Math.Ceiling
Method
Definition
Returns the smallest integer greater than or equal to the specified number.
Overloads
| Ceiling(Decimal) |
Returns the smallest integral value that is greater than or equal to the specified decimal number. |
| Ceiling(Double) |
Returns the smallest integral value that is greater than or equal to the specified double-precision floating-point number. |
Remarks
The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity.
Ceiling(Decimal)
Returns the smallest integral value that is greater than or equal to the specified decimal number.
public static decimal Ceiling (decimal d);
- d
- Decimal
A decimal number.
The smallest integral value that is greater than or equal to d. Note that this method returns a Decimal instead of an integral type.
Examples
The following example illustrates the Math.Ceiling(Decimal) method and contrasts it with the Floor(Decimal) method.
decimal[] values = {7.03m, 7.64m, 0.12m, -0.12m, -7.1m, -7.6m};
Console.WriteLine(" Value Ceiling Floor\n");
foreach (decimal value in values)
Console.WriteLine("{0,7} {1,16} {2,14}",
value, Math.Ceiling(value), Math.Floor(value));
// The example displays the following output to the console:
// Value Ceiling Floor
//
// 7.03 8 7
// 7.64 8 7
// 0.12 1 0
// -0.12 0 -1
// -7.1 -7 -8
// -7.6 -7 -8
Dim values() As Decimal = {7.03d, 7.64d, 0.12d, -0.12d, -7.1d, -7.6d}
Console.WriteLine(" Value Ceiling Floor")
Console.WriteLine()
For Each value As Decimal In values
Console.WriteLine("{0,7} {1,16} {2,14}", _
value, Math.Ceiling(value), Math.Floor(value))
Next
' The example displays the following output to the console:
' Value Ceiling Floor
'
' 7.03 8 7
' 7.64 8 7
' 0.12 1 0
' -0.12 0 -1
' -7.1 -7 -8
' -7.6 -7 -8
Remarks
The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity. In other words, if d is positive, the presence of any fractional component causes d to be rounded to the next highest integer. If d is negative, the rounding operation causes any fractional component of d to be discarded. The operation of this method differs from the Floor(Decimal) method, which supports rounding toward negative infinity.
Ceiling(Double)
Returns the smallest integral value that is greater than or equal to the specified double-precision floating-point number.
public static double Ceiling (double a);
- a
- Double
A double-precision floating-point number.
The smallest integral value that is greater than or equal to a. If a is equal to NaN, NegativeInfinity, or PositiveInfinity, that value is returned. Note that this method returns a Double instead of an integral type.
Examples
The following example illustrates the Math.Ceiling(Double) method and contrasts it with the Floor(Double) method.
double[] values = {7.03, 7.64, 0.12, -0.12, -7.1, -7.6};
Console.WriteLine(" Value Ceiling Floor\n");
foreach (double value in values)
Console.WriteLine("{0,7} {1,16} {2,14}",
value, Math.Ceiling(value), Math.Floor(value));
// The example displays the following output to the console:
// Value Ceiling Floor
//
// 7.03 8 7
// 7.64 8 7
// 0.12 1 0
// -0.12 0 -1
// -7.1 -7 -8
// -7.6 -7 -8
Dim values() As Double = {7.03, 7.64, 0.12, -0.12, -7.1, -7.6}
Console.WriteLine(" Value Ceiling Floor")
Console.WriteLine()
For Each value As Double In values
Console.WriteLine("{0,7} {1,16} {2,14}", _
value, Math.Ceiling(value), Math.Floor(value))
Next
' The example displays the following output to the console:
' Value Ceiling Floor
'
' 7.03 8 7
' 7.64 8 7
' 0.12 1 0
' -0.12 0 -1
' -7.1 -7 -8
' -7.6 -7 -8
Remarks
The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity. In other words, if a is positive, the presence of any fractional component causes a to be rounded to the next highest integer. If a is negative, the rounding operation causes any fractional component of a to be discarded. The operation of this method differs from the Floor(Double) method, which supports rounding toward negative infinity.