
	
		Skip to main content

		

		
			
				This browser is no longer supported.

				Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

				
					
Download Microsoft Edge					
					
More info about Internet Explorer and Microsoft Edge					
				

			

		

		

		
		
			

			

			

		

			
				
					
						
						
Table of contents						
					
					
						
						Exit focus mode
					
				

			

		
			
		

	

	

		

			
				
			

			
			
				
				

					

						
							
							
								
									
										
											
												
											
										
										

										

									

									

									
											
												
													Language
													
														
													
												
												
														
															
														
	
															
														
	
															
														
	
															
														

												

											

										
											
												
											
											Read in English
										

											
												
													
												
												Save
											
										

											
												
													
												
											
										

										
										
											
												
													
												
											
											
													
														
															
														
															Table of contents
													

												
													
														
													
													Read in English
												

													
														
															
														
														Save
													

			 										
													
														
															
														
														Add to Plan
													

													
														
															
														
														Edit
													

													
														
															
														
														Print
													

													

													
														
															
																
															
															Twitter
														
														
															
																
															
															LinkedIn
														
														
															
																
															
															Facebook
														
														
															
																
															
															Email
														
												
											

										
										
									

								

							

							

							
								
									
										
									
										Table of contents
								
							

							

							

								

								
									

Object.GetType Method

		Reference

	
		
			
		
		Feedback
	

Definition

			Namespace:
	
				 System
			

			Assembly:
	System.Runtime.dll

			Assembly:
	mscorlib.dll

			Assembly:
	netstandard.dll

		Source:
	Object.cs

		Source:
	Object.cs

		Source:
	Object.cs

 Important

 Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.

	
		
			Gets the Type of the current instance.

		

	

	public:
 Type ^ GetType();

	public Type GetType ();

	member this.GetType : unit -> Type

	Public Function GetType () As Type

	Returns

	
		Type
		
	

	The exact runtime type of the current instance.

	Examples

	The following code example demonstrates that GetType returns the runtime type of the current instance.

using namespace System;

public ref class MyBaseClass {};

public ref class MyDerivedClass: MyBaseClass{};

int main()
{
 MyBaseClass^ myBase = gcnew MyBaseClass;
 MyDerivedClass^ myDerived = gcnew MyDerivedClass;
 Object^ o = myDerived;
 MyBaseClass^ b = myDerived;
 Console::WriteLine("mybase: Type is {0}", myBase->GetType());
 Console::WriteLine("myDerived: Type is {0}", myDerived->GetType());
 Console::WriteLine("object o = myDerived: Type is {0}", o->GetType());
 Console::WriteLine("MyBaseClass b = myDerived: Type is {0}", b->GetType());
}

/*

This code produces the following output.

mybase: Type is MyBaseClass
myDerived: Type is MyDerivedClass
object o = myDerived: Type is MyDerivedClass
MyBaseClass b = myDerived: Type is MyDerivedClass

*/

using System;

public class MyBaseClass {
}

public class MyDerivedClass: MyBaseClass {
}

public class Test
{
 public static void Main()
 {
 MyBaseClass myBase = new MyBaseClass();
 MyDerivedClass myDerived = new MyDerivedClass();
 object o = myDerived;
 MyBaseClass b = myDerived;

 Console.WriteLine("mybase: Type is {0}", myBase.GetType());
 Console.WriteLine("myDerived: Type is {0}", myDerived.GetType());
 Console.WriteLine("object o = myDerived: Type is {0}", o.GetType());
 Console.WriteLine("MyBaseClass b = myDerived: Type is {0}", b.GetType());
 }
}
// The example displays the following output:
// mybase: Type is MyBaseClass
// myDerived: Type is MyDerivedClass
// object o = myDerived: Type is MyDerivedClass
// MyBaseClass b = myDerived: Type is MyDerivedClass

type MyBaseClass() = class end

type MyDerivedClass() =
 inherit MyBaseClass()

let myBase = MyBaseClass()
let myDerived = MyDerivedClass()
let o: obj = myDerived
let b: MyBaseClass = myDerived

printfn $"mybase: Type is {myBase.GetType()}"
printfn $"myDerived: Type is {myDerived.GetType()}"
printfn $"object o = myDerived: Type is {o.GetType()}"
printfn $"MyBaseClass b = myDerived: Type is {b.GetType()}"
// The example displays the following output:
// mybase: Type is MyBaseClass
// myDerived: Type is MyDerivedClass
// object o = myDerived: Type is MyDerivedClass
// MyBaseClass b = myDerived: Type is MyDerivedClass

' Define a base and a derived class.
Public Class MyBaseClass
End Class

Public Class MyDerivedClass : Inherits MyBaseClass
End Class

Public Class Test
 Public Shared Sub Main()
 Dim base As New MyBaseClass()
 Dim derived As New MyDerivedClass()
 Dim o As Object = derived
 Dim b As MyBaseClass = derived

 Console.WriteLine("base.GetType returns {0}", base.GetType())
 Console.WriteLine("derived.GetType returns {0}", derived.GetType())
 Console.WriteLine("Dim o As Object = derived; o.GetType returns {0}", o.GetType())
 Console.WriteLine("Dim b As MyBaseClass = derived; b.Type returns {0}", b.GetType())
 End Sub
End Class
' The example displays the following output:
' base.GetType returns MyBaseClass
' derived.GetType returns MyDerivedClass
' Dim o As Object = derived; o.GetType returns MyDerivedClass
' Dim b As MyBaseClass = derived; b.Type returns MyDerivedClass

	Remarks

	Because System.Object is the base class for all types in the .NET type system, the GetType method can be used to return Type objects that represent all .NET types. .NET recognizes the following five categories of types:

	Classes, which are derived from System.Object,

	Value types, which are derived from System.ValueType.

	Interfaces, which are derived from System.Object starting with the .NET Framework 2.0.

	Enumerations, which are derived from System.Enum.

	Delegates, which are derived from System.MulticastDelegate.

For two objects x and y that have identical runtime types, Object.ReferenceEquals(x.GetType(),y.GetType()) returns true. The following example uses the GetType method with the ReferenceEquals method to determine whether one numeric value is the same type as two other numeric values.

int n1 = 12;
int n2 = 82;
long n3 = 12;

Console.WriteLine("n1 and n2 are the same type: {0}",
 Object.ReferenceEquals(n1.GetType(), n2.GetType()));
Console.WriteLine("n1 and n3 are the same type: {0}",
 Object.ReferenceEquals(n1.GetType(), n3.GetType()));

// The example displays the following output:
// n1 and n2 are the same type: True
// n1 and n3 are the same type: False

open System

let n1 = 12
let n2 = 82
let n3 = 12L

printfn $"n1 and n2 are the same type: {Object.ReferenceEquals(n1.GetType(), n2.GetType())}"
printfn $"n1 and n3 are the same type: {Object.ReferenceEquals(n1.GetType(), n3.GetType())}"
// The example displays the following output:
// n1 and n2 are the same type: True
// n1 and n3 are the same type: False

Module Example
 Public Sub Main()
 Dim n1 As Integer = 12
 Dim n2 As Integer = 82
 Dim n3 As Long = 12

 Console.WriteLine("n1 and n2 are the same type: {0}",
 Object.ReferenceEquals(n1.GetType(), n2.GetType()))
 Console.WriteLine("n1 and n3 are the same type: {0}",
 Object.ReferenceEquals(n1.GetType(), n3.GetType()))
 End Sub
End Module
' The example displays the following output:
' n1 and n2 are the same type: True
' n1 and n3 are the same type: False

Note

To determine whether an object is a specific type, you can use your language's type comparison keyword or construct. For example, you can use the TypeOf…Is construct in Visual Basic or the is keyword in C#.

The GetType method is inherited by all types that derive from Object. This means that, in addition to using your own language's comparison keyword, you can use the GetType method to determine the type of a particular object, as the following example shows.

object[] values = { (int) 12, (long) 10653, (byte) 12, (sbyte) -5,
 16.3, "string" };
foreach (var value in values) {
 Type t = value.GetType();
 if (t.Equals(typeof(byte)))
 Console.WriteLine("{0} is an unsigned byte.", value);
 else if (t.Equals(typeof(sbyte)))
 Console.WriteLine("{0} is a signed byte.", value);
 else if (t.Equals(typeof(int)))
 Console.WriteLine("{0} is a 32-bit integer.", value);
 else if (t.Equals(typeof(long)))
 Console.WriteLine("{0} is a 64-bit integer.", value);
 else if (t.Equals(typeof(double)))
 Console.WriteLine("{0} is a double-precision floating point.",
 value);
 else
 Console.WriteLine("'{0}' is another data type.", value);
}

// The example displays the following output:
// 12 is a 32-bit integer.
// 10653 is a 32-bit integer.
// 12 is an unsigned byte.
// -5 is a signed byte.
// 16.3 is a double-precision floating point.
// 'string' is another data type.

let values: obj[] =
 [| 12; 10653L; 12uy
 -5y; 16.3; "string" |]

for value in values do
 let t = value.GetType()
 if t.Equals typeof<byte> then
 printfn $"{value} is an unsigned byte."
 elif t.Equals typeof<sbyte> then
 printfn $"{value} is a signed byte."
 elif t.Equals typeof<int> then
 printfn $"{value} is a 32-bit integer."
 elif t.Equals typeof<int64> then
 printfn $"{value} is a 64-bit integer."
 elif t.Equals typeof<double> then
 printfn $"{value} is a double-precision floating point."
 else
 printfn $"'{value}' is another data type."

// The example displays the following output:
// 12 is a 32-bit integer.
// 10653 is a 32-bit integer.
// 12 is an unsigned byte.
// -5 is a signed byte.
// 16.3 is a double-precision floating point.
// 'string' is another data type.

Module Example
 Public Sub Main()
 Dim values() As Object = { 12, CLng(10653), CByte(12),
 CSbyte(-5), 16.3, "string" }
 For Each value In values
 Dim t AS Type = value.GetType()
 If t.Equals(GetType(Byte))
 Console.WriteLine("{0} is an unsigned byte.", value)
 ElseIf t.Equals(GetType(SByte))
 Console.WriteLine("{0} is a signed byte.", value)
 ElseIf t.Equals(GetType(Integer))
 Console.WriteLine("{0} is a 32-bit integer.", value)
 ElseIf t.Equals(GetType(Long))
 Console.WriteLine("{0} is a 64-bit integer.", value)
 ElseIf t.Equals(GetType(Double))
 Console.WriteLine("{0} is a double-precision floating point.",
 value)
 Else
 Console.WriteLine("'{0}' is another data type.", value)
 End If
 Next
 End Sub
End Module
' The example displays the following output:
' 12 is a 32-bit integer.
' 10653 is a 32-bit integer.
' 12 is an unsigned byte.
' -5 is a signed byte.
' 16.3 is a double-precision floating point.
' 'string' is another data type.

The Type object exposes the metadata associated with the class of the current Object.

	 Applies to

	

	See also

		Type

							

							

							

							

						

						
						

						

	
		
			
				
					
						
					
					Collaborate with us on GitHub					
				

				
					The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.
				
			

		

		
			
				
					
						[image:]
						[image:]
					

					

				
				
					.NET

					
						

						
							
								
									
								
								Open a documentation issue
							
							
								
									
								
								Provide product feedback
							
						

					

				

			

		

	

 Feedback

		
			
				
			
			Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback.		

 Submit and view feedback for

 This product

			
				
					
				
				This page
			

 View all page feedback

						

						
						

						

	
	
			
					
						
					
					
		

	
		

Your Privacy Choices

		
		

	
		
			
		
		Theme
		
			
		
	
	
			
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Light					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Dark					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
High contrast					
				
			

	

		

	
		
	Previous Versions
	Blog
	Contribute
	Privacy
	Terms of Use
	Trademarks
	© Microsoft 2024

						

					

						
							
								Additional resources

								
								
								
								
									In this article

								
								
							

						

				
				

			
			

			
			
			
			
		

	
	

	

	
	
			
					
						
					
					
		

	
		

Your Privacy Choices

		
		

	
		
			
		
		Theme
		
			
		
	
	
			
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Light					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Dark					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
High contrast					
				
			

	

		

	
		
	Previous Versions
	Blog
	Contribute
	Privacy
	Terms of Use
	Trademarks
	© Microsoft 2024

	

	

