
	
		Skip to main content

		

		
			
				This browser is no longer supported.

				Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

				
					
Download Microsoft Edge					
					
More info about Internet Explorer and Microsoft Edge					
				

			

		

		

		
		
			

			

			

		

			
				
					
						
						
Table of contents						
					
					
						
						Exit focus mode
					
				

			

		
			
		

	

	

		

			
				
			

			
			
				
				

					

						
							
							
								
									
										
											
												
											
										
										

										

									

									

									
											
												
													Language
													
														
													
												
												
														
															
														
	
															
														
	
															
														
	
															
														

												

											

										
											
												
											
											Read in English
										

											
												
													
												
												Save
											
										

											
												
													
												
											
										

										
										
											
												
													
												
											
											
													
														
															
														
															Table of contents
													

												
													
														
													
													Read in English
												

													
														
															
														
														Save
													

			 										
													
														
															
														
														Add to Plan
													

													
														
															
														
														Edit
													

													
														
															
														
														Print
													

													

													
														
															
																
															
															Twitter
														
														
															
																
															
															LinkedIn
														
														
															
																
															
															Facebook
														
														
															
																
															
															Email
														
												
											

										
										
									

								

							

							

							
								
									
										
									
										Table of contents
								
							

							

							

								

								
									
Control.BeginInvoke Method

		Reference

	
		
			
		
		Feedback
	

Definition

			Namespace:
	
				 System.Windows.Forms
			

			Assembly:
	System.Windows.Forms.dll

 Important

 Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.

	
		
			Executes a delegate asynchronously on the thread that the control's underlying handle was created on.

		

	

 Overloads

 	
						BeginInvoke(Delegate, Object[])
						
						Executes the specified delegate asynchronously with the specified arguments, on the thread that the control's underlying handle was created on.

					
	
						BeginInvoke(Action)
						
						Executes the specified delegate asynchronously on the thread that the control's underlying handle was created on.

					
	
						BeginInvoke(Delegate)
						
						Executes the specified delegate asynchronously on the thread that the control's underlying handle was created on.

					

	BeginInvoke(Delegate, Object[])

	
		
			Executes the specified delegate asynchronously with the specified arguments, on the thread that the control's underlying handle was created on.

		

	

	public:
 virtual IAsyncResult ^ BeginInvoke(Delegate ^ method, cli::array <System::Object ^> ^ args);

	public:
 virtual IAsyncResult ^ BeginInvoke(Delegate ^ method, ... cli::array <System::Object ^> ^ args);

	public IAsyncResult BeginInvoke (Delegate method, object[] args);

	public IAsyncResult BeginInvoke (Delegate method, params object[] args);

	public IAsyncResult BeginInvoke (Delegate method, params object?[]? args);

	abstract member BeginInvoke : Delegate * obj[] -> IAsyncResult
override this.BeginInvoke : Delegate * obj[] -> IAsyncResult

	Public Function BeginInvoke (method As Delegate, args As Object()) As IAsyncResult

	Public Function BeginInvoke (method As Delegate, ParamArray args As Object()) As IAsyncResult

	Parameters

	
			
			
			method
			
	
				Delegate
				
			

		A delegate to a method that takes parameters of the same number and type that are contained in the args parameter.

	

	
			
			
			args
			
	
				Object[]
				
			

		An array of objects to pass as arguments to the given method. This can be null if no arguments are needed.

	

	Returns

	
		IAsyncResult
		
	

	An IAsyncResult that represents the result of the BeginInvoke(Delegate) operation.

	Implements

	
		
					
						BeginInvoke(Delegate, Object[])
					
		

	

	Exceptions

		
		
			 InvalidOperationException
		

		 No appropriate window handle can be found.

		

 Examples

 	The following code example demonstrates a use of the BeginInvoke method.

private:
 delegate void MyDelegate(
 Label^ myControl, String^ myArg2);
 void Button_Click(Object^ /*sender*/, EventArgs^ /*e*/)
 {
 array<Object^>^myArray = gcnew array<Object^>(2);
 myArray[0] = gcnew Label;
 myArray[1] = "Enter a Value";
 myTextBox->BeginInvoke(gcnew MyDelegate(this, &MyForm::DelegateMethod), myArray);
 }

 void DelegateMethod(Label^ myControl, String^ myCaption)
 {
 myControl->Location = Point(16,16);
 myControl->Size = System::Drawing::Size(80, 25);
 myControl->Text = myCaption;
 this->Controls->Add(myControl);
 }

 delegate void InvokeDelegate();

public delegate void MyDelegate(Label myControl, string myArg2);

private void Button_Click(object sender, EventArgs e)
{
 object[] myArray = new object[2];

 myArray[0] = new Label();
 myArray[1] = "Enter a Value";
 myTextBox.BeginInvoke(new MyDelegate(DelegateMethod), myArray);
}

public void DelegateMethod(Label myControl, string myCaption)
{
 myControl.Location = new Point(16,16);
 myControl.Size = new Size(80, 25);
 myControl.Text = myCaption;
 this.Controls.Add(myControl);
}

Delegate Sub MyDelegate(myControl As Label, myArg2 As String)

Private Sub Button_Click(sender As Object, e As EventArgs)
 Dim myArray(1) As Object

 myArray(0) = New Label()
 myArray(1) = "Enter a Value"
 myTextBox.BeginInvoke(New MyDelegate(AddressOf DelegateMethod), myArray)
End Sub

Public Sub DelegateMethod(myControl As Label, myCaption As String)
 myControl.Location = New Point(16, 16)
 myControl.Size = New Size(80, 25)
 myControl.Text = myCaption
 Me.Controls.Add(myControl)
End Sub

 	Remarks

 	The delegate is called asynchronously, and this method returns immediately. You can call this method from any thread, even the thread that owns the control's handle. If the control's handle does not exist yet, this method searches up the control's parent chain until it finds a control or form that does have a window handle. If no appropriate handle can be found, BeginInvoke will throw an exception. Exceptions within the delegate method are considered untrapped and will be sent to the application's untrapped exception handler.

You can call EndInvoke to retrieve the return value from the delegate, if neccesary, but this is not required. EndInvoke will block until the return value can be retrieved.

Note

Most methods on a control can only be called from the thread where the control was created. In addition to the InvokeRequired property, there are four methods on a control that are thread safe: Invoke, BeginInvoke, EndInvoke, and CreateGraphics if the handle for the control has already been created. Calling CreateGraphics before the control's handle has been created on a background thread can cause illegal cross thread calls. For all other method calls, you should use one of the invoke methods to marshal the call to the control's thread. The invoke methods always invoke their callbacks on the control's thread.

Note

An exception might be thrown if the thread that should process the message is no longer active.

 	See also

 		IAsyncResult
	EndInvoke(IAsyncResult)
	Invoke(Delegate)
	CreateGraphics()
	InvokeRequired

 Applies to

	BeginInvoke(Action)

	
		
			Executes the specified delegate asynchronously on the thread that the control's underlying handle was created on.

		

	

	public:
 IAsyncResult ^ BeginInvoke(Action ^ method);

	public IAsyncResult BeginInvoke (Action method);

	member this.BeginInvoke : Action -> IAsyncResult

	Public Function BeginInvoke (method As Action) As IAsyncResult

	Parameters

	
			
			
			method
			
	
				Action
				
			

		A delegate to a method that takes no parameters.

	

	Returns

	
		IAsyncResult
		
	

	An IAsyncResult that represents the result of the BeginInvoke(Action) operation.

 Applies to

	BeginInvoke(Delegate)

	
		
			Executes the specified delegate asynchronously on the thread that the control's underlying handle was created on.

		

	

	public:
 IAsyncResult ^ BeginInvoke(Delegate ^ method);

	public IAsyncResult BeginInvoke (Delegate method);

	member this.BeginInvoke : Delegate -> IAsyncResult

	Public Function BeginInvoke (method As Delegate) As IAsyncResult

	Parameters

	
			
			
			method
			
	
				Delegate
				
			

		A delegate to a method that takes no parameters.

	

	Returns

	
		IAsyncResult
		
	

	An IAsyncResult that represents the result of the BeginInvoke(Delegate) operation.

	Exceptions

		
		
			 InvalidOperationException
		

		 No appropriate window handle can be found.

		

 Examples

 	The following code example demonstrates a use of the BeginInvoke method.

private:
 void Invoke_Click(Object^ /*sender*/, EventArgs^ /*e*/)
 {
 myTextBox->BeginInvoke(gcnew InvokeDelegate(this, &MyForm::InvokeMethod));
 }

 void InvokeMethod()
 {
 myTextBox->Text = "Executed the given delegate";
 }

public delegate void InvokeDelegate();

private void Invoke_Click(object sender, EventArgs e)
{
 myTextBox.BeginInvoke(new InvokeDelegate(InvokeMethod));
}
public void InvokeMethod()
{
 myTextBox.Text = "Executed the given delegate";
}

Delegate Sub InvokeDelegate()

Private Sub Invoke_Click(sender As Object, e As EventArgs)
 myTextBox.BeginInvoke(New InvokeDelegate(AddressOf InvokeMethod))
End Sub

Public Sub InvokeMethod()
 myTextBox.Text = "Executed the given delegate"
End Sub

 	Remarks

 	The delegate is called asynchronously, and this method returns immediately. You can call this method from any thread, even the thread that owns the control's handle. If the control's handle does not exist yet, this method searches up the control's parent chain until it finds a control or form that does have a window handle. If no appropriate handle can be found, BeginInvoke will throw an exception. Exceptions within the delegate method are considered untrapped and will be sent to the application's untrapped exception handler.

You can call EndInvoke to retrieve the return value from the delegate, if neccesary, but this is not required. EndInvoke will block until the return value can be retrieved.

Note

Most methods on a control can only be called from the thread where the control was created. In addition to the InvokeRequired property, there are four methods on a control that are thread safe: Invoke, BeginInvoke, EndInvoke, and CreateGraphics if the handle for the control has already been created. Calling CreateGraphics before the control's handle has been created on a background thread can cause illegal cross thread calls. For all other method calls, you should use one of the invoke methods to marshal the call to the control's thread. The invoke methods always invoke their callbacks on the control's thread.

Note

An exception might be thrown if the thread that should process the message is no longer active.

 	See also

 		IAsyncResult
	EndInvoke(IAsyncResult)
	Invoke(Delegate)
	CreateGraphics()
	InvokeRequired

 Applies to

							

							

							

							

						

						
						

						

	
		
			
				
					
						
					
					Collaborate with us on GitHub					
				

				
					The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.
				
			

		

		
			
				
					
						[image:]
						[image:]
					

					

				
				
					.NET

					
						

						
							
								
									
								
								Open a documentation issue
							
							
								
									
								
								Provide product feedback
							
						

					

				

			

		

	

 Feedback

		
			
				
			
			Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback.		

 Submit and view feedback for

 This product

			
				
					
				
				This page
			

 View all page feedback

						

						
						

						

	
	
			
					
						
					
					
		

	
		

Your Privacy Choices

		
		

	
		
			
		
		Theme
		
			
		
	
	
			
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Light					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Dark					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
High contrast					
				
			

	

		

	
		
	Previous Versions
	Blog
	Contribute
	Privacy
	Terms of Use
	Trademarks
	© Microsoft 2024

						

					

						
							
								Additional resources

								
								
								
								
									In this article

								
								
							

						

				
				

			
			

			
			
			
			
		

	
	

	

	
	
			
					
						
					
					
		

	
		

Your Privacy Choices

		
		

	
		
			
		
		Theme
		
			
		
	
	
			
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Light					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Dark					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
High contrast					
				
			

	

		

	
		
	Previous Versions
	Blog
	Contribute
	Privacy
	Terms of Use
	Trademarks
	© Microsoft 2024

	

	

