Quickstart: Analyze a remote image using the REST API and JavaScript in Computer Vision

In this quickstart, you analyze a remotely stored image to extract visual features by using Computer Vision's REST API. With the Analyze Image method, you can extract visual features based on image content.

If you don't have an Azure subscription, create a free account before you begin.


You must have a subscription key for Computer Vision. To get a subscription key, see Obtaining Subscription Keys.

Create and run the sample

To create and run the sample, do the following steps:

  1. Copy the following code into a text editor.
  2. Make the following changes in code where needed:
    1. Replace the value of subscriptionKey with your subscription key.
    2. Replace the value of uriBase with the endpoint URL for the Analyze Image method from the Azure region where you obtained your subscription keys, if necessary.
    3. Optionally, replace the value of the value attribute for the inputImage control with the URL of a different image that you want to analyze.
  3. Save the code as a file with an .html extension. For example, analyze-image.html.
  4. Open a browser window.
  5. In the browser, drag and drop the file into the browser window.
  6. When the webpage is displayed in the browser, choose the Analyze Image button.
<!DOCTYPE html>
    <title>Analyze Sample</title>
    <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js"></script>

<script type="text/javascript">
    function processImage() {
        // **********************************************
        // *** Update or verify the following values. ***
        // **********************************************

        // Replace <Subscription Key> with your valid subscription key.
        var subscriptionKey = "<Subscription Key>";

        // You must use the same Azure region in your REST API method as you used to
        // get your subscription keys. For example, if you got your subscription keys
        // from the West US region, replace "westcentralus" in the URL
        // below with "westus".
        // Free trial subscription keys are generated in the West Central US region.
        // If you use a free trial subscription key, you shouldn't need to change
        // this region.
        var uriBase =

        // Request parameters.
        var params = {
            "visualFeatures": "Categories,Description,Color",
            "details": "",
            "language": "en",

        // Display the image.
        var sourceImageUrl = document.getElementById("inputImage").value;
        document.querySelector("#sourceImage").src = sourceImageUrl;

        // Make the REST API call.
            url: uriBase + "?" + $.param(params),

            // Request headers.
            beforeSend: function(xhrObj){
                    "Ocp-Apim-Subscription-Key", subscriptionKey);

            type: "POST",

            // Request body.
            data: '{"url": ' + '"' + sourceImageUrl + '"}',

        .done(function(data) {
            // Show formatted JSON on webpage.
            $("#responseTextArea").val(JSON.stringify(data, null, 2));

        .fail(function(jqXHR, textStatus, errorThrown) {
            // Display error message.
            var errorString = (errorThrown === "") ? "Error. " :
                errorThrown + " (" + jqXHR.status + "): ";
            errorString += (jqXHR.responseText === "") ? "" :

<h1>Analyze image:</h1>
Enter the URL to an image, then click the <strong>Analyze image</strong> button.
Image to analyze:
<input type="text" name="inputImage" id="inputImage"
    value="http://upload.wikimedia.org/wikipedia/commons/3/3c/Shaki_waterfall.jpg" />
<button onclick="processImage()">Analyze image</button>
<div id="wrapper" style="width:1020px; display:table;">
    <div id="jsonOutput" style="width:600px; display:table-cell;">
        <textarea id="responseTextArea" class="UIInput"
                  style="width:580px; height:400px;"></textarea>
    <div id="imageDiv" style="width:420px; display:table-cell;">
        Source image:
        <img id="sourceImage" width="400" />

Examine the response

A successful response is returned in JSON. The sample webpage parses and displays a successful response in the browser window, similar to the following example:

  "categories": [
      "name": "outdoor_water",
      "score": 0.9921875,
      "detail": {
        "landmarks": []
  "description": {
    "tags": [
    "captions": [
        "text": "a large waterfall over a rocky cliff",
        "confidence": 0.916458423253597
  "color": {
    "dominantColorForeground": "Grey",
    "dominantColorBackground": "Green",
    "dominantColors": [
    "accentColor": "4D5E2F",
    "isBwImg": false
  "requestId": "73ef10ce-a4ea-43c6-aee7-70325777e4b3",
  "metadata": {
    "height": 959,
    "width": 1280,
    "format": "Jpeg"

Clean up resources

When no longer needed, delete the file.

Next steps

Explore a JavaScript application that uses Computer Vision to perform optical character recognition (OCR); create smart-cropped thumbnails; plus detect, categorize, tag, and describe visual features, including faces, in an image. To rapidly experiment with the Computer Vision API, try the Open API testing console.