Common Attributes (C#)

This topic describes the attributes that are most commonly used in C# programs.

Global Attributes

Most attributes are applied to specific language elements such as classes or methods; however, some attributes are global—they apply to an entire assembly or module. For example, the AssemblyVersionAttribute attribute can be used to embed version information into an assembly, like this:

[assembly: AssemblyVersion("")]  

Global attributes appear in the source code after any top-level using directives and before any type, module, or namespace declarations. Global attributes can appear in multiple source files, but the files must be compiled in a single compilation pass. In C# projects, global attributes are put in the AssemblyInfo.cs file.

Assembly attributes are values that provide information about an assembly. They fall into the following categories:

  • Assembly identity attributes

  • Informational attributes

  • Assembly manifest attributes

Assembly Identity Attributes

Three attributes (with a strong name, if applicable) determine the identity of an assembly: name, version, and culture. These attributes form the full name of the assembly and are required when you reference it in code. You can set an assembly's version and culture using attributes. However, the name value is set by the compiler, the Visual Studio IDE in the Assembly Information Dialog Box, or the Assembly Linker (Al.exe) when the assembly is created, based on the file that contains the assembly manifest. The AssemblyFlagsAttribute attribute specifies whether multiple copies of the assembly can coexist.

The following table shows the identity attributes.

Attribute Purpose
AssemblyName Fully describes the identity of an assembly.
AssemblyVersionAttribute Specifies the version of an assembly.
AssemblyCultureAttribute Specifies which culture the assembly supports.
AssemblyFlagsAttribute Specifies whether an assembly supports side-by-side execution on the same computer, in the same process, or in the same application domain.

Informational Attributes

You can use informational attributes to provide additional company or product information for an assembly. The following table shows the informational attributes defined in the System.Reflection namespace.

Attribute Purpose
AssemblyProductAttribute Defines a custom attribute that specifies a product name for an assembly manifest.
AssemblyTrademarkAttribute Defines a custom attribute that specifies a trademark for an assembly manifest.
AssemblyInformationalVersionAttribute Defines a custom attribute that specifies an informational version for an assembly manifest.
AssemblyCompanyAttribute Defines a custom attribute that specifies a company name for an assembly manifest.
AssemblyCopyrightAttribute Defines a custom attribute that specifies a copyright for an assembly manifest.
AssemblyFileVersionAttribute Instructs the compiler to use a specific version number for the Win32 file version resource.
CLSCompliantAttribute Indicates whether the assembly is compliant with the Common Language Specification (CLS).

Assembly Manifest Attributes

You can use assembly manifest attributes to provide information in the assembly manifest. This includes title, description, default alias, and configuration. The following table shows the assembly manifest attributes defined in the System.Reflection namespace.

Attribute Purpose
AssemblyTitleAttribute Defines a custom attribute that specifies an assembly title for an assembly manifest.
AssemblyDescriptionAttribute Defines a custom attribute that specifies an assembly description for an assembly manifest.
AssemblyConfigurationAttribute Defines a custom attribute that specifies an assembly configuration (such as retail or debug) for an assembly manifest.
AssemblyDefaultAliasAttribute Defines a friendly default alias for an assembly manifest

Obsolete Attribute

The Obsolete attribute marks a program entity as one that is no longer recommended for use. Each use of an entity marked obsolete will subsequently generate a warning or an error, depending on how the attribute is configured. For example:

[System.Obsolete("use class B")]  
class A  
    public void Method() { }  
class B  
    [System.Obsolete("use NewMethod", true)]  
    public void OldMethod() { }  
    public void NewMethod() { }  

In this example the Obsolete attribute is applied to class A and to method B.OldMethod. Because the second argument of the attribute constructor applied to B.OldMethod is set to true, this method will cause a compiler error, whereas using class A will just produce a warning. Calling B.NewMethod, however, produces no warning or error.

The string provided as the first argument to attribute constructor will be displayed as part of the warning or error. For example, when you use it with the previous definitions, the following code generates two warnings and one error:

// Generates 2 warnings:  
// A a = new A();  

// Generate no errors or warnings:  
B b = new B();  

// Generates an error, terminating compilation:  
// b.OldMethod();  

Two warnings for class A are generated: one for the declaration of the class reference, and one for the class constructor.

The Obsolete attribute can be used without arguments, but including an explanation of why the item is obsolete and what to use instead is recommended.

The Obsolete attribute is a single-use attribute and can be applied to any entity that allows attributes. Obsolete is an alias for ObsoleteAttribute.

Conditional Attribute

The Conditional attribute makes the execution of a method dependent on a preprocessing identifier. The Conditional attribute is an alias for ConditionalAttribute, and can be applied to a method or an attribute class.

In this example, Conditional is applied to a method to enable or disable the display of program-specific diagnostic information:

#define TRACE_ON  
using System;  
using System.Diagnostics;  

public class Trace  
    public static void Msg(string msg)  

public class ProgramClass  
    static void Main()  
        Trace.Msg("Now in Main...");  

If the TRACE_ON identifier is not defined, no trace output will be displayed.

The Conditional attribute is often used with the DEBUG identifier to enable trace and logging features for debug builds but not in release builds, like this:

static void DebugMethod()  

When a method marked as conditional is called, the presence or absence of the specified preprocessing symbol determines whether the call is included or omitted. If the symbol is defined, the call is included; otherwise, the call is omitted. Using Conditional is a cleaner, more elegant, and less error-prone alternative to enclosing methods inside #if…#endif blocks, like this:

#if DEBUG  
    void ConditionalMethod()  

A conditional method must be a method in a class or struct declaration and must not have a return value.

Using Multiple Identifiers

If a method has multiple Conditional attributes, a call to the method is included if at least one of the conditional symbols is defined (in other words, the symbols are logically linked together by using the OR operator). In this example, the presence of either A or B will result in a method call:

[Conditional("A"), Conditional("B")]  
static void DoIfAorB()  
    // ...  

To achieve the effect of logically linking symbols by using the AND operator, you can define serial conditional methods. For example, the second method below will execute only if both A and B are defined:

static void DoIfA()  

static void DoIfAandB()  
    // Code to execute when both A and B are defined...  

Using Conditional with Attribute Classes

The Conditional attribute can also be applied to an attribute class definition. In this example, the custom attribute Documentation will only add information to the metadata if DEBUG is defined.

public class Documentation : System.Attribute  
    string text;  

    public Documentation(string text)  
        this.text = text;  

class SampleClass  
    // This attribute will only be included if DEBUG is defined.  
    [Documentation("This method displays an integer.")]  
    static void DoWork(int i)  

Caller Info Attributes

By using Caller Info attributes, you can obtain information about the caller to a method. You can obtain the file path of the source code, the line number in the source code, and the member name of the caller.

To obtain member caller information, you use attributes that are applied to optional parameters. Each optional parameter specifies a default value. The following table lists the Caller Info attributes that are defined in the System.Runtime.CompilerServices namespace:

Attribute Description Type
CallerFilePathAttribute Full path of the source file that contains the caller. This is the path at compile time. String
CallerLineNumberAttribute Line number in the source file from which the method is called. Integer
CallerMemberNameAttribute Method name or property name of the caller. For more information, see Caller Information (C#). String

For more information about the Caller Info attributes, see Caller Information (C#).

See Also

C# Programming Guide
Reflection (C#)
Accessing Attributes by Using Reflection (C#)