
Deploying WordPress via Packages in a Hosting
Environment

Introduction

WordPress is a personal publishing platform that focuses on aesthetics, web standards, and usability. This
document provides step-by-step instructions on how to easily create a package containing the WordPress
application for one-click deployment in a hosting environment. For more information about the WordPress
application, visit the link: Windows Web App page for WordPress.

Requirements

Environment Requirements:

• Windows Server 2008 R2 or greater
• IIS 7.0 or greater
• Web Deploy 2.0

Application Requirements:

• PHP 5.2
• MySQL 5.1
• Windows Cache 1.1 for PHP

For information about how to install the necessary components, see Step 1. Set Up Your Servers for Hosting.

Procedure

This procedure describes how to install WordPress using IIS 7 (or greater) with Web Deploy. IIS 7 (or greater)
with Web Deploy makes installing sites simple and extremely flexible for Hosting Service Provider by allowing
them to create deployment packages that include the site, its content, and its database. The package can then
be deployed by importing it into IIS via the console or a script. For more information about Web Deploy, refer
to the link: Web Deploy 2.0: The Official Microsoft IIS Site.

This procedure requires 3 basic steps:

Step 1. Set Up Your Servers for Hosting
Step 2. Create an Application Package for Deployment

Step 3. Deploy a Customer Site using IIS 7 with Web Deploy

Step 1. Set Up Your Servers for Hosting

Overview

This step describes the server components that are required to support deployment of install packages via Web
Deploy.

Prerequisites

While it is possible to run a web server and database server on the same machine, it is not recommended due
to performance and security reasons. We recommend that you use two separate machines running Windows
Server 2008 R2: one acting as the Web server and one acting as the database server.

Note: Both machines must be connected to the Internet to download the required server components.

To simplify installation of the Web server components, installing Web Platform Installer (Web PI) on both
machines is highly recommended. Web PI is a tool that automates the installation of a vast majority of server
components and other products for Microsoft’s Web Platform.

Install Web Server Components on Your Web Server and Database Server

To install the required components on your Web server and database server using Web PI 3.0, visit the link:
Install Spotlight Components plus PHP/MySQL related components using Web PI and click Install, following
the onscreen instructions.

Note: A complete list of components that are installed by default with Web PI 3.0 is included in the

Install MySQL on your Database Server

1. Download the latest stable version of MySQL from the official website and run the installer on a
dedicated database server.

The MySQL Server Instance Configuration Wizard appears.

2. Click the Dedicated MySQL Server Machine option button, and click Next.

3. Click Next.

4. For concurrent connections, click the Online Transaction Processing (OLTP) option button (since

this option reflects the workload of a typical shared hosting database server), and then click Next.

5. Click the Enable TCP/IP Networking check box, and then click the Add firewall exception for

this post check box.

6. Clear the Enable Strict Mode check box if it is checked.

7. Click the Best Support For Multilingualism option button to enable support for the UTF-8 character set.

IMPORTANT! You must choose the Best Support for Multilingualism option button since several
applications in the Web Application Gallery require UTF-8 support in the database.

8. Click Next.

9. Click the Include Bin Directory in Windows PATH check box, and click Next.

10. Since MySQL is installed on the database server (which is different than the Web server that runs the

Web Deploy web server component), you must complete these steps to ensure Web Deploy can
access the database server:

a. Copy mysqldump.exe (typically located in C:\Program Files\MySQL\MySQL Server 5.1\bin) to
your Web server in C:\mysqldump\mysqldump.exe.

b. On the Web server, set a registry key (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\IIS
Extensions\MSDeploy\1\mysqldumppath) to string value == “c:\mysqldump\mysqldump.exe”

Note: If you lose the credentials to your MySQL database, refer to the link: Resetting the Root Password:
Windows Systems to reset your password.

Products Installed by Default using Web PI section of this document. You can also review the list of products
before installation begins.

Install MySQL on your Database Server

To install MySQL, click here on this link and complete these steps on your database server:

Next Steps

• If the Web Deploy 2.0 component is newly installed, you must configure it to allow delegated
deployments. Refer to the link: Configure the Web Deploy Component on the Web Server for more
information.

• After you install and configure the server components, validate your server configuration by following
the procedures described at the link: Validate Your Server Configuration.

Step 2. Create an Application Package for Deployment

This step describes how to export an application package that can be used to quickly provision IIS 7 sites and
includes these substeps:

A. Create an IIS Web Site for this Application
B. Install the Application to the IIS Application Web Site
C. Enable Permalinks (Optional)
D. Export the Package from the IIS Application Web Site

A. Create an IIS Web Site for this Application

1. Open Internet Information Services (IIS) Manager.
The Internet Information Services (IIS) Manager application opens.

2. Expand your server connection, and click Sites.
3. In the Actions area, click the Add Web Site link.

The Add Web Site dialog box appears.

4. Enter a site name for your Web site.
5. In the Physical path field, type the physical path to the folder in which the application is installed, or

click the browse button (...) to navigate to the folder.
6. In the Binding area, select the protocol for your Web site from the Type drop-down list.
7. Type the IP address to your Web site in the IP address drop-down list. The default value is All

Unassigned.
8. Type a port number in the Port field.
9. Type a host name for the Web site in the Host name field.

10. If you want the Web site to be immediately available and do not need to make further changes,
select the Start Web site immediately check box.

11. Click OK.

B. Install the Application to the IIS Application Web Site

1. Open Web Platform Installer (Web PI) locally from the web server.
The Web Platform Installer application opens.

2. Select WordPress, and click Install.

The Web Platform Installation window appears.

3. Click I Accept to accept the end-user license agreement.

4. From the Web Site drop-down list, select the Web site you created earlier in this procedure.
5. In the application name field, enter an application name if it is different from the default value.

The remaining fields are populated automatically based on your Web site information.

6. Click Continue.

7. From the Create a new or use an existing database drop-down list, select Create new database.
8. Enter the following information in the appropriate fields to create a new database:

• Database administrator user name and password—User name and password to allow
administrative access to this database.

• Database user name and password—User name and password to allow general access to this
database.

• Database server—Name of the server on which this database resides.
• Database name—Name of this database.
• Database prefix—Prefix added to database table names used to identify this database.
• Load sample data—Indicate whether you want to load sample data into this database.
• Web site name—Name of your Web site.
• Site administrator—User name for the Web site specified in the Website Name field.
• Site administrator password—Password for the Web site administrator.
• Site administrator email address—Email address for the Web site administrator.

Note: You must scroll down to view all required fields.

9. Click Continue.

10. Once the Web PI process is complete, you can do one of the following:
• Click Finish to complete the installation process.

If you click Finish to complete the installation process, proceed to step C. Enable Permalinks
(Optional) to continue creating an application package for deployment.

• Click Launch WordPress to launch your WordPress application.

If you click Launch WordPress, the WordPress application page appears:

For information about setting up your WordPress site, refer to the link: WordPress
documentation Web page.

C. Enable Permalinks (Optional)

To enable permalinks (search engine friendly URLs) in WordPress, complete these steps:

1. Log in to WordPress with Administrator user rights.
2. In WordPress, click the Options tab.
3. On the Options page, click the Permalinks tab.

This step takes you to the page from which you can customize how WordPress generates permalinks
for blog posts.

4. On the Permalinks page, select Custom, specify below, and enter the following string in the
Custom structure text box:
“/%year%/%monthnum%/%day%/%postname%/”

5. Click Update Permalink Structure.

All the blog post links have URLs that follow the format that you have specified; however, if you click
any one of those links, the Web server returns a 404 - File Not Found error. This error occurs because
WordPress relies on a URL rewriting capability within the server to rewrite requests that include
“pretty permalinks” to an Index.php file. In the next step, you create a rule that provides this
capability.

6. Create a rewrite rule:

Open the Web.config file that is located in the WordPress install directory, and paste the following XML
section into the system.webServer element:

<rewrite>
 <rules>
 <rule name="Main Rule" stopProcessing="true">
 <match url=".*" />
 <conditions logicalGrouping="MatchAll">
 <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />
 </conditions>
 <action type="Rewrite" url="index.php" />
 </rule>
 </rules>
</rewrite>

This rule attempts to match any requested URL. If the URL does not correspond to a file or a folder
on the file system, it rewrites the URL to the Index.php file. At that point, WordPress determines
which content to serve based on the REQUEST_URI server variable that contains the original URL
before it was modified by this rule.

D. Export the Package from the IIS Application Web Site

1. Open IIS Manager.

The Internet Information Services (IIS) Manager application opens.

2. In the Connections navigation pane, expand Sites, and select the Web site you just created.

3. Click the Export Application link located in the Deploy section of the Actions pane.
The Export Application Package (Select the Contents of the Package) dialog box appears.

4. Click Manage Components.

The Manage Components dialog box appears.

5. Double-click the second row of the Provider Name column.

6. Select dbMySql from the drop-down list.

7. Double-click the second row of the Path column, and enter the connection string for your package
export.

8. Click outside of the box in which you entered the connection string, and click OK.

The newly created parameter now appears in the Export Application Package (Select Parameters)
dialog box.

9. Rename the parameters:
a. Select Parameter 1, and click Edit.

The Edit Parameter dialog box appears.

b. Enter SiteName in the Name field, and click OK.
c. Repeat these steps to rename Parameter 2 to “ConnectionString.”

The parameters appear renamed in the Export Application Package (Select Parameters) dialog box.

10. Click Next.
The Export Application Package (Save Package) dialog box appears.

11. Enter the path to the application package, or click Browse to locate the application file.
12. Click Next.

The Export Application Package (Export Progress and Summary) dialog box displays the progress of
the export process. Once the process is complete, a summary report appears.

13. Click Finish.

Use this application package to deploy to customer Web sites as described in

Step 3. Deploy a Customer Site using IIS 7 with Web Deploy.

Step 3. Deploy a Customer Site using IIS 7 with Web Deploy

Overview

When deploying a customer site, most Hosting Service Providers use a control panel that allows them to
capture the information required for deployment. This information can then be passed to scripts that create the
user, configure the site for hosting, create a database, and import the application package. Here are the basic
steps required to deploy a customer site:

A. Create a Customer Application Web Site
Tips:

When you create the Web site in IIS, give your application a user-friendly name by creating a fully

qualified domain name (FQDN) for the host header and adding that FQDN to your Domain Name Service.

• You can automate this process using a script similar to the one described at the link: Automated
Deployment Script.

B. Create a Customer Application Database
C. Import the Application Package using a CLI Command or PowerShell Script

A. Create a Customer Application Web Site

To create a customer application Web site, complete the steps described in A. Create an IIS Web Site for this
Application.

Tips:

• When you create the Web site in IIS, give your application a user-friendly name by creating a fully
qualified domain name (FQDN) for the host header and adding that FQDN to your Domain Name
Service.

• You can automate this process using a script similar to the one described at the link: Automated
Deployment Script.

B. Create a Customer Application Database

To create a customer application database, complete these steps:

1. Open a command-line prompt (or MySQL Manager) at the MySQL bin directory. If you used the default
installation path, the bin directory path will be similar to the following: C:\Program Files\MySQL\MySQL
Server 5.1\bin

2. Enter the administrator password, and press Enter.
3. Type the following command to create the database, and press Enter.

mysql> create database wordpress01;

4. Type this command to create a user, and press Enter.
mysql> create user ‘wordpressuser’@’localhost’ identified by ‘pass@word1’;

5. Type this command to grant permissions, and press Enter.
mysql> grant all on wordpress01. * to ‘wordpress01’@’localhost’;

 Your command window should appear similar to the following:

Tip: You can automate this process using a script similar to the one described at the link: MySQL Database
Creation Script.

C. Import the Application Package using a CLI Command or PowerShell Script

Once you export the application package (as described in Step 2. Create an Application Package for
Deployment), you can easily import the package into the customer site using the CLI command or PowerShell
script listed below. These methods allow you to add the parameters that are required to configure an
application for use.

The examples in this topic show how to import WordPress into an IIS Web site and install the application
database. This package is configured to allow two parameters: one for the IIS site name and one for the
database connection string.

CLI Command

msdeploy.exe -verb:sync -source:package=C:\Websites\Packages\Temp\WordPressMSDeployPackage.zip
 -dest:auto -setParam:name="SiteName",kind=ProviderPath,scope=iisApp,Value=WordPress/;
 -setParam:name="ConnectionString",kind=ProviderPath,scope=dbMySql,Value=server=localhost;
 database= WordPress;Uid= WordPress;Pwd=password; > DWSpackage7.log

PowerShell Script

[Array]$arguments = "-verb:sync", "-source:contentPath=`"$web_staging_directory`"",
 "-dest:contentPath=`"\\$Server\$share\$appname\$web_project_name`""
 $proc = Start-Process $msdeploy -ArgumentList $arguments -NoNewWindow -Wait -PassThru

if($proc.ExitCode -ne 0) {
throw "Failed to deploy"
}

Sample Powershell Scripts

Automated Deployment Script

Web Deploy: Powershell script to setup IIS sites for Hosting.
Copyright (C) Microsoft Corp. 2010

Requirements: IIS 7, Windows Server 2008 (or higher)

You should use this script if you want to set up a Windows 2008 (or higher)
server for delegated Web Deploy deployments.
1. Create an IIS Site
2. Creates an IIS Manager user and assigns it
permissions to the IIS Site Created

================= PARAMS =======================

All of these parameters are required.

$website IIS Web site.
$iisManagerUsername User name of IIS Manager user
$iisManagerPassword Password of above user.
$hostheaderName Web site Host Header/FQDN

All of these parameters are optional.

$wmsvcUsername,
$directory App physical directory c:\websites by default.
$serverPort Web site Port 80 by default.

sample usage AddHostingSite.ps1
-website MyWebSite01
-iisManagerUsername TestUser01
-iisManagerPassword TestPass01
-hostheaderName www.mysite.com
-directory c:\Websites -serverPort 80

param($website, $iisManagerUsername, $iisManagerPassword, $hostheaderName, $wmsvcUsername,
$directory, $serverPort)

clear-host

sv APPCMD -value $env:systemroot\system32\inetsrv\AppCmd.exe

Check if params are missing
if($website -eq $null){
 write-host 'Please specify a website. Script aborting.'
 break
}
if($iisManagerUsername -eq $null){
 write-host 'Please supply an IIS Manager username to create account. Script aborting.'
 break
}
if($iisManagerPassword -eq $null){

 write-host 'Please supply an IIS Manager password to create account. Script aborting.'
 break
}
if($wmsvcUsername -eq $null){
 $wmsvcUsername = "LOCAL SERVICE"
}
if($directory -eq $null){
 $directory = "c:\Websites"
}
if($hostheaderName -eq $null){
 write-host 'Please specify a domain name for the websites host header. Script aborting.'
 break
}
if($serverPort -eq $null){
 $serverPort = '80'
}

================= GLOBAL VARIABLES ====================

IIS management assemblies
$ENV_APPPOOL_NAME = $website + "_AP"

$global:mwaAssembly = $null
$global:mwmAssembly = $null

the instance Microsoft.Web.Administration.ServerManager we use to interact
with IIS's administration.config
$global:serverManager = $null

collection of Web Deploy delegation rules
$global:delegationRulesCollection = $null

================ METHODS =======================

function LoadAssemblies{
 trap [Exception]{
 write-host 'Failed to load Microsoft.Web.*.dll. Are you sure IIS 7 is installed?'
 break
 }
 $global:mwaAssembly = [System.Reflection.Assembly]::LoadFrom(
[System.Environment]::ExpandEnvironmentVariables("%WINDIR%") +

"\system32\inetsrv\Microsoft.Web.Administration.dll")
 $global:serverManager = (New-Object Microsoft.Web.Administration.ServerManager)
 $global:mwmAssembly = [System.Reflection.Assembly]::LoadFrom(
[System.Environment]::ExpandEnvironmentVariables("%WINDIR%") +

"\system32\inetsrv\Microsoft.Web.Management.dll")
}

 function NotServerOS{
 $sku = $((gwmi win32_operatingsystem).OperatingSystemSKU)
 $server_skus = @(7,8,9,10,12,13,14,15,17,18,19,20,21,22,23,24,25)

 return ($server_skus -notcontains $sku)
}

 function CheckDelegationRulesExist{
 trap [Exception]{
 write-host 'Did not find delegation rules in administration.config'
 return $false
 }

 $global:delegationRulesCollection =
$serverManager.GetAdministrationConfiguration().GetSection("system.webServer/management/delegatio
n").GetCollection()

 if($global:delegationRulesCollection.Count -eq 0){
 return $false
 }
 else{
 return $true
 }
}

function CreateAndAuthorizeIISManagerUser {
 param ($username, $pwd)
 trap [Exception]{
 write-host "Could not create and / or authorize IIS Manager user on Default Web Site:
$username"
 }
 [Microsoft.Web.Management.Server.ManagementAuthentication]::CreateUser($username, $pwd)
 [Microsoft.Web.Management.Server.ManagementAuthorization]::Grant($username, $website, $FALSE)
 write-host "Created IIS Manager user: $username and granted it permissions on website:
$website"
}

 function GetPhysicalPathOfWebsite{
 $path = ""
 if($website -eq $null){
 $path = $serverManager.Sites[0].Applications[0].virtualDirectories[0].physicalPath
 }
 else{
 $i = 0
 $found = $false
 for ($i=0; $i -lt $serverManager.Sites.Count; $i++){
 if($serverManager.Sites[$i].Name -eq $website){
 $found = $true
 break;
 }
 }
 if($found){
 $path = $serverManager.Sites[$i].Applications[0].virtualDirectories[0].physicalPath
 }
 }
 # if website doesn't exist, create it
 if($path -eq ""){
 $fp = $directory+ "\" +$website
 $global:serverManager = (New-Object Microsoft.Web.Administration.ServerManager)
 $global:serverManager.Sites.Add($website, $fp, 8080)
 $global:serverManager.CommitChanges()
 new-item $fp -type directory
 $path = $fp
 # Create the AppPool for this site
 Invoke-Expression "$APPCMD add apppool /name:$ENV_APPPOOL_NAME"
 Invoke-Expression "$APPCMD set apppool /apppool.name:$ENV_APPPOOL_NAME
/processModel.identityType:NetworkService"
 Invoke-Expression "$APPCMD add app /site.name:$WebSite /path:/ /physicalPath:`"$path`"
/applicationPool:$ENV_APPPOOL_NAME"

 #appcmd add site /name: $website /physicalPath: $path /bindings:http/*:$serverPort:
$hostheaderName

 echo $error

 write-host "Created new website name: $website, directory: $path , port:$serverport"
 }

 return $path
}

#================= Main Script =================

if(NotServerOS){
 write-host 'Please run this script on a server OS only. Script aborting.'
 break
}

LoadAssemblies

$physicalPathOfWebSite = GetPhysicalPathOfWebsite
$physicalPathOfApplicationHost = [System.Environment]::ExpandEnvironmentVariables("%WINDIR%") +
"\system32\inetsrv\config\applicationHost.config"

CreateAndAuthorizeIISManagerUser $iisManagerUsername $iisManagerPassword

MySQL Database Creation Script

Powershell Args
$dbusername = $args[0] # Administrative Username
$dbpassword = $args[1] # Administrative Password
$dbname = $args[2] # Database Name to Create
$appUsername = $args[3] # Application Username
$appPassword = $args[4] # Application Users Username

Add MySQL Data Connector
[void][system.reflection.Assembly]::LoadWithPartialName("MySql.Data")

Open Connection to SQL Server
$connStr = "server=127.0.0.1;port=3306;uid=root;pwd=SQLPassword"
$conn = New-Object MySql.Data.MySqlClient.MySqlConnection($connStr)
$conn.Open()

Create MySQL Database
$createmysqldatabase = 'CREATE DATABASE `' + $dbname + '`'
$cmd = New-Object MySql.Data.MySqlClient.MySqlCommand($createmysqldatabase, $conn)
$da = New-Object MySql.Data.MySqlClient.MySqlDataAdapter($cmd)
$ds = New-Object System.Data.DataSet
$da.Fill($ds)

Create MySQL User
$createmysqluser = 'CREATE USER `' + $appUsername + '`@`localhost` ' + ' identified by `' +
$appPassword + '`'
$cmd = New-Object MySql.Data.MySqlClient.MySqlCommand($createmysqluser, $conn)
$da = New-Object MySql.Data.MySqlClient.MySqlDataAdapter($cmd)
$ds = New-Object System.Data.DataSet
$da.Fill($ds)

Grant permissions to Database
$grantmysqldatabaseperms = 'Grant ALL on ' + $dbname + '.* to `' + $appUsername + '`@`localhost`
'
$cmd = New-Object MySql.Data.MySqlClient.MySqlCommand($grantmysqldatabaseperms, $conn)
$da = New-Object MySql.Data.MySqlClient.MySqlDataAdapter($cmd)
$ds = New-Object System.Data.DataSet
$da.Fill($ds)

Install MySQL on your Database Server

11. Download the latest stable version of MySQL from the official website and run the installer on a
dedicated database server.

The MySQL Server Instance Configuration Wizard appears.

12. Click the Dedicated MySQL Server Machine option button, and click Next.

13. Click Next.

14. For concurrent connections, click the Online Transaction Processing (OLTP) option button (since
this option reflects the workload of a typical shared hosting database server), and then click Next.

15. Click the Enable TCP/IP Networking check box, and then click the Add firewall exception for

this post check box.
16. Clear the Enable Strict Mode check box if it is checked.

17. Click the Best Support For Multilingualism option button to enable support for the UTF-8 character set.

IMPORTANT! You must choose the Best Support for Multilingualism option button since several
applications in the Web Application Gallery require UTF-8 support in the database.

18. Click Next.

19. Click the Include Bin Directory in Windows PATH check box, and click Next.

20. Since MySQL is installed on the database server (which is different than the Web server that runs the

Web Deploy web server component), you must complete these steps to ensure Web Deploy can
access the database server:

a. Copy mysqldump.exe (typically located in C:\Program Files\MySQL\MySQL Server 5.1\bin) to
your Web server in C:\mysqldump\mysqldump.exe.

b. On the Web server, set a registry key (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\IIS
Extensions\MSDeploy\1\mysqldumppath) to string value == “c:\mysqldump\mysqldump.exe”

Note: If you lose the credentials to your MySQL database, refer to the link: Resetting the Root Password:
Windows Systems to reset your password.

Products Installed by Default using Web PI

This table provides additional information about the products that are installed by default using Web PI:

Product Description

.NET Framework 3.5 .NET Framework 3.5 SP1 is a full cumulative update that contains many new

SP1 features building incrementally upon .NET Framework 2.0, 3.0, 3.5, and includes
cumulative servicing updates to the .NET Framework 2.0 and .NET Framework 3.0
subcomponents. For more information, refer to the link: Microsoft Download
Center.

.NET Framework 4.0 The .NET Framework is Microsoft's comprehensive and consistent programming
model for building applications that have visually stunning user experiences,
seamless and secure communication, and the ability to model a range of business
processes. For more information, refer to the link: .NET Framework Developer
Center.

ASP.NET ASP.NET is a free web framework that enables great Web applications. Used by
millions of developers, it runs some of the biggest sites in the world. For more
information, refer to the link: Microsoft ASP.net .

ASP.NET MVC ASP.NET MVC is part of the ASP.NET Web application framework and is one of the
two different programming models you can use to create ASP.NET Web
applications. For more information, refer to the link: Microsoft ASP.net.

ASP.NET MVC3 ASP.NET MVC 3 builds on top of the features in ASP.NET MVC 1 and 2, adding on
great features that both simplify your code and allow for deeper extensibility. For
more information, refer to the link: Microsoft ASP.net.

ASP.NET Web Pages The ASP.NET Web Forms page framework is a scalable common language runtime
programming model that can be used on the server to dynamically generate Web
pages. For more information, refer to the Microsoft .net Framework SDK link:
Introduction to ASP.NET Pages.

Common Gateway
Interface (CGI)

 CGI is a standard for interfacing external programs with information servers on
the Internet. For more information, refer to the link: CGI: Common Gateway
Interface.

FTP Publishing
Service

 The FTP Publishing Service for IIS 7.0 allows Web content creators to publish
content more easily and securely to IIS 7.0 Web servers using modern Internet
publishing standards. For more information, refer to the link: FTP Publishing
Service.

IIS 7 Web Server Internet Information Services (IIS) for Windows Server is a flexible, secure and
easy-to-manage Web server for hosting anything on the Web. For more
information, refer to the link: IIS.

IIS Remote
Management Service

Internet Information Services (IIS) 7 Manager for Remote Administration provides
end users and administrators with the ability to securely manage remote IIS 7
servers from Windows 7, Windows Vista, Windows XP, and Windows Server 2003.
For more information, refer to the link: IIS Manager for Remote Administration.

Media Services 3.0 IIS Media Services, an integrated HTTP-based media delivery platform, delivers
true HD (720p+) live and on-demand streaming, DVR functionality, and real-time
analytics support to computers, TVs, and mobile devices. For more information,

refer to the link: IIS Media Services.

Microsoft Driver for
PHP for SQL Server
2.0 in IIS

The Microsoft Drivers for PHP for SQL Server provide connectivity to Microsoft SQL
Server from PHP applications. For more information, refer to the link: Microsoft
Drivers for PHP for SQL Server.

Microsoft SQL Server
2008

SQL Server delivers on Microsoft’s Data Platform vision by helping your
organization manage your data by enabling you to store data from structured,
semi-structured, and unstructured documents within the database. For more
information, refer to the link: Microsoft SQL Server 2008.

Microsoft Web
Deploy 2.0

Web Deploy (Web Deployment Tool) simplifies the migration, management and
deployment of IIS Web servers, Web applications and Web sites. For more
information, refer to the link: Web Deploy.

MySQL
Connector/Net 6.2.3

Connector/Net is a fully-managed ADO.NET driver for MySQL. For more
information, refer to the link: MySQL Download Connector/Net.

PHP Driver for SQL
Server

The SQL Server Driver for PHP v1.1 is designed to enable reliable, scalable
integration with SQL Server for PHP applications deployed on the Windows
platform. For more information, refer to the link: SQL Server Driver for PHP.

PHP PHP is a general-purpose scripting language that can be embedded into HTML and
is especially suited for Web development. For more information, refer to the link:
PHP.

SQL Server 2008
Management Objects

The SQL Server Management Objects (SMO) is a .NET Framework object model
that enables software developers to create client-side applications to manage and
administer SQL Server objects and services. For more information, refer to the link:
Microsoft TechNet SQL Server Management Objects (SMO).

URL Rewrite 2.0 IIS URL Rewrite 2.0 enables Web administrators to create powerful rules to
implement URLs that are easier for users to remember and easier for search
engines to find. For more information, refer to the link: URL Rewrite.

Windows Cache 1.1
for PHP

Windows Cache Extension for PHP is a PHP accelerator that is used to increase the
speed of PHP applications running on Windows and Windows Server. For more
information, refer to the link: Windows Cache Extension for PHP.

Related Information

• Web Deployment Tool (MS Deploy) Forum
• PHP Manager for IIS 7 Community
• Configure and Optimize the Microsoft Web Platform for PHP Applications

