TypeBuilder Class

Definition

Defines and creates new instances of classes during run time.

[System.Runtime.InteropServices.ClassInterface(System.Runtime.InteropServices.ClassInterfaceType.None)]
[System.Runtime.InteropServices.ComVisible(true)]
public sealed class TypeBuilder : System.Reflection.TypeInfo, System.Runtime.InteropServices._TypeBuilder
Inheritance
Attributes
Implements

Examples

This section contains two code examples. The first example shows how to create a dynamic type with a field, constructor, property, and method. The second example builds a method dynamically from user input.

Example one

The following code example shows how to define a dynamic assembly with one module. The module in the example assembly contains one type, MyDynamicType, which has a private field, a property that gets and sets the private field, constructors that initialize the private field, and a method that multiplies a user-supplied number by the private field value and returns the result.

The AssemblyBuilderAccess.RunAndSave field is specified when the assembly is created. The assembly code is used immediately, and the assembly is also saved to disk so that it can be examined with Ildasm.exe (IL Disassembler) or used in another program.

using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;

void main()
{
    // An assembly consists of one or more modules, each of which
    // contains zero or more types. This code creates a single-module
    // assembly, the most common case. The module contains one type,
    // named "MyDynamicType", that has a private field, a property 
    // that gets and sets the private field, constructors that 
    // initialize the private field, and a method that multiplies 
    // a user-supplied number by the private field value and returns
    // the result. In Visual C++ the type might look like this:
    /*
      public ref class MyDynamicType
      {
      private:
          int m_number;

      public:
          MyDynamicType() : m_number(42) {};
          MyDynamicType(int initNumber) : m_number(initNumber) {};
      
          property int Number
          {
              int get() { return m_number; }
              void set(int value) { m_number = value; }
          }

          int MyMethod(int multiplier)
          {
              return m_number * multiplier;
          }
      };
    */
      
    AssemblyName^ aName = gcnew AssemblyName("DynamicAssemblyExample");
    AssemblyBuilder^ ab = 
        AppDomain::CurrentDomain->DefineDynamicAssembly(
            aName, 
            AssemblyBuilderAccess::RunAndSave);

    // For a single-module assembly, the module name is usually
    // the assembly name plus an extension.
    ModuleBuilder^ mb = 
        ab->DefineDynamicModule(aName->Name, aName->Name + ".dll");
      
    TypeBuilder^ tb = mb->DefineType(
        "MyDynamicType", 
         TypeAttributes::Public);

    // Add a private field of type int (Int32).
    FieldBuilder^ fbNumber = tb->DefineField(
        "m_number", 
        int::typeid, 
        FieldAttributes::Private);

    // Define a constructor that takes an integer argument and 
    // stores it in the private field. 
    array<Type^>^ parameterTypes = { int::typeid };
    ConstructorBuilder^ ctor1 = tb->DefineConstructor(
        MethodAttributes::Public, 
        CallingConventions::Standard, 
        parameterTypes);

    ILGenerator^ ctor1IL = ctor1->GetILGenerator();
    // For a constructor, argument zero is a reference to the new
    // instance. Push it on the stack before calling the base
    // class constructor. Specify the default constructor of the 
    // base class (System::Object) by passing an empty array of 
    // types (Type::EmptyTypes) to GetConstructor.
    ctor1IL->Emit(OpCodes::Ldarg_0);
    ctor1IL->Emit(OpCodes::Call, 
        Object::typeid->GetConstructor(Type::EmptyTypes));
    // Push the instance on the stack before pushing the argument
    // that is to be assigned to the private field m_number.
    ctor1IL->Emit(OpCodes::Ldarg_0);
    ctor1IL->Emit(OpCodes::Ldarg_1);
    ctor1IL->Emit(OpCodes::Stfld, fbNumber);
    ctor1IL->Emit(OpCodes::Ret);

    // Define a default constructor that supplies a default value
    // for the private field. For parameter types, pass the empty
    // array of types or pass nullptr.
    ConstructorBuilder^ ctor0 = tb->DefineConstructor(
        MethodAttributes::Public, 
        CallingConventions::Standard, 
        Type::EmptyTypes);

    ILGenerator^ ctor0IL = ctor0->GetILGenerator();
    ctor0IL->Emit(OpCodes::Ldarg_0);
    ctor0IL->Emit(OpCodes::Call, 
        Object::typeid->GetConstructor(Type::EmptyTypes));
    // For a constructor, argument zero is a reference to the new
    // instance. Push it on the stack before pushing the default
    // value on the stack.
    ctor0IL->Emit(OpCodes::Ldarg_0);
    ctor0IL->Emit(OpCodes::Ldc_I4_S, 42);
    ctor0IL->Emit(OpCodes::Stfld, fbNumber);
    ctor0IL->Emit(OpCodes::Ret);

    // Define a property named Number that gets and sets the private 
    // field.
    //
    // The last argument of DefineProperty is nullptr, because the
    // property has no parameters. (If you don't specify nullptr, you must
    // specify an array of Type objects. For a parameterless property,
    // use the built-in array with no elements: Type::EmptyTypes)
    PropertyBuilder^ pbNumber = tb->DefineProperty(
        "Number", 
        PropertyAttributes::HasDefault, 
        int::typeid, 
        nullptr);
      
    // The property "set" and property "get" methods require a special
    // set of attributes.
    MethodAttributes getSetAttr = MethodAttributes::Public | 
        MethodAttributes::SpecialName | MethodAttributes::HideBySig;

    // Define the "get" accessor method for Number. The method returns
    // an integer and has no arguments. (Note that nullptr could be 
    // used instead of Types::EmptyTypes)
    MethodBuilder^ mbNumberGetAccessor = tb->DefineMethod(
        "get_Number", 
        getSetAttr, 
        int::typeid, 
        Type::EmptyTypes);
      
    ILGenerator^ numberGetIL = mbNumberGetAccessor->GetILGenerator();
    // For an instance property, argument zero is the instance. Load the 
    // instance, then load the private field and return, leaving the
    // field value on the stack.
    numberGetIL->Emit(OpCodes::Ldarg_0);
    numberGetIL->Emit(OpCodes::Ldfld, fbNumber);
    numberGetIL->Emit(OpCodes::Ret);
    
    // Define the "set" accessor method for Number, which has no return
    // type and takes one argument of type int (Int32).
    MethodBuilder^ mbNumberSetAccessor = tb->DefineMethod(
        "set_Number", 
        getSetAttr, 
        nullptr, 
        gcnew array<Type^> { int::typeid });
      
    ILGenerator^ numberSetIL = mbNumberSetAccessor->GetILGenerator();
    // Load the instance and then the numeric argument, then store the
    // argument in the field.
    numberSetIL->Emit(OpCodes::Ldarg_0);
    numberSetIL->Emit(OpCodes::Ldarg_1);
    numberSetIL->Emit(OpCodes::Stfld, fbNumber);
    numberSetIL->Emit(OpCodes::Ret);
      
    // Last, map the "get" and "set" accessor methods to the 
    // PropertyBuilder. The property is now complete. 
    pbNumber->SetGetMethod(mbNumberGetAccessor);
    pbNumber->SetSetMethod(mbNumberSetAccessor);

    // Define a method that accepts an integer argument and returns
    // the product of that integer and the private field m_number. This
    // time, the array of parameter types is created on the fly.
    MethodBuilder^ meth = tb->DefineMethod(
        "MyMethod", 
        MethodAttributes::Public, 
        int::typeid, 
        gcnew array<Type^> { int::typeid });

    ILGenerator^ methIL = meth->GetILGenerator();
    // To retrieve the private instance field, load the instance it
    // belongs to (argument zero). After loading the field, load the 
    // argument one and then multiply. Return from the method with 
    // the return value (the product of the two numbers) on the 
    // execution stack.
    methIL->Emit(OpCodes::Ldarg_0);
    methIL->Emit(OpCodes::Ldfld, fbNumber);
    methIL->Emit(OpCodes::Ldarg_1);
    methIL->Emit(OpCodes::Mul);
    methIL->Emit(OpCodes::Ret);

    // Finish the type->
    Type^ t = tb->CreateType();
     
    // The following line saves the single-module assembly. This
    // requires AssemblyBuilderAccess to include Save. You can now
    // type "ildasm MyDynamicAsm.dll" at the command prompt, and 
    // examine the assembly. You can also write a program that has
    // a reference to the assembly, and use the MyDynamicType type.
    // 
    ab->Save(aName->Name + ".dll");

    // Because AssemblyBuilderAccess includes Run, the code can be
    // executed immediately. Start by getting reflection objects for
    // the method and the property.
    MethodInfo^ mi = t->GetMethod("MyMethod");
    PropertyInfo^ pi = t->GetProperty("Number");
  
    // Create an instance of MyDynamicType using the default 
    // constructor. 
    Object^ o1 = Activator::CreateInstance(t);

    // Display the value of the property, then change it to 127 and 
    // display it again. Use nullptr to indicate that the property
    // has no index.
    Console::WriteLine("o1->Number: {0}", pi->GetValue(o1, nullptr));
    pi->SetValue(o1, 127, nullptr);
    Console::WriteLine("o1->Number: {0}", pi->GetValue(o1, nullptr));

    // Call MyMethod, passing 22, and display the return value, 22
    // times 127. Arguments must be passed as an array, even when
    // there is only one.
    array<Object^>^ arguments = { 22 };
    Console::WriteLine("o1->MyMethod(22): {0}", 
        mi->Invoke(o1, arguments));

    // Create an instance of MyDynamicType using the constructor
    // that specifies m_Number. The constructor is identified by
    // matching the types in the argument array. In this case, 
    // the argument array is created on the fly. Display the 
    // property value.
    Object^ o2 = Activator::CreateInstance(t, 
        gcnew array<Object^> { 5280 });
    Console::WriteLine("o2->Number: {0}", pi->GetValue(o2, nullptr));
};

/* This code produces the following output:

o1->Number: 42
o1->Number: 127
o1->MyMethod(22): 2794
o2->Number: 5280
 */
using System;
using System.Reflection;
using System.Reflection.Emit;

class DemoAssemblyBuilder
{
    public static void Main()
    {
        // An assembly consists of one or more modules, each of which
        // contains zero or more types. This code creates a single-module
        // assembly, the most common case. The module contains one type,
        // named "MyDynamicType", that has a private field, a property 
        // that gets and sets the private field, constructors that 
        // initialize the private field, and a method that multiplies 
        // a user-supplied number by the private field value and returns
        // the result. In C# the type might look like this:
        /*
        public class MyDynamicType
        {
            private int m_number;
        
            public MyDynamicType() : this(42) {}
            public MyDynamicType(int initNumber)
            {
                m_number = initNumber;
            }

            public int Number
            {
                get { return m_number; }
                set { m_number = value; }
            }

            public int MyMethod(int multiplier)
            {
                return m_number * multiplier;
            }
        }
        */
      
        AssemblyName aName = new AssemblyName("DynamicAssemblyExample");
        AssemblyBuilder ab = 
            AppDomain.CurrentDomain.DefineDynamicAssembly(
                aName, 
                AssemblyBuilderAccess.RunAndSave);

        // For a single-module assembly, the module name is usually
        // the assembly name plus an extension.
        ModuleBuilder mb = 
            ab.DefineDynamicModule(aName.Name, aName.Name + ".dll");
      
        TypeBuilder tb = mb.DefineType(
            "MyDynamicType", 
             TypeAttributes.Public);

        // Add a private field of type int (Int32).
        FieldBuilder fbNumber = tb.DefineField(
            "m_number", 
            typeof(int), 
            FieldAttributes.Private);

        // Define a constructor that takes an integer argument and 
        // stores it in the private field. 
        Type[] parameterTypes = { typeof(int) };
        ConstructorBuilder ctor1 = tb.DefineConstructor(
            MethodAttributes.Public, 
            CallingConventions.Standard, 
            parameterTypes);

        ILGenerator ctor1IL = ctor1.GetILGenerator();
        // For a constructor, argument zero is a reference to the new
        // instance. Push it on the stack before calling the base
        // class constructor. Specify the default constructor of the 
        // base class (System.Object) by passing an empty array of 
        // types (Type.EmptyTypes) to GetConstructor.
        ctor1IL.Emit(OpCodes.Ldarg_0);
        ctor1IL.Emit(OpCodes.Call, 
            typeof(object).GetConstructor(Type.EmptyTypes));
        // Push the instance on the stack before pushing the argument
        // that is to be assigned to the private field m_number.
        ctor1IL.Emit(OpCodes.Ldarg_0);
        ctor1IL.Emit(OpCodes.Ldarg_1);
        ctor1IL.Emit(OpCodes.Stfld, fbNumber);
        ctor1IL.Emit(OpCodes.Ret);

        // Define a default constructor that supplies a default value
        // for the private field. For parameter types, pass the empty
        // array of types or pass null.
        ConstructorBuilder ctor0 = tb.DefineConstructor(
            MethodAttributes.Public, 
            CallingConventions.Standard, 
            Type.EmptyTypes);

        ILGenerator ctor0IL = ctor0.GetILGenerator();
        // For a constructor, argument zero is a reference to the new
        // instance. Push it on the stack before pushing the default
        // value on the stack, then call constructor ctor1.
        ctor0IL.Emit(OpCodes.Ldarg_0);
        ctor0IL.Emit(OpCodes.Ldc_I4_S, 42);
        ctor0IL.Emit(OpCodes.Call, ctor1);
        ctor0IL.Emit(OpCodes.Ret);

        // Define a property named Number that gets and sets the private 
        // field.
        //
        // The last argument of DefineProperty is null, because the
        // property has no parameters. (If you don't specify null, you must
        // specify an array of Type objects. For a parameterless property,
        // use the built-in array with no elements: Type.EmptyTypes)
        PropertyBuilder pbNumber = tb.DefineProperty(
            "Number", 
            PropertyAttributes.HasDefault, 
            typeof(int), 
            null);
      
        // The property "set" and property "get" methods require a special
        // set of attributes.
        MethodAttributes getSetAttr = MethodAttributes.Public | 
            MethodAttributes.SpecialName | MethodAttributes.HideBySig;

        // Define the "get" accessor method for Number. The method returns
        // an integer and has no arguments. (Note that null could be 
        // used instead of Types.EmptyTypes)
        MethodBuilder mbNumberGetAccessor = tb.DefineMethod(
            "get_Number", 
            getSetAttr, 
            typeof(int), 
            Type.EmptyTypes);
      
        ILGenerator numberGetIL = mbNumberGetAccessor.GetILGenerator();
        // For an instance property, argument zero is the instance. Load the 
        // instance, then load the private field and return, leaving the
        // field value on the stack.
        numberGetIL.Emit(OpCodes.Ldarg_0);
        numberGetIL.Emit(OpCodes.Ldfld, fbNumber);
        numberGetIL.Emit(OpCodes.Ret);
        
        // Define the "set" accessor method for Number, which has no return
        // type and takes one argument of type int (Int32).
        MethodBuilder mbNumberSetAccessor = tb.DefineMethod(
            "set_Number", 
            getSetAttr, 
            null, 
            new Type[] { typeof(int) });
      
        ILGenerator numberSetIL = mbNumberSetAccessor.GetILGenerator();
        // Load the instance and then the numeric argument, then store the
        // argument in the field.
        numberSetIL.Emit(OpCodes.Ldarg_0);
        numberSetIL.Emit(OpCodes.Ldarg_1);
        numberSetIL.Emit(OpCodes.Stfld, fbNumber);
        numberSetIL.Emit(OpCodes.Ret);
      
        // Last, map the "get" and "set" accessor methods to the 
        // PropertyBuilder. The property is now complete. 
        pbNumber.SetGetMethod(mbNumberGetAccessor);
        pbNumber.SetSetMethod(mbNumberSetAccessor);

        // Define a method that accepts an integer argument and returns
        // the product of that integer and the private field m_number. This
        // time, the array of parameter types is created on the fly.
        MethodBuilder meth = tb.DefineMethod(
            "MyMethod", 
            MethodAttributes.Public, 
            typeof(int), 
            new Type[] { typeof(int) });

        ILGenerator methIL = meth.GetILGenerator();
        // To retrieve the private instance field, load the instance it
        // belongs to (argument zero). After loading the field, load the 
        // argument one and then multiply. Return from the method with 
        // the return value (the product of the two numbers) on the 
        // execution stack.
        methIL.Emit(OpCodes.Ldarg_0);
        methIL.Emit(OpCodes.Ldfld, fbNumber);
        methIL.Emit(OpCodes.Ldarg_1);
        methIL.Emit(OpCodes.Mul);
        methIL.Emit(OpCodes.Ret);

        // Finish the type.
        Type t = tb.CreateType();
     
        // The following line saves the single-module assembly. This
        // requires AssemblyBuilderAccess to include Save. You can now
        // type "ildasm MyDynamicAsm.dll" at the command prompt, and 
        // examine the assembly. You can also write a program that has
        // a reference to the assembly, and use the MyDynamicType type.
        // 
        ab.Save(aName.Name + ".dll");

        // Because AssemblyBuilderAccess includes Run, the code can be
        // executed immediately. Start by getting reflection objects for
        // the method and the property.
        MethodInfo mi = t.GetMethod("MyMethod");
        PropertyInfo pi = t.GetProperty("Number");
  
        // Create an instance of MyDynamicType using the default 
        // constructor. 
        object o1 = Activator.CreateInstance(t);

        // Display the value of the property, then change it to 127 and 
        // display it again. Use null to indicate that the property
        // has no index.
        Console.WriteLine("o1.Number: {0}", pi.GetValue(o1, null));
        pi.SetValue(o1, 127, null);
        Console.WriteLine("o1.Number: {0}", pi.GetValue(o1, null));

        // Call MyMethod, passing 22, and display the return value, 22
        // times 127. Arguments must be passed as an array, even when
        // there is only one.
        object[] arguments = { 22 };
        Console.WriteLine("o1.MyMethod(22): {0}", 
            mi.Invoke(o1, arguments));

        // Create an instance of MyDynamicType using the constructor
        // that specifies m_Number. The constructor is identified by
        // matching the types in the argument array. In this case, 
        // the argument array is created on the fly. Display the 
        // property value.
        object o2 = Activator.CreateInstance(t, 
            new object[] { 5280 });
        Console.WriteLine("o2.Number: {0}", pi.GetValue(o2, null));
    }
}

/* This code produces the following output:

o1.Number: 42
o1.Number: 127
o1.MyMethod(22): 2794
o2.Number: 5280
 */
Imports System
Imports System.Reflection
Imports System.Reflection.Emit

Class DemoAssemblyBuilder

    Public Shared Sub Main()

        ' An assembly consists of one or more modules, each of which
        ' contains zero or more types. This code creates a single-module
        ' assembly, the most common case. The module contains one type,
        ' named "MyDynamicType", that has a private field, a property 
        ' that gets and sets the private field, constructors that 
        ' initialize the private field, and a method that multiplies
        ' a user-supplied number by the private field value and returns 
        ' the result. The code might look like this in Visual Basic:
        '
        'Public Class MyDynamicType
        '    Private m_number As Integer
        '
        '    Public Sub New()
        '        Me.New(42)
        '    End Sub
        '
        '    Public Sub New(ByVal initNumber As Integer)
        '        m_number = initNumber
        '    End Sub
        '
        '    Public Property Number As Integer
        '        Get
        '            Return m_number
        '        End Get
        '        Set
        '            m_Number = Value
        '        End Set
        '    End Property
        '
        '    Public Function MyMethod(ByVal multiplier As Integer) As Integer
        '        Return m_Number * multiplier
        '    End Function
        'End Class
      
        Dim aName As New AssemblyName("DynamicAssemblyExample")
        Dim ab As AssemblyBuilder = _
            AppDomain.CurrentDomain.DefineDynamicAssembly( _
                aName, _
                AssemblyBuilderAccess.RunAndSave)

        ' For a single-module assembly, the module name is usually
        ' the assembly name plus an extension.
        Dim mb As ModuleBuilder = ab.DefineDynamicModule( _
            aName.Name, _
            aName.Name & ".dll")
      
        Dim tb As TypeBuilder = _
            mb.DefineType("MyDynamicType", TypeAttributes.Public)

        ' Add a private field of type Integer (Int32).
        Dim fbNumber As FieldBuilder = tb.DefineField( _
            "m_number", _
            GetType(Integer), _
            FieldAttributes.Private)

        ' Define a constructor that takes an integer argument and 
        ' stores it in the private field. 
        Dim parameterTypes() As Type = { GetType(Integer) }
        Dim ctor1 As ConstructorBuilder = _
            tb.DefineConstructor( _
                MethodAttributes.Public, _
                CallingConventions.Standard, _
                parameterTypes)

        Dim ctor1IL As ILGenerator = ctor1.GetILGenerator()
        ' For a constructor, argument zero is a reference to the new
        ' instance. Push it on the stack before calling the base
        ' class constructor. Specify the default constructor of the 
        ' base class (System.Object) by passing an empty array of 
        ' types (Type.EmptyTypes) to GetConstructor.
        ctor1IL.Emit(OpCodes.Ldarg_0)
        ctor1IL.Emit(OpCodes.Call, _
            GetType(Object).GetConstructor(Type.EmptyTypes))
        ' Push the instance on the stack before pushing the argument
        ' that is to be assigned to the private field m_number.
        ctor1IL.Emit(OpCodes.Ldarg_0)
        ctor1IL.Emit(OpCodes.Ldarg_1)
        ctor1IL.Emit(OpCodes.Stfld, fbNumber)
        ctor1IL.Emit(OpCodes.Ret)

        ' Define a default constructor that supplies a default value
        ' for the private field. For parameter types, pass the empty
        ' array of types or pass Nothing.
        Dim ctor0 As ConstructorBuilder = tb.DefineConstructor( _
            MethodAttributes.Public, _
            CallingConventions.Standard, _
            Type.EmptyTypes)

        Dim ctor0IL As ILGenerator = ctor0.GetILGenerator()
        ' For a constructor, argument zero is a reference to the new
        ' instance. Push it on the stack before pushing the default
        ' value on the stack, then call constructor ctor1.
        ctor0IL.Emit(OpCodes.Ldarg_0)
        ctor0IL.Emit(OpCodes.Ldc_I4_S, 42)
        ctor0IL.Emit(OpCodes.Call, ctor1)
        ctor0IL.Emit(OpCodes.Ret)

        ' Define a property named Number that gets and sets the private 
        ' field.
        '
        ' The last argument of DefineProperty is Nothing, because the
        ' property has no parameters. (If you don't specify Nothing, you must
        ' specify an array of Type objects. For a parameterless property,
        ' use the built-in array with no elements: Type.EmptyTypes)
        Dim pbNumber As PropertyBuilder = tb.DefineProperty( _
            "Number", _
            PropertyAttributes.HasDefault, _
            GetType(Integer), _
            Nothing)
      
        ' The property Set and property Get methods require a special
        ' set of attributes.
        Dim getSetAttr As MethodAttributes = _
            MethodAttributes.Public Or MethodAttributes.SpecialName _
                Or MethodAttributes.HideBySig

        ' Define the "get" accessor method for Number. The method returns
        ' an integer and has no arguments. (Note that Nothing could be 
        ' used instead of Types.EmptyTypes)
        Dim mbNumberGetAccessor As MethodBuilder = tb.DefineMethod( _
            "get_Number", _
            getSetAttr, _
            GetType(Integer), _
            Type.EmptyTypes)
      
        Dim numberGetIL As ILGenerator = mbNumberGetAccessor.GetILGenerator()
        ' For an instance property, argument zero is the instance. Load the 
        ' instance, then load the private field and return, leaving the
        ' field value on the stack.
        numberGetIL.Emit(OpCodes.Ldarg_0)
        numberGetIL.Emit(OpCodes.Ldfld, fbNumber)
        numberGetIL.Emit(OpCodes.Ret)
        
        ' Define the "set" accessor method for Number, which has no return
        ' type and takes one argument of type Integer (Int32).
        Dim mbNumberSetAccessor As MethodBuilder = _
            tb.DefineMethod( _
                "set_Number", _
                getSetAttr, _
                Nothing, _
                New Type() { GetType(Integer) })
      
        Dim numberSetIL As ILGenerator = mbNumberSetAccessor.GetILGenerator()
        ' Load the instance and then the numeric argument, then store the
        ' argument in the field.
        numberSetIL.Emit(OpCodes.Ldarg_0)
        numberSetIL.Emit(OpCodes.Ldarg_1)
        numberSetIL.Emit(OpCodes.Stfld, fbNumber)
        numberSetIL.Emit(OpCodes.Ret)
      
        ' Last, map the "get" and "set" accessor methods to the 
        ' PropertyBuilder. The property is now complete. 
        pbNumber.SetGetMethod(mbNumberGetAccessor)
        pbNumber.SetSetMethod(mbNumberSetAccessor)

        ' Define a method that accepts an integer argument and returns
        ' the product of that integer and the private field m_number. This
        ' time, the array of parameter types is created on the fly.
        Dim meth As MethodBuilder = tb.DefineMethod( _
            "MyMethod", _
            MethodAttributes.Public, _
            GetType(Integer), _
            New Type() { GetType(Integer) })

        Dim methIL As ILGenerator = meth.GetILGenerator()
        ' To retrieve the private instance field, load the instance it
        ' belongs to (argument zero). After loading the field, load the 
        ' argument one and then multiply. Return from the method with 
        ' the return value (the product of the two numbers) on the 
        ' execution stack.
        methIL.Emit(OpCodes.Ldarg_0)
        methIL.Emit(OpCodes.Ldfld, fbNumber)
        methIL.Emit(OpCodes.Ldarg_1)
        methIL.Emit(OpCodes.Mul)
        methIL.Emit(OpCodes.Ret)

        ' Finish the type.
        Dim t As Type = tb.CreateType()
     
        ' The following line saves the single-module assembly. This
        ' requires AssemblyBuilderAccess to include Save. You can now
        ' type "ildasm MyDynamicAsm.dll" at the command prompt, and 
        ' examine the assembly. You can also write a program that has
        ' a reference to the assembly, and use the MyDynamicType type.
        ' 
        ab.Save(aName.Name & ".dll") 

        ' Because AssemblyBuilderAccess includes Run, the code can be
        ' executed immediately. Start by getting reflection objects for
        ' the method and the property.
        Dim mi As MethodInfo = t.GetMethod("MyMethod")
        Dim pi As PropertyInfo = t.GetProperty("Number")
  
        ' Create an instance of MyDynamicType using the default 
        ' constructor. 
        Dim o1 As Object = Activator.CreateInstance(t)

        ' Display the value of the property, then change it to 127 and 
        ' display it again. Use Nothing to indicate that the property
        ' has no index.
        Console.WriteLine("o1.Number: {0}", pi.GetValue(o1, Nothing))
        pi.SetValue(o1, 127, Nothing)
        Console.WriteLine("o1.Number: {0}", pi.GetValue(o1, Nothing))

        ' Call MyMethod, passing 22, and display the return value, 22
        ' times 127. Arguments must be passed as an array, even when
        ' there is only one.
        Dim arguments() As Object = { 22 }
        Console.WriteLine("o1.MyMethod(22): {0}", _
            mi.Invoke(o1, arguments))

        ' Create an instance of MyDynamicType using the constructor
        ' that specifies m_Number. The constructor is identified by
        ' matching the types in the argument array. In this case, 
        ' the argument array is created on the fly. Display the 
        ' property value.
        Dim o2 As Object = Activator.CreateInstance(t, _
            New Object() { 5280 })
        Console.WriteLine("o2.Number: {0}", pi.GetValue(o2, Nothing))
      
    End Sub  
End Class

' This code produces the following output:
'
'o1.Number: 42
'o1.Number: 127
'o1.MyMethod(22): 2794
'o2.Number: 5280

Example two

The following code sample demonstrates how to build a dynamic type by using TypeBuilder.

using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ DynamicDotProductGen()
{
   Type^ ivType = nullptr;
   array<Type^>^temp0 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^ctorParams = temp0;
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "IntVectorAsm";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::RunAndSave );
   ModuleBuilder^ IntVectorModule = myAsmBuilder->DefineDynamicModule( "IntVectorModule", "Vector.dll" );
   TypeBuilder^ ivTypeBld = IntVectorModule->DefineType( "IntVector", TypeAttributes::Public );
   FieldBuilder^ xField = ivTypeBld->DefineField( "x", int::typeid, FieldAttributes::Private );
   FieldBuilder^ yField = ivTypeBld->DefineField( "y", int::typeid, FieldAttributes::Private );
   FieldBuilder^ zField = ivTypeBld->DefineField( "z", int::typeid, FieldAttributes::Private );
   Type^ objType = Type::GetType( "System.Object" );
   ConstructorInfo^ objCtor = objType->GetConstructor( gcnew array<Type^>(0) );
   ConstructorBuilder^ ivCtor = ivTypeBld->DefineConstructor( MethodAttributes::Public, CallingConventions::Standard, ctorParams );
   ILGenerator^ ctorIL = ivCtor->GetILGenerator();
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Call, objCtor );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_1 );
   ctorIL->Emit( OpCodes::Stfld, xField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_2 );
   ctorIL->Emit( OpCodes::Stfld, yField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_3 );
   ctorIL->Emit( OpCodes::Stfld, zField );
   ctorIL->Emit( OpCodes::Ret );
   
   // This method will find the dot product of the stored vector
   // with another.
   array<Type^>^temp1 = {ivTypeBld};
   array<Type^>^dpParams = temp1;
   
   // Here, you create a MethodBuilder containing the
   // name, the attributes (public, static, private, and so on),
   // the return type (int, in this case), and a array of Type
   // indicating the type of each parameter. Since the sole parameter
   // is a IntVector, the very class you're creating, you will
   // pass in the TypeBuilder (which is derived from Type) instead of
   // a Type object for IntVector, avoiding an exception.
   // -- This method would be declared in C# as:
   //    public int DotProduct(IntVector aVector)
   MethodBuilder^ dotProductMthd = ivTypeBld->DefineMethod( "DotProduct", MethodAttributes::Public, int::typeid, dpParams );
   
   // A ILGenerator can now be spawned, attached to the MethodBuilder.
   ILGenerator^ mthdIL = dotProductMthd->GetILGenerator();
   
   // Here's the body of our function, in MSIL form. We're going to find the
   // "dot product" of the current vector instance with the passed vector
   // instance. For reference purposes, the equation is:
   // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
   // First, you'll load the reference to the current instance "this"
   // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
   // instruction, will pop the reference off the stack and look up the
   // field "x", specified by the FieldInfo token "xField".
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // That completed, the value stored at field "x" is now atop the stack.
   // Now, you'll do the same for the Object reference we passed as a
   // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
   // you'll have the value stored in field "x" for the passed instance
   // atop the stack.
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // There will now be two values atop the stack - the "x" value for the
   // current vector instance, and the "x" value for the passed instance.
   // You'll now multiply them, and push the result onto the evaluation stack.
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Now, repeat this for the "y" fields of both vectors.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // At this time, the results of both multiplications should be atop
   // the stack. You'll now add them and push the result onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // Multiply both "z" field and push the result onto the stack.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Finally, add the result of multiplying the "z" fields with the
   // result of the earlier addition, and push the result - the dot product -
   // onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // The "ret" opcode will pop the last value from the stack and return it
   // to the calling method. You're all done!
   mthdIL->Emit( OpCodes::Ret );
   ivType = ivTypeBld->CreateType();
   return ivType;
}

int main()
{
   Type^ IVType = nullptr;
   Object^ aVector1 = nullptr;
   Object^ aVector2 = nullptr;
   array<Type^>^temp2 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^aVtypes = temp2;
   array<Object^>^temp3 = {10,10,10};
   array<Object^>^aVargs1 = temp3;
   array<Object^>^temp4 = {20,20,20};
   array<Object^>^aVargs2 = temp4;
   
   // Call the  method to build our dynamic class.
   IVType = DynamicDotProductGen();
   Console::WriteLine( "---" );
   ConstructorInfo^ myDTctor = IVType->GetConstructor( aVtypes );
   aVector1 = myDTctor->Invoke( aVargs1 );
   aVector2 = myDTctor->Invoke( aVargs2 );
   array<Object^>^passMe = gcnew array<Object^>(1);
   passMe[ 0 ] = dynamic_cast<Object^>(aVector2);
   Console::WriteLine( "(10, 10, 10) . (20, 20, 20) = {0}", IVType->InvokeMember( "DotProduct", BindingFlags::InvokeMethod, nullptr, aVector1, passMe ) );
}

// +++ OUTPUT +++
// ---
// (10, 10, 10) . (20, 20, 20) = 600

using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;


class TestILGenerator {
 
  	public static Type DynamicDotProductGen() {
	  
	   Type ivType = null;
	   Type[] ctorParams = new Type[] { typeof(int),
		               		    typeof(int),
					    typeof(int)};
 	
	   AppDomain myDomain = Thread.GetDomain();
	   AssemblyName myAsmName = new AssemblyName();
	   myAsmName.Name = "IntVectorAsm";
	
	   AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
					  myAsmName, 
					  AssemblyBuilderAccess.RunAndSave);

   	   ModuleBuilder IntVectorModule = myAsmBuilder.DefineDynamicModule("IntVectorModule",
									    "Vector.dll");

	   TypeBuilder ivTypeBld = IntVectorModule.DefineType("IntVector",
						              TypeAttributes.Public);

	   FieldBuilder xField = ivTypeBld.DefineField("x", typeof(int),
                                                       FieldAttributes.Private);
	   FieldBuilder yField = ivTypeBld.DefineField("y", typeof(int), 
                                                       FieldAttributes.Private);
	   FieldBuilder zField = ivTypeBld.DefineField("z", typeof(int),
                                                       FieldAttributes.Private);


           Type objType = Type.GetType("System.Object"); 
           ConstructorInfo objCtor = objType.GetConstructor(new Type[0]);

	   ConstructorBuilder ivCtor = ivTypeBld.DefineConstructor(
					  MethodAttributes.Public,
					  CallingConventions.Standard,
					  ctorParams);
	   ILGenerator ctorIL = ivCtor.GetILGenerator();
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Call, objCtor);
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_1);
           ctorIL.Emit(OpCodes.Stfld, xField); 
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_2);
           ctorIL.Emit(OpCodes.Stfld, yField); 
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_3);
           ctorIL.Emit(OpCodes.Stfld, zField); 
	   ctorIL.Emit(OpCodes.Ret); 


	   // This method will find the dot product of the stored vector
	   // with another.

	   Type[] dpParams = new Type[] { ivTypeBld };

           // Here, you create a MethodBuilder containing the
	   // name, the attributes (public, static, private, and so on),
	   // the return type (int, in this case), and a array of Type
	   // indicating the type of each parameter. Since the sole parameter
	   // is a IntVector, the very class you're creating, you will
	   // pass in the TypeBuilder (which is derived from Type) instead of 
	   // a Type object for IntVector, avoiding an exception. 

	   // -- This method would be declared in C# as:
	   //    public int DotProduct(IntVector aVector)

           MethodBuilder dotProductMthd = ivTypeBld.DefineMethod(
	    		                  "DotProduct", 
				          MethodAttributes.Public,
                                          typeof(int), 
                                          dpParams);

	   // A ILGenerator can now be spawned, attached to the MethodBuilder.

	   ILGenerator mthdIL = dotProductMthd.GetILGenerator();
	   
 	   // Here's the body of our function, in MSIL form. We're going to find the
	   // "dot product" of the current vector instance with the passed vector 
	   // instance. For reference purposes, the equation is:
	   // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product

	   // First, you'll load the reference to the current instance "this"
	   // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
	   // instruction, will pop the reference off the stack and look up the
	   // field "x", specified by the FieldInfo token "xField".

	   mthdIL.Emit(OpCodes.Ldarg_0);
	   mthdIL.Emit(OpCodes.Ldfld, xField);

	   // That completed, the value stored at field "x" is now atop the stack.
	   // Now, you'll do the same for the object reference we passed as a
	   // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
	   // you'll have the value stored in field "x" for the passed instance
	   // atop the stack.

	   mthdIL.Emit(OpCodes.Ldarg_1);
	   mthdIL.Emit(OpCodes.Ldfld, xField);

           // There will now be two values atop the stack - the "x" value for the
	   // current vector instance, and the "x" value for the passed instance.
	   // You'll now multiply them, and push the result onto the evaluation stack.

	   mthdIL.Emit(OpCodes.Mul_Ovf_Un);

	   // Now, repeat this for the "y" fields of both vectors.

	   mthdIL.Emit(OpCodes.Ldarg_0);
	   mthdIL.Emit(OpCodes.Ldfld, yField);
	   mthdIL.Emit(OpCodes.Ldarg_1);
	   mthdIL.Emit(OpCodes.Ldfld, yField);
	   mthdIL.Emit(OpCodes.Mul_Ovf_Un);

	   // At this time, the results of both multiplications should be atop
	   // the stack. You'll now add them and push the result onto the stack.

	   mthdIL.Emit(OpCodes.Add_Ovf_Un);

	   // Multiply both "z" field and push the result onto the stack.
	   mthdIL.Emit(OpCodes.Ldarg_0);
	   mthdIL.Emit(OpCodes.Ldfld, zField);
	   mthdIL.Emit(OpCodes.Ldarg_1);
	   mthdIL.Emit(OpCodes.Ldfld, zField);
	   mthdIL.Emit(OpCodes.Mul_Ovf_Un);

	   // Finally, add the result of multiplying the "z" fields with the
	   // result of the earlier addition, and push the result - the dot product -
	   // onto the stack.
	   mthdIL.Emit(OpCodes.Add_Ovf_Un);

	   // The "ret" opcode will pop the last value from the stack and return it
	   // to the calling method. You're all done!

	   mthdIL.Emit(OpCodes.Ret);


 	   ivType = ivTypeBld.CreateType();

	   return ivType;

 	}

	public static void Main() {
	
	   Type IVType = null;
           object aVector1 = null;
           object aVector2 = null;
	   Type[] aVtypes = new Type[] {typeof(int), typeof(int), typeof(int)};
           object[] aVargs1 = new object[] {10, 10, 10};
           object[] aVargs2 = new object[] {20, 20, 20};
	
	   // Call the  method to build our dynamic class.

	   IVType = DynamicDotProductGen();

           Console.WriteLine("---");

	   ConstructorInfo myDTctor = IVType.GetConstructor(aVtypes);
	   aVector1 = myDTctor.Invoke(aVargs1);
	   aVector2 = myDTctor.Invoke(aVargs2);

	   object[] passMe = new object[1];
           passMe[0] = (object)aVector2; 

	   Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}",
			     IVType.InvokeMember("DotProduct",
						  BindingFlags.InvokeMethod,
						  null,
						  aVector1,
						  passMe));

	    

	   // +++ OUTPUT +++
	   // ---
	   // (10, 10, 10) . (20, 20, 20) = 600 
	    
	}
    
}

Imports System
Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _


Class TestILGenerator
   
   
   Public Shared Function DynamicDotProductGen() As Type
      
      Dim ivType As Type = Nothing
      Dim ctorParams() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      
      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "IntVectorAsm"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
					    myAsmName, _
					    AssemblyBuilderAccess.RunAndSave)
      
      Dim IntVectorModule As ModuleBuilder = myAsmBuilder.DefineDynamicModule( _
					     "IntVectorModule", _
					     "Vector.dll")
      
      Dim ivTypeBld As TypeBuilder = IntVectorModule.DefineType("IntVector", TypeAttributes.Public)
      
      Dim xField As FieldBuilder = ivTypeBld.DefineField("x", _
						         GetType(Integer), _
						         FieldAttributes.Private)
      Dim yField As FieldBuilder = ivTypeBld.DefineField("y", _ 
						         GetType(Integer), _
						         FieldAttributes.Private)
      Dim zField As FieldBuilder = ivTypeBld.DefineField("z", _
						         GetType(Integer), _
						         FieldAttributes.Private)
      
      
      Dim objType As Type = Type.GetType("System.Object")
      Dim objCtor As ConstructorInfo = objType.GetConstructor(New Type() {})
      
      Dim ivCtor As ConstructorBuilder = ivTypeBld.DefineConstructor( _
					 MethodAttributes.Public, _
					 CallingConventions.Standard, _
					 ctorParams)
      Dim ctorIL As ILGenerator = ivCtor.GetILGenerator()
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Call, objCtor)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_1)
      ctorIL.Emit(OpCodes.Stfld, xField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_2)
      ctorIL.Emit(OpCodes.Stfld, yField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_3)
      ctorIL.Emit(OpCodes.Stfld, zField)
      ctorIL.Emit(OpCodes.Ret)
     

      ' Now, you'll construct the method find the dot product of two vectors. First,
      ' let's define the parameters that will be accepted by the method. In this case,
      ' it's an IntVector itself!

      Dim dpParams() As Type = {ivTypeBld}
      
      ' Here, you create a MethodBuilder containing the
      ' name, the attributes (public, static, private, and so on),
      ' the return type (int, in this case), and a array of Type
      ' indicating the type of each parameter. Since the sole parameter
      ' is a IntVector, the very class you're creating, you will
      ' pass in the TypeBuilder (which is derived from Type) instead of 
      ' a Type object for IntVector, avoiding an exception. 
      ' -- This method would be declared in VB.NET as:
      '    Public Function DotProduct(IntVector aVector) As Integer

      Dim dotProductMthd As MethodBuilder = ivTypeBld.DefineMethod("DotProduct", _
					    MethodAttributes.Public, GetType(Integer), _
                                            dpParams)
      
      ' A ILGenerator can now be spawned, attached to the MethodBuilder.
      Dim mthdIL As ILGenerator = dotProductMthd.GetILGenerator()
      
      ' Here's the body of our function, in MSIL form. We're going to find the
      ' "dot product" of the current vector instance with the passed vector 
      ' instance. For reference purposes, the equation is:
      ' (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
      ' First, you'll load the reference to the current instance "this"
      ' stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
      ' instruction, will pop the reference off the stack and look up the
      ' field "x", specified by the FieldInfo token "xField".
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' That completed, the value stored at field "x" is now atop the stack.
      ' Now, you'll do the same for the object reference we passed as a
      ' parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
      ' you'll have the value stored in field "x" for the passed instance
      ' atop the stack.
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' There will now be two values atop the stack - the "x" value for the
      ' current vector instance, and the "x" value for the passed instance.
      ' You'll now multiply them, and push the result onto the evaluation stack.
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Now, repeat this for the "y" fields of both vectors.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' At this time, the results of both multiplications should be atop
      ' the stack. You'll now add them and push the result onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' Multiply both "z" field and push the result onto the stack.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Finally, add the result of multiplying the "z" fields with the
      ' result of the earlier addition, and push the result - the dot product -
      ' onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' The "ret" opcode will pop the last value from the stack and return it
      ' to the calling method. You're all done!
      mthdIL.Emit(OpCodes.Ret)
      
      
      ivType = ivTypeBld.CreateType()
      
      Return ivType
   End Function 'DynamicDotProductGen
    
   
   Public Shared Sub Main()
      
      Dim IVType As Type = Nothing
      Dim aVector1 As Object = Nothing
      Dim aVector2 As Object = Nothing
      Dim aVtypes() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      Dim aVargs1() As Object = {10, 10, 10}
      Dim aVargs2() As Object = {20, 20, 20}
      
      ' Call the  method to build our dynamic class.
      IVType = DynamicDotProductGen()
      
      
      Dim myDTctor As ConstructorInfo = IVType.GetConstructor(aVtypes)
      aVector1 = myDTctor.Invoke(aVargs1)
      aVector2 = myDTctor.Invoke(aVargs2)
      
      Console.WriteLine("---")
      Dim passMe(0) As Object
      passMe(0) = CType(aVector2, Object)
      
      Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}", _
                        IVType.InvokeMember("DotProduct", BindingFlags.InvokeMethod, _
                        Nothing, aVector1, passMe))
   End Sub 'Main
End Class 'TestILGenerator



' +++ OUTPUT +++
' ---
' (10, 10, 10) . (20, 20, 20) = 600 


Remarks

TypeBuilder is the root class used to control the creation of dynamic classes in the runtime. It provides a set of routines that are used to define classes, add methods and fields, and create the class inside a module. A new TypeBuilder can be created from a dynamic module by calling the ModuleBuilder.DefineType method, which returns a TypeBuilder object.

Reflection emit provides the following options for defining types:

  • Define a class or interface with the given name.

  • Define a class or interface with the given name and attributes.

  • Define a class with the given name, attributes, and base class.

  • Define a class with the given name, attributes, base class, and the set of interfaces that the class implements.

  • Define a class with the given name, attributes, base class, and packing size.

  • Define a class with the given name, attributes, base class, and the class size as a whole.

  • Define a class with the given name, attributes, base class, packing size, and the class size as a whole.

To create an array type, pointer type, or byref type for an incomplete type that is represented by a TypeBuilder object, use the MakeArrayType method, MakePointerType method, or MakeByRefType method, respectively.

Before a type is used, the TypeBuilder.CreateType method must be called. CreateType completes the creation of the type. Following the call to CreateType, the caller can instantiate the type by using the Activator.CreateInstance method, and invoke members of the type by using the Type.InvokeMember method. It is an error to invoke methods that change the implementation of a type after CreateType has been called. For example, the common language runtime throws an exception if the caller tries to add new members to a type.

A class initializer is created by using the TypeBuilder.DefineTypeInitializer method. DefineTypeInitializer returns a ConstructorBuilder object.

Nested types are defined by calling one of the TypeBuilder.DefineNestedType methods.

Attributes

The TypeBuilder class uses the TypeAttributes enumeration to further specify the characteristics of the type to be created:

  • Interfaces are specified using the TypeAttributes.Interface and TypeAttributes.Abstract attributes.

  • Concrete classes (classes that cannot be extended) are specified using the TypeAttributes.Sealed attribute.

  • Several attributes determine type visibility. See the description of the TypeAttributes enumeration.

  • If TypeAttributes.SequentialLayout is specified, the class loader lays out fields in the order they are read from metadata. The class loader considers the specified packing size but ignores any specified field offsets. The metadata preserves the order in which the field definitions are emitted. Even across a merge, the metadata will not reorder the field definitions. The loader will honor the specified field offsets only if TypeAttributes.ExplicitLayout is specified.

Known Issues

  • Reflection emit does not verify whether a non-abstract class that implements an interface has implemented all the methods declared in the interface. However, if the class does not implement all the methods declared in an interface, the runtime does not load the class.

  • Although TypeBuilder is derived from Type, some of the abstract methods defined in the Type class are not fully implemented in the TypeBuilder class. Calls to these TypeBuilder methods throw a NotSupportedException exception. The desired functionality can be obtained by retrieving the created type using the Type.GetType or Assembly.GetType and reflecting on the retrieved type.

Fields

UnspecifiedTypeSize

Represents that total size for the type is not specified.

Properties

Assembly

Retrieves the dynamic assembly that contains this type definition.

AssemblyQualifiedName

Returns the full name of this type qualified by the display name of the assembly.

Attributes
BaseType

Retrieves the base type of this type.

ContainsGenericParameters
CustomAttributes

Gets a collection that contains this member's custom attributes.

(Inherited from MemberInfo)
DeclaringMethod

Gets the method that declared the current generic type parameter.

DeclaringType

Returns the type that declared this type.

FullName

Retrieves the full path of this type.

GUID

Retrieves the GUID of this type.

GenericParameterAttributes

Gets a value that indicates the covariance and special constraints of the current generic type parameter.

GenericParameterPosition

Gets the position of a type parameter in the type parameter list of the generic type that declared the parameter.

GenericTypeArguments
HasElementType

Gets a value indicating whether the current Type encompasses or refers to another type; that is, whether the current Type is an array, a pointer, or is passed by reference.

(Inherited from Type)
IsAbstract

Gets a value indicating whether the Type is abstract and must be overridden.

(Inherited from Type)
IsAnsiClass

Gets a value indicating whether the string format attribute AnsiClass is selected for the Type.

(Inherited from Type)
IsArray

Gets a value that indicates whether the type is an array.

(Inherited from Type)
IsAutoClass

Gets a value indicating whether the string format attribute AutoClass is selected for the Type.

(Inherited from Type)
IsAutoLayout

Gets a value indicating whether the fields of the current type are laid out automatically by the common language runtime.

(Inherited from Type)
IsByRef

Gets a value indicating whether the Type is passed by reference.

(Inherited from Type)
IsCOMObject

Gets a value indicating whether the Type is a COM object.

(Inherited from Type)
IsClass

Gets a value indicating whether the Type is a class or a delegate; that is, not a value type or interface.

(Inherited from Type)
IsConstructedGenericType

Gets a value that indicates whether this object represents a constructed generic type.

IsContextful

Gets a value indicating whether the Type can be hosted in a context.

(Inherited from Type)
IsEnum
IsExplicitLayout

Gets a value indicating whether the fields of the current type are laid out at explicitly specified offsets.

(Inherited from Type)
IsGenericParameter

Gets a value indicating whether the current type is a generic type parameter.

IsGenericType

Gets a value indicating whether the current type is a generic type.

IsGenericTypeDefinition

Gets a value indicating whether the current TypeBuilder represents a generic type definition from which other generic types can be constructed.

IsImport

Gets a value indicating whether the Type has a ComImportAttribute attribute applied, indicating that it was imported from a COM type library.

(Inherited from Type)
IsInterface

Gets a value indicating whether the Type is an interface; that is, not a class or a value type.

(Inherited from Type)
IsLayoutSequential

Gets a value indicating whether the fields of the current type are laid out sequentially, in the order that they were defined or emitted to the metadata.

(Inherited from Type)
IsMarshalByRef

Gets a value indicating whether the Type is marshaled by reference.

(Inherited from Type)
IsNested

Gets a value indicating whether the current Type object represents a type whose definition is nested inside the definition of another type.

(Inherited from Type)
IsNestedAssembly

Gets a value indicating whether the Type is nested and visible only within its own assembly.

(Inherited from Type)
IsNestedFamANDAssem

Gets a value indicating whether the Type is nested and visible only to classes that belong to both its own family and its own assembly.

(Inherited from Type)
IsNestedFamORAssem

Gets a value indicating whether the Type is nested and visible only to classes that belong to either its own family or to its own assembly.

(Inherited from Type)
IsNestedFamily

Gets a value indicating whether the Type is nested and visible only within its own family.

(Inherited from Type)
IsNestedPrivate

Gets a value indicating whether the Type is nested and declared private.

(Inherited from Type)
IsNestedPublic

Gets a value indicating whether a class is nested and declared public.

(Inherited from Type)
IsNotPublic

Gets a value indicating whether the Type is not declared public.

(Inherited from Type)
IsPointer

Gets a value indicating whether the Type is a pointer.

(Inherited from Type)
IsPrimitive

Gets a value indicating whether the Type is one of the primitive types.

(Inherited from Type)
IsPublic

Gets a value indicating whether the Type is declared public.

(Inherited from Type)
IsSZArray
IsSealed

Gets a value indicating whether the Type is declared sealed.

(Inherited from Type)
IsSecurityCritical

Gets a value that indicates whether the current type is security-critical or security-safe-critical, and therefore can perform critical operations.

IsSecuritySafeCritical

Gets a value that indicates whether the current type is security-safe-critical; that is, whether it can perform critical operations and can be accessed by transparent code.

IsSecurityTransparent

Gets a value that indicates whether the current type is transparent, and therefore cannot perform critical operations.

IsSerializable
IsSpecialName

Gets a value indicating whether the type has a name that requires special handling.

(Inherited from Type)
IsTypeDefinition
IsUnicodeClass

Gets a value indicating whether the string format attribute UnicodeClass is selected for the Type.

(Inherited from Type)
IsValueType

Gets a value indicating whether the Type is a value type.

(Inherited from Type)
IsVariableBoundArray
IsVisible

Gets a value indicating whether the Type can be accessed by code outside the assembly.

(Inherited from Type)
MemberType

Gets a MemberTypes value indicating that this member is a type or a nested type.

(Inherited from Type)
MetadataToken

Gets a value that identifies a metadata element.

(Inherited from MemberInfo)
Module

Retrieves the dynamic module that contains this type definition.

Name

Retrieves the name of this type.

Namespace

Retrieves the namespace where this TypeBuilder is defined.

PackingSize

Retrieves the packing size of this type.

ReflectedType

Returns the type that was used to obtain this type.

Size

Retrieves the total size of a type.

StructLayoutAttribute

Gets a StructLayoutAttribute that describes the layout of the current type.

(Inherited from Type)
TypeHandle

Not supported in dynamic modules.

TypeInitializer

Gets the initializer for the type.

(Inherited from Type)
TypeToken

Returns the type token of this type.

UnderlyingSystemType

Returns the underlying system type for this TypeBuilder.

Methods

AddDeclarativeSecurity(SecurityAction, PermissionSet)

Adds declarative security to this type.

AddInterfaceImplementation(Type)

Adds an interface that this type implements.

CreateType()

Creates a Type object for the class. After defining fields and methods on the class, CreateType is called in order to load its Type object.

CreateTypeInfo()

Gets a TypeInfo object that represents this type.

DefineConstructor(MethodAttributes, CallingConventions, Type[])

Adds a new constructor to the type, with the given attributes and signature.

DefineConstructor(MethodAttributes, CallingConventions, Type[], Type[][], Type[][])

Adds a new constructor to the type, with the given attributes, signature, and custom modifiers.

DefineDefaultConstructor(MethodAttributes)

Defines the default constructor. The constructor defined here will simply call the default constructor of the parent.

DefineEvent(String, EventAttributes, Type)

Adds a new event to the type, with the given name, attributes and event type.

DefineField(String, Type, FieldAttributes)

Adds a new field to the type, with the given name, attributes, and field type.

DefineField(String, Type, Type[], Type[], FieldAttributes)

Adds a new field to the type, with the given name, attributes, field type, and custom modifiers.

DefineGenericParameters(String[])

Defines the generic type parameters for the current type, specifying their number and their names, and returns an array of GenericTypeParameterBuilder objects that can be used to set their constraints.

DefineInitializedData(String, Byte[], FieldAttributes)

Defines initialized data field in the .sdata section of the portable executable (PE) file.

DefineMethod(String, MethodAttributes)

Adds a new method to the type, with the specified name and method attributes.

DefineMethod(String, MethodAttributes, CallingConventions)

Adds a new method to the type, with the specified name, method attributes, and calling convention.

DefineMethod(String, MethodAttributes, CallingConventions, Type, Type[])

Adds a new method to the type, with the specified name, method attributes, calling convention, and method signature.

DefineMethod(String, MethodAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][])

Adds a new method to the type, with the specified name, method attributes, calling convention, method signature, and custom modifiers.

DefineMethod(String, MethodAttributes, Type, Type[])

Adds a new method to the type, with the specified name, method attributes, and method signature.

DefineMethodOverride(MethodInfo, MethodInfo)

Specifies a given method body that implements a given method declaration, potentially with a different name.

DefineNestedType(String)

Defines a nested type, given its name.

DefineNestedType(String, TypeAttributes)

Defines a nested type, given its name and attributes.

DefineNestedType(String, TypeAttributes, Type)

Defines a nested type, given its name, attributes, and the type that it extends.

DefineNestedType(String, TypeAttributes, Type, Int32)

Defines a nested type, given its name, attributes, the total size of the type, and the type that it extends.

DefineNestedType(String, TypeAttributes, Type, PackingSize)

Defines a nested type, given its name, attributes, the type that it extends, and the packing size.

DefineNestedType(String, TypeAttributes, Type, PackingSize, Int32)

Defines a nested type, given its name, attributes, size, and the type that it extends.

DefineNestedType(String, TypeAttributes, Type, Type[])

Defines a nested type, given its name, attributes, the type that it extends, and the interfaces that it implements.

DefinePInvokeMethod(String, String, MethodAttributes, CallingConventions, Type, Type[], CallingConvention, CharSet)

Defines a PInvoke method given its name, the name of the DLL in which the method is defined, the attributes of the method, the calling convention of the method, the return type of the method, the types of the parameters of the method, and the PInvoke flags.

DefinePInvokeMethod(String, String, String, MethodAttributes, CallingConventions, Type, Type[], CallingConvention, CharSet)

Defines a PInvoke method given its name, the name of the DLL in which the method is defined, the name of the entry point, the attributes of the method, the calling convention of the method, the return type of the method, the types of the parameters of the method, and the PInvoke flags.

DefinePInvokeMethod(String, String, String, MethodAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][], CallingConvention, CharSet)

Defines a PInvoke method given its name, the name of the DLL in which the method is defined, the name of the entry point, the attributes of the method, the calling convention of the method, the return type of the method, the types of the parameters of the method, the PInvoke flags, and custom modifiers for the parameters and return type.

DefineProperty(String, PropertyAttributes, CallingConventions, Type, Type[])

Adds a new property to the type, with the given name, attributes, calling convention, and property signature.

DefineProperty(String, PropertyAttributes, CallingConventions, Type, Type[], Type[], Type[], Type[][], Type[][])

Adds a new property to the type, with the given name, calling convention, property signature, and custom modifiers.

DefineProperty(String, PropertyAttributes, Type, Type[])

Adds a new property to the type, with the given name and property signature.

DefineProperty(String, PropertyAttributes, Type, Type[], Type[], Type[], Type[][], Type[][])

Adds a new property to the type, with the given name, property signature, and custom modifiers.

DefineTypeInitializer()

Defines the initializer for this type.

DefineUninitializedData(String, Int32, FieldAttributes)

Defines an uninitialized data field in the .sdata section of the portable executable (PE) file.

Equals(Object)

Determines if the underlying system type of the current Type object is the same as the underlying system type of the specified Object.

(Inherited from Type)
Equals(Type)

Determines if the underlying system type of the current Type is the same as the underlying system type of the specified Type.

(Inherited from Type)
FindInterfaces(TypeFilter, Object)

Returns an array of Type objects representing a filtered list of interfaces implemented or inherited by the current Type.

(Inherited from Type)
FindMembers(MemberTypes, BindingFlags, MemberFilter, Object)

Returns a filtered array of MemberInfo objects of the specified member type.

(Inherited from Type)
GetArrayRank()
GetAttributeFlagsImpl()

When overridden in a derived class, implements the Attributes property and gets a bitmask indicating the attributes associated with the Type.

(Inherited from Type)
GetConstructor(BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

Searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetConstructor(BindingFlags, Binder, Type[], ParameterModifier[])

Searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetConstructor(Type, ConstructorInfo)

Returns the constructor of the specified constructed generic type that corresponds to the specified constructor of the generic type definition.

GetConstructor(Type[])

Searches for a public instance constructor whose parameters match the types in the specified array.

(Inherited from Type)
GetConstructorImpl(BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for a constructor whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetConstructors()

Returns all the public constructors defined for the current Type.

(Inherited from Type)
GetConstructors(BindingFlags)

Returns an array of ConstructorInfo objects representing the public and non-public constructors defined for this class, as specified.

GetCustomAttributes(Boolean)

Returns all the custom attributes defined for this type.

GetCustomAttributes(Type, Boolean)

Returns all the custom attributes of the current type that are assignable to a specified type.

GetCustomAttributesData()

Returns a list of CustomAttributeData objects representing data about the attributes that have been applied to the target member.

(Inherited from MemberInfo)
GetDefaultMembers()

Searches for the members defined for the current Type whose DefaultMemberAttribute is set.

(Inherited from Type)
GetElementType()

Calling this method always throws NotSupportedException.

GetEnumName(Object)

Returns the name of the constant that has the specified value, for the current enumeration type.

(Inherited from Type)
GetEnumNames()

Returns the names of the members of the current enumeration type.

(Inherited from Type)
GetEnumUnderlyingType()

Returns the underlying type of the current enumeration type.

(Inherited from Type)
GetEnumValues()

Returns an array of the values of the constants in the current enumeration type.

(Inherited from Type)
GetEvent(String)

Returns the EventInfo object representing the specified public event.

(Inherited from Type)
GetEvent(String, BindingFlags)

Returns the event with the specified name.

GetEvents()

Returns the public events declared or inherited by this type.

GetEvents(BindingFlags)

Returns the public and non-public events that are declared by this type.

GetField(String)

Searches for the public field with the specified name.

(Inherited from Type)
GetField(String, BindingFlags)

Returns the field specified by the given name.

GetField(Type, FieldInfo)

Returns the field of the specified constructed generic type that corresponds to the specified field of the generic type definition.

GetFields()

Returns all the public fields of the current Type.

(Inherited from Type)
GetFields(BindingFlags)

Returns the public and non-public fields that are declared by this type.

GetGenericArguments()

Returns an array of Type objects representing the type arguments of a generic type or the type parameters of a generic type definition.

GetGenericParameterConstraints()
GetGenericTypeDefinition()

Returns a Type object that represents a generic type definition from which the current type can be obtained.

GetHashCode()

Returns the hash code for this instance.

(Inherited from Type)
GetInterface(String)

Searches for the interface with the specified name.

(Inherited from Type)
GetInterface(String, Boolean)

Returns the interface implemented (directly or indirectly) by this class with the fully qualified name matching the given interface name.

GetInterfaceMap(Type)

Returns an interface mapping for the requested interface.

GetInterfaces()

Returns an array of all the interfaces implemented on this type and its base types.

GetMember(String)

Searches for the public members with the specified name.

(Inherited from Type)
GetMember(String, BindingFlags)

Searches for the specified members, using the specified binding constraints.

(Inherited from Type)
GetMember(String, MemberTypes, BindingFlags)

Returns all the public and non-public members declared or inherited by this type, as specified.

GetMembers()

Returns all the public members of the current Type.

(Inherited from Type)
GetMembers(BindingFlags)

Returns the members for the public and non-public members declared or inherited by this type.

GetMethod(String)

Searches for the public method with the specified name.

(Inherited from Type)
GetMethod(String, BindingFlags)

Searches for the specified method, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

Searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetMethod(String, BindingFlags, Binder, Type[], ParameterModifier[])

Searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetMethod(String, Type[])

Searches for the specified public method whose parameters match the specified argument types.

(Inherited from Type)
GetMethod(String, Type[], ParameterModifier[])

Searches for the specified public method whose parameters match the specified argument types and modifiers.

(Inherited from Type)
GetMethod(Type, MethodInfo)

Returns the method of the specified constructed generic type that corresponds to the specified method of the generic type definition.

GetMethodImpl(String, BindingFlags, Binder, CallingConventions, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified method whose parameters match the specified argument types and modifiers, using the specified binding constraints and the specified calling convention.

(Inherited from Type)
GetMethods()

Returns all the public methods of the current Type.

(Inherited from Type)
GetMethods(BindingFlags)

Returns all the public and non-public methods declared or inherited by this type, as specified.

GetNestedType(String)

Searches for the public nested type with the specified name.

(Inherited from Type)
GetNestedType(String, BindingFlags)

Returns the public and non-public nested types that are declared by this type.

GetNestedTypes()

Returns the public types nested in the current Type.

(Inherited from Type)
GetNestedTypes(BindingFlags)

Returns the public and non-public nested types that are declared or inherited by this type.

GetProperties()

Returns all the public properties of the current Type.

(Inherited from Type)
GetProperties(BindingFlags)

Returns all the public and non-public properties declared or inherited by this type, as specified.

GetProperty(String)

Searches for the public property with the specified name.

(Inherited from Type)
GetProperty(String, BindingFlags)

Searches for the specified property, using the specified binding constraints.

(Inherited from Type)
GetProperty(String, BindingFlags, Binder, Type, Type[], ParameterModifier[])

Searches for the specified property whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetProperty(String, Type)

Searches for the public property with the specified name and return type.

(Inherited from Type)
GetProperty(String, Type, Type[])

Searches for the specified public property whose parameters match the specified argument types.

(Inherited from Type)
GetProperty(String, Type, Type[], ParameterModifier[])

Searches for the specified public property whose parameters match the specified argument types and modifiers.

(Inherited from Type)
GetProperty(String, Type[])

Searches for the specified public property whose parameters match the specified argument types.

(Inherited from Type)
GetPropertyImpl(String, BindingFlags, Binder, Type, Type[], ParameterModifier[])

When overridden in a derived class, searches for the specified property whose parameters match the specified argument types and modifiers, using the specified binding constraints.

(Inherited from Type)
GetType()

Gets the current Type.

(Inherited from Type)
GetTypeCodeImpl()

Returns the underlying type code of this Type instance.

(Inherited from Type)
HasElementTypeImpl()

When overridden in a derived class, implements the HasElementType property and determines whether the current Type encompasses or refers to another type; that is, whether the current Type is an array, a pointer, or is passed by reference.

(Inherited from Type)
InvokeMember(String, BindingFlags, Binder, Object, Object[])

Invokes the specified member, using the specified binding constraints and matching the specified argument list.

(Inherited from Type)
InvokeMember(String, BindingFlags, Binder, Object, Object[], CultureInfo)

Invokes the specified member, using the specified binding constraints and matching the specified argument list and culture.

(Inherited from Type)
InvokeMember(String, BindingFlags, Binder, Object, Object[], ParameterModifier[], CultureInfo, String[])

Invokes the specified member. The method that is to be invoked must be accessible and provide the most specific match with the specified argument list, under the constraints of the specified binder and invocation attributes.

IsArrayImpl()

When overridden in a derived class, implements the IsArray property and determines whether the Type is an array.

(Inherited from Type)
IsAssignableFrom(Type)

Gets a value that indicates whether a specified Type can be assigned to this object.

IsAssignableFrom(TypeInfo)

Gets a value that indicates whether a specified TypeInfo object can be assigned to this object.

IsByRefImpl()

When overridden in a derived class, implements the IsByRef property and determines whether the Type is passed by reference.

(Inherited from Type)
IsCOMObjectImpl()

When overridden in a derived class, implements the IsCOMObject property and determines whether the Type is a COM object.

(Inherited from Type)
IsContextfulImpl()

Implements the IsContextful property and determines whether the Type can be hosted in a context.

(Inherited from Type)
IsCreated()

Returns a value that indicates whether the current dynamic type has been created.

IsDefined(Type, Boolean)

Determines whether a custom attribute is applied to the current type.

IsEnumDefined(Object)

Returns a value that indicates whether the specified value exists in the current enumeration type.

(Inherited from Type)
IsEquivalentTo(Type)

Determines whether two COM types have the same identity and are eligible for type equivalence.

(Inherited from Type)
IsInstanceOfType(Object)

Determines whether the specified object is an instance of the current Type.

(Inherited from Type)
IsMarshalByRefImpl()

Implements the IsMarshalByRef property and determines whether the Type is marshaled by reference.

(Inherited from Type)
IsPointerImpl()

When overridden in a derived class, implements the IsPointer property and determines whether the Type is a pointer.

(Inherited from Type)
IsPrimitiveImpl()

When overridden in a derived class, implements the IsPrimitive property and determines whether the Type is one of the primitive types.

(Inherited from Type)
IsSubclassOf(Type)

Determines whether this type is derived from a specified type.

IsValueTypeImpl()

Implements the IsValueType property and determines whether the Type is a value type; that is, not a class or an interface.

(Inherited from Type)
MakeArrayType()

Returns a Type object that represents a one-dimensional array of the current type, with a lower bound of zero.

MakeArrayType(Int32)

Returns a Type object that represents an array of the current type, with the specified number of dimensions.

MakeByRefType()

Returns a Type object that represents the current type when passed as a ref parameter (ByRef in Visual Basic).

MakeGenericType(Type[])

Substitutes the elements of an array of types for the type parameters of the current generic type definition, and returns the resulting constructed type.

MakePointerType()

Returns a Type object that represents the type of an unmanaged pointer to the current type.

MemberwiseClone()

Creates a shallow copy of the current Object.

(Inherited from Object)
SetCustomAttribute(ConstructorInfo, Byte[])

Sets a custom attribute using a specified custom attribute blob.

SetCustomAttribute(CustomAttributeBuilder)

Set a custom attribute using a custom attribute builder.

SetParent(Type)

Sets the base type of the type currently under construction.

ToString()

Returns the name of the type excluding the namespace.

Explicit Interface Implementations

ICustomAttributeProvider.GetCustomAttributes(Boolean) Inherited from MemberInfo
ICustomAttributeProvider.GetCustomAttributes(Type, Boolean) Inherited from MemberInfo
ICustomAttributeProvider.IsDefined(Type, Boolean) Inherited from MemberInfo
_MemberInfo.GetIDsOfNames(Guid, IntPtr, UInt32, UInt32, IntPtr)

Maps a set of names to a corresponding set of dispatch identifiers.

(Inherited from MemberInfo)
_MemberInfo.GetType()

Gets a Type object representing the MemberInfo class.

(Inherited from MemberInfo)
_MemberInfo.GetTypeInfo(UInt32, UInt32, IntPtr)

Retrieves the type information for an object, which can then be used to get the type information for an interface.

(Inherited from MemberInfo)
_MemberInfo.GetTypeInfoCount(UInt32)

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

(Inherited from MemberInfo)
_MemberInfo.Invoke(UInt32, Guid, UInt32, Int16, IntPtr, IntPtr, IntPtr, IntPtr)

Provides access to properties and methods exposed by an object.

(Inherited from MemberInfo)
_Type.GetIDsOfNames(Guid, IntPtr, UInt32, UInt32, IntPtr)

Maps a set of names to a corresponding set of dispatch identifiers.

(Inherited from Type)
_Type.GetTypeInfo(UInt32, UInt32, IntPtr)

Retrieves the type information for an object, which can then be used to get the type information for an interface.

(Inherited from Type)
_Type.GetTypeInfoCount(UInt32)

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

(Inherited from Type)
_Type.Invoke(UInt32, Guid, UInt32, Int16, IntPtr, IntPtr, IntPtr, IntPtr)

Provides access to properties and methods exposed by an object.

(Inherited from Type)
_TypeBuilder.GetIDsOfNames(Guid, IntPtr, UInt32, UInt32, IntPtr)

Maps a set of names to a corresponding set of dispatch identifiers.

_TypeBuilder.GetTypeInfo(UInt32, UInt32, IntPtr)

Retrieves the type information for an object, which can then be used to get the type information for an interface.

_TypeBuilder.GetTypeInfoCount(UInt32)

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

_TypeBuilder.Invoke(UInt32, Guid, UInt32, Int16, IntPtr, IntPtr, IntPtr, IntPtr)

Provides access to properties and methods exposed by an object.

Extension Methods

GetCustomAttribute(MemberInfo, Type)

Retrieves a custom attribute of a specified type that is applied to a specified member.

GetCustomAttribute(MemberInfo, Type, Boolean)

Retrieves a custom attribute of a specified type that is applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttribute<T>(MemberInfo)

Retrieves a custom attribute of a specified type that is applied to a specified member.

GetCustomAttribute<T>(MemberInfo, Boolean)

Retrieves a custom attribute of a specified type that is applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttributes(MemberInfo)

Retrieves a collection of custom attributes that are applied to a specified member.

GetCustomAttributes(MemberInfo, Boolean)

Retrieves a collection of custom attributes that are applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttributes(MemberInfo, Type)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member.

GetCustomAttributes(MemberInfo, Type, Boolean)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member, and optionally inspects the ancestors of that member.

GetCustomAttributes<T>(MemberInfo)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member.

GetCustomAttributes<T>(MemberInfo, Boolean)

Retrieves a collection of custom attributes of a specified type that are applied to a specified member, and optionally inspects the ancestors of that member.

IsDefined(MemberInfo, Type)

Indicates whether custom attributes of a specified type are applied to a specified member.

IsDefined(MemberInfo, Type, Boolean)

Indicates whether custom attributes of a specified type are applied to a specified member, and, optionally, applied to its ancestors.

GetTypeInfo(Type)

Returns the TypeInfo representation of the specified type.

GetMetadataToken(MemberInfo)
HasMetadataToken(MemberInfo)
GetRuntimeEvent(Type, String)

Retrieves an object that represents the specified event.

GetRuntimeEvents(Type)

Retrieves a collection that represents all the events defined on a specified type.

GetRuntimeField(Type, String)

Retrieves an object that represents a specified field.

GetRuntimeFields(Type)

Retrieves a collection that represents all the fields defined on a specified type.

GetRuntimeMethod(Type, String, Type[])

Retrieves an object that represents a specified method.

GetRuntimeMethods(Type)

Retrieves a collection that represents all methods defined on a specified type.

GetRuntimeProperties(Type)

Retrieves a collection that represents all the properties defined on a specified type.

GetRuntimeProperty(Type, String)

Retrieves an object that represents a specified property.

GetConstructor(Type, Type[])
GetConstructors(Type)
GetConstructors(Type, BindingFlags)
GetDefaultMembers(Type)
GetEvent(Type, String)
GetEvent(Type, String, BindingFlags)
GetEvents(Type)
GetEvents(Type, BindingFlags)
GetField(Type, String)
GetField(Type, String, BindingFlags)
GetFields(Type)
GetFields(Type, BindingFlags)
GetGenericArguments(Type)
GetInterfaces(Type)
GetMember(Type, String)
GetMember(Type, String, BindingFlags)
GetMembers(Type)
GetMembers(Type, BindingFlags)
GetMethod(Type, String)
GetMethod(Type, String, BindingFlags)
GetMethod(Type, String, Type[])
GetMethods(Type)
GetMethods(Type, BindingFlags)
GetNestedType(Type, String, BindingFlags)
GetNestedTypes(Type, BindingFlags)
GetProperties(Type)
GetProperties(Type, BindingFlags)
GetProperty(Type, String)
GetProperty(Type, String, BindingFlags)
GetProperty(Type, String, Type)
GetProperty(Type, String, Type, Type[])
IsAssignableFrom(Type, Type)
IsInstanceOfType(Type, Object)

Applies to