Secure Coding Overview 

This section provides an overview of the different ways code can be designed to work with the security system.

Security-Neutral Code

Security-neutral code does nothing explicit with the security system. It runs with whatever permissions it receives. Although applications that fail to catch security exceptions associated with protected operations (such as using files, networking, and so on) can result in an unhandled exception, security-neutral code still takes advantage of the .NET Framework security technologies.

A security-neutral library has special characteristics that you should understand. Suppose your library provides API elements that use files or call unmanaged code; if your code does not have the corresponding permission, it will not run as described. However, even if the code has the permission, any application code that calls it must have the same permission in order to work. If the calling code does not have the right permission, a SecurityException appears as a result of the code access security stack walk.

Application Code that is Not a Reusable Component

If your code is part of an application that will not be called by other code, security is simple and special coding might not be required. However, remember that malicious code can call your code. While code access security might stop malicious code from accessing resources, such code could still read values of your fields or properties that might contain sensitive information.

Additionally, if your code accepts user input from the Internet or other unreliable sources, you must be careful about malicious input.

Managed Wrapper to Native Code Implementation

Typically in this scenario, some useful functionality is implemented in native code that you want to make available to managed code. Managed wrappers are easy to write using either platform invoke or COM interop. However, if you do this, callers of your wrappers must have unmanaged code rights in order to succeed. Under default policy, this means that code downloaded from an intranet or the Internet will not work with the wrappers.

Rather than giving all applications that use these wrappers unmanaged code rights, it is better to give these rights only to the wrapper code. If the underlying functionality exposes no resources and the implementation is likewise "safe," the wrapper only needs to assert its rights, which enables any code to call through it. When resources are involved, security coding should be the same as the library code case described in the next section. Because the wrapper is potentially exposing callers to these resources, careful verification of the safety of the native code is necessary and is the wrapper's responsibility.

Library Code that Exposes Protected Resources

This is the most powerful and hence potentially dangerous (if done incorrectly) approach for security coding: Your library serves as an interface for other code to access certain resources that are not otherwise available, just as the classes of the .NET Framework enforce permissions for the resources they use. Wherever you expose a resource, your code must first demand the permission appropriate to the resource (that is, it must perform a security check) and then typically assert its rights to perform the actual operation.

See Also

Other Resources

Secure Coding Guidelines