microsoftml.extract_pixels: Extracts pixels form an image

Usage

microsoftml.extract_pixels(cols: [str, dict, list],
    use_alpha: bool = False, use_red: bool = True,
    use_green: bool = True, use_blue: bool = True,
    interleave_argb: bool = False, convert: bool = True,
    offset: float = None, scale: float = None, **kargs)

Description

Extracts the pixel values from an image.

Details

extract_pixels extracts the pixel values from an image. The input variables are images of the same size, typically the output of a resizeImage transform. The output are pixel data in vector form that are typically used as features for a learner.

Arguments

cols

A character string or list of variable names to transform. If dict, the keys represent the names of new variables to be created.

use_alpha

Specifies whether to use alpha channel. The default value is False.

use_red

Specifies whether to use red channel. The default value is True.

use_green

Specifies whether to use green channel. The default value is True.

use_blue

Specifies whether to use blue channel. The default value is True.

interleave_argb

Whether to separate each channel or interleave in ARGB order. This might be important, for example, if you are training a convolutional neural network, since this would affect the shape of the kernel, stride etc.

convert

Whether to convert to floating point. The default value is False.

offset

Specifies the offset (pre-scale). This requires convert = True. The default value is None.

scale

Specifies the scale factor. This requires convert = True. The default value is None.

kargs

Additional arguments sent to compute engine.

Returns

An object defining the transform.

See also

load_image, resize_image, featurize_image.

Example

'''
Example with images.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear
from microsoftml import load_image, resize_image, extract_pixels
from microsoftml.datasets.image import get_RevolutionAnalyticslogo

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], Label=[True]))

# Loads the images from variable Path, resizes the images to 1x1 pixels
# and trains a neural net.
model1 = rx_neural_network("Label ~ Features", data=train, 
            ml_transforms=[            
                    load_image(cols=dict(Features="Path")), 
                    resize_image(cols="Features", width=1, height=1, resizing="Aniso"), 
                    extract_pixels(cols="Features")], 
            ml_transform_vars=["Path"], 
            num_hidden_nodes=1, num_iterations=1)

# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
# If dnnModel == "AlexNet", the image has to be resized to 227x227.
model2 = rx_fast_linear("Label ~ Features ", data=train, 
            ml_transforms=[            
                    load_image(cols=dict(Features="Path")), 
                    resize_image(cols="Features", width=224, height=224), 
                    extract_pixels(cols="Features")], 
            ml_transform_vars=["Path"], max_iterations=1)

# We predict even if it does not make too much sense on this single image.
print("\nrx_neural_network")
prediction1 = rx_predict(model1, data=train)
print(prediction1)

print("\nrx_fast_linear")
prediction2 = rx_predict(model2, data=train)
print(prediction2)

Output:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [3];
  hidden H [1] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] sigmoid { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 3
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 6 Weights...
Estimated Pre-training MeanError = 0.707823
Iter:1/1, MeanErr=0.707823(0.00%), 0.00M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.707499
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.2716496
Elapsed time: 00:00:00.0396484
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using 2 threads to train.
Automatically choosing a check frequency of 2.
Auto-tuning parameters: L2 = 5.
Auto-tuning parameters: L1Threshold (L1/L2) = 1.
Using model from last iteration.
Not training a calibrator because it is not needed.
Elapsed time: 00:00:01.0508885
Elapsed time: 00:00:00.0133784

rx_neural_network
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.1339430
Finished writing 1 rows.
Writing completed.
  PredictedLabel     Score  Probability
0          False -0.028504     0.492875

rx_fast_linear
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.4977487
Finished writing 1 rows.
Writing completed.
  PredictedLabel  Score  Probability
0          False    0.0          0.5