fast for code that does a large number of conversions to integer types. The following example illustrates such optimized conversions:

``````Dim d1 As Double = 1043.75133
Dim i1 As Integer = CInt(Math.Ceiling(d1))        ' Result: 1044

Dim d2 As Double = 7968.4136
Dim i2 As Integer = CInt(Math.Ceiling(d2))        ' Result: 7969
``````