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Foreword

Geraldine Wade, font development manager

The need for well-designed, well-executed mathematical typesetting is 
as vital today as it has been throughout the history of modern sciences. 
Indeed, quality fonts and optimal composition for math setting are 
currently even more crucial, due to the importance of mathematics 
and science in our everyday lives and the use of computers in the 
preparation of documents including mathematical expressions with 
intricate structures. Additionally, reading on screen is becoming as 
important as reading in print; so there’s an added dimension to the work 
necessary to produce a font or set of fonts that will be both legible and 
beautiful in both mediums.

Bringing math and design needs together to make a fully functional 
product that typesets math well is a challenge and an opportunity that 
ultimately enriches both disciplines. Math symbols and expressions 
contain a rich visual vocabulary waiting to be explored by the 
typographer. The art and skill necessary to make a set of well designed 
typefaces that can represent the needs of a mathematician are an 
invaluable aid to quality mathematical typesetting and increased 
comprehension for the reader and student.

In this project we believe we have made a step along the path toward 
improving mathematical typography for our customers worldwide.

A
bout this book

About this book

This book introduces the work of the team of software engineers and 
managers, mathematicians and scientists, and font developers who 
have introduced the highest qualities of mathematical typesetting to 
the latest generation of Microsoft® Office and other products. This work 
is placed in an historical perspective highlighting the long tradition of 
collaboration between mathematicians and typographers to express in 
written form mathematical concepts and formulae. 

The book focuses on the Cambria™ Math font implementation 
for mathematical typesetting, rather than on the math layout engine 
software, and is intended as an introduction for mathematicians and 
scientists as users of the font, and for designers and font developers 
interested in understanding the general principles of Microsoft’s 
approach to mathematical typesetting and the features of the Cambria 
Math font. The book does not provide detailed technical documentation, 
which will be made available in other formats. It is written as a general 
overview, in order to be accessible to those whose interest is in the 
quality of the results of mathematical typesetting, rather than the 
minutiae of how those results are achieved.

The book concludes with a specimen of mathematical formulae 
typeset in Microsoft Word 2007, using the new math layout functionality 
and the Cambria Math font.

� | Foreword
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Introduction

Mathematics is a language. Like other languages it has dialects and 
specialist vocabularies, and it evolves to express new ideas and to 
name new objects and concepts. It also has its own writing system 
that, like many of the world’s writing systems, has borrowed symbols 
from the orthographies of other languages and also invented new 
symbols. The evolving nature of the language of mathematics, and its 
particular need to express complex ideas in concise ways, has resulted 
in an especially productive writing system. Mathematical authors not 
only write according to established orthographical conventions, but 
frequently invent new conventions to express original ideas. Crucially, 
not only the visual symbols have significance in the writing system, but 
also their relative size and spatial relationships. Vertical and horizontal 
arrangement, enclosure within other symbols—which may grow or 
shrink relative to their contents—, changes in size or weight: all these 
elements make the writing system of mathematics among the most 
dynamic and, for the typesetter, most challenging in the world.

The poet-typographer Robert Bringhurst calls writing “the solid form 
of language”. Reducing the ideas of mathematicians and scientists to 
the very solid form of typeset text has been, and remains, a challenge 
for authors, editors and typographers. The result, seen on the printed 
page or, increasingly, on the computer screen may seem quite liberated 
and fluid compared to the written forms of most other languages: the 

symbols spill outward and upward across the page, dance around 
lines and braces, jump up from their baselines and nestle beside 
their companions. A page of well-set equations has a particular visual 
beauty that frequently seems more open and expansive than the stiff 
rows or columns of letters that characterize most writing systems. But 
this expansiveness and apparent fluidity is hard-won. The measure 
of control required to accurately size and position each element is 
very great, and the rendering of the mathematical notation in typeset 
form has long been a major challenge to typographers, printers and 
the developers of typesetting equipment. But as the historical section 
of this booklet reveals, there is also a natural affinity between the 
aims of mathematicians and those of typographers, in expressing as 
clearly as possible ideas and concepts. This has resulted in a long and 
fruitful collaboration between mathematicians, typographers and type 
designers.

Bringing together the skills and knowledge of mathematicians, 
researchers, computer scientists, programmers, text layout and font 
engineers, project managers, type designers and testers—acknowledged 
overleaf—was a major undertaking. The successful implementation of 
Microsoft’s typesetting solutions is a testament to both individual and 
corporate commitment.
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Historical perspectives

One of the goals of Microsoft’s new mathematical typesetting solutions 
is to make high quality math setting available to users familiar with 
common word-processing programs, and to make it fast to learn 
and easy to get high quality results. Another goal is to incorporate 
the handling of complex mathematical typography into the existing 
architecture of OpenType® font technology, the RichEdit layout library 
and other common resources, so it can be utilized by a broad range of 
applications, not limited to the arrangement and printing of equations 
on paper. In this approach, Microsoft is building on its strengths 
and experience in text processing and font technology, but it is also 
building on centuries of work by mathematicians, scientists, educators, 
typographers and printers who have sought to give visual expression to 
mathematical concepts.

As the following overview shows, the history of mathematical 
typesetting is a history of distinguished collaboration, involving some 
of the greatest names in mathematics as well as many anonymous 
technicians, typesetters and printers.
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Historical perspectives on the typography of mathematics

Richard Lawrence

The typesetting and printing of mathematics is today much easier than 
it has ever been. In the publishing field, preparation of press-ready 
material for the printer is now largely up to the author or editor, and 
can be produced on a personal computer. This comparative ease 
of preparation is complemented by the remarkable quality of the 
typesetting: both are, of course, related to the ingenuity and abilities of 
computer programmers, but they are also a testament to the skills of 
the type designers and typographers who prepare typefaces for the very 
exacting use they get in mathematics.

In the history of printing and typesetting, mathematics holds a 
peculiar place. It is both the material most feared by typesetting 
craftsmen and the inspiration for some of their greatest technical 
achievements. It is the subject matter that has perhaps inspired the 
most intense collaborations between authors and printers, yet it is 
often one of the least commercially rewarding for publishers. Through 
all this history, though, there has been an affinity of purpose between 
typographer and mathematician that has, at least in recent times, drawn 
the two together in overcoming common problems.

Good typography is transparent and does not place itself between 
the reader and comprehension: rather it silently aids understanding. 

So a typeface fit to the subject matter does not distract from that 
matter, which is arranged into words and paragraphs so as to aid 
comprehension. The result is almost invariably an aesthetically pleasing, 
and often beautiful, marriage of form and function.

Mathematicians have a keen sense of beauty and the importance 
of utility in notation. An argument or idea clearly and concisely 
expressed will garner the description of “beautiful”. But the concept 
of mathematical beauty is applied more widely than just to ideas. The 
expression of those ideas on paper may also be described as beautiful.

Written mathematics is an exceptional, perhaps unique, language: 
 … [mathematicians] have to express values, quantities and relationships by symbols 
which differ basically from those of the alphabet, in that they have no fixed phonetic 
value. … In the mathematician’s world they still use sign language. … a soundless 
world in which the most complex and delicate statements can be made, to anyone in 
the world who can read them without any trouble about the language barrier.

Arthur Phillips, The Monotype Recorder, 40, 1956

Mathematical arguments have to be written in this silent language: 
it would be very taxing indeed to complete many mathematical 
discussions without pencil and paper or their equivalent. Given the 
subtle and perplexing nature of much mathematics, the details of the 
written form are clearly going to be important to the task of conveying 
the argument without introducing opacity or distraction. The aims of 
the mathematician are then the same as the typographer. A typographer 
and a mathematician examining the same piece of mathematics may not 

“Typography may be defined as the 
craft of rightly disposing printing 
material in accordance with specific 
purpose; of so controlling the 
type as to aid to the maximum the 
reader’s comprehension of the text.”

Stanley Morison, First 
principles of tpography, 1951

“By relieving the brain of all 
unnecessary work, a good notation 
sets it free to concentrate on more 
advanced problems, and in effect 
increases the mental power of the 
human race.”

Alfred North Whitehead,  
An introduction to mathematics, 
1947
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have an equal understanding of its meaning, but they are likely to have 
an equal appreciation of the aesthetics of its presentation: both seek to 
make it visually easy to follow and aesthetically pleasing.

The difficulty of mathematical typesetting

What used to make mathematics difficult for the typesetter and 
expensive for the publisher? One obvious answer is incomprehension 
of the subject matter. The difficulty of knowing how to arrange type is 
greater without any idea of what is being conveyed.

However, compositors (typesetters) with a bare minimum of 
schooling used to successfully typeset foreign languages in ignorance of 
their meaning. There are two substantial physical difficulties in setting 
mathematics. The first is the extraordinary diversity of individual 
characters or “sorts” in various styles (bold, italic, sans serif, etc.) and 
the many sizes required. Each sort in each style had to be literally at 
hand. Marshalling all the sorts required was a logistical problem and in 
the days of metal type, ensuring an adequate supply of each sort was an 
industrial enterprise with considerable material expenses.

The second difficulty is that unlike conventional text, mathematics is 
not linear in its construction: an equation depends on a two-dimensional 
arrangement of sorts. In the days of metal type, this was a considerable 
mechanical challenge, which demanded all the ingenuity the typesetter 
could muster. To create a really good piece of mathematical typography 

“… gentlemen should be very exact 
in their copy, and compositors 
as careful in following it, that no 
alterations may ensue after it is 
composed; since changing and al-
tering work of this nature is more 
troublesome to a compositor than 
can be imagined by one that has not 
tolerable knowedge of printing.”

Caleb Stower, The printer’s  
grammar, 1808

“Algebraic work, in treatises on al-
gebra only, double price. When in 
lines or paragraphs, to be charged 
by time at the rate of 60 cents 
per hour, or about treble price.”

Theodore L. De Vinne,  
The printers’ price, 1871

the compositor must pay close attention to the spacing of the sorts 
in both dimensions. This would have been particularly difficult when 
adjacent sorts came from separate typefoundries and may be cast on 
subtly different sizes of body.

It is here that the far subtler matter of type design also enters the 
picture. A sort with a particular quirky design may be tolerated and 
readily understood as part of an otherwise ordinary word in most 
natural language typography: it may even add “color”, enlivening the 
page of text. In mathematics it is necessary for the reader to be able to 
identify each and every sort reliably in isolation, and also to distinguish 
whether it is in italic, sans serif, bold or plain roman. A well-designed 
family of typefaces is a boon to mathematical typesetting and to the 
comprehension of the reader; “making do” with what is already available  
in types designed for typical text work is unlikely to be completely 
satisfactory, although that is exactly what happened for most of the 
history of mathematical printing. 

Hand typesetting of mathematics

The “invention of printing” in Europe around the year 1450 was really 
the invention of casting movable (reusable) type in metal: individual 
letters and signs were cast in hand-held moulds as raised surfaces on a 
conveniently sized rectangular stick of metal. These individual pieces 
of type were then assembled by hand into lines, and the lines into 

Handset mathematical type. Above, 
the equation as printed and, below, a 
diagram of the pieces of metal type 
and spacing material necessary. 
(From L.A.Legros and J.C.Grant: 
Typographical printing surfaces. 
Longman, Green, and Co., London, 
1916.)
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paragraphs and pages which were then printed. Once printed, the 
type could be reused to typeset fresh lines and pages. The earliest 
mathematical printing would have been from such type set by hand.

As mathematicians began to develop their subject, so they 
needed to find new notation to express their discovered knowledge. 
There is evidence of interplay between printer and mathematician, 
with the latter exploring what the former had to offer in the way of 
new type styles and symbols. In 1647, the English mathematician 
William Oughtred recognized the benefits of good notation in his 
Algebra:

Which Treatise being written not in the usuall synthetical manner, nor 
with verbous expression, but in the inventive way of Analitice, and with 
symboles or notes instead of words, seemed unto many very hard; though 
indeed it was but their owne diffidence, being scared by the newness of 
the delivery; and not any difficulty in the thing it selfe. For this specious 
and symbolicall manner, neither racketh the memory, nor chargeth 
the phantasie with comparing and laying things together; but plainly 
presenteth to the eye the whole course and processe of every operation and 
argumentation.

The ‘symboles or notes instead of words’ were a considerable 
advance, a move from words that clearly referred to concrete things 
to symbols that represent abstractions. Oughtred used capital 
roman letters to denote his quantities, a practice that can be traced 
back to at least 1544 and the German mathematician Michael Stiffel. 

“Mathematical, algebraical, and 
geometrical characters” in J. Johnson, 
Typographia or the printers’ instructor. 
Longman et al., London, 1824.

René Descartes, in La Géométrie of 1637, started the current practice 
of using italic letters to denote quantities of interest: printers 
had started to use italic type in the late fifteenth century, but not 
in conjunction with roman type. It was some time before many 
printers had roman and italic type cast to the same body size that 
would fit together conveniently.

As notation and calculations became more complicated, so the 
printer faced greater demands to assemble complicated expressions 
from individual pieces of type. They began to devise or suggest 
labor-saving notation:

 … we propose one that is similar to an Italic l inverted, and whose 
figure takes in the whole depth of its body; which then would have the 
resemblance; viz. 3l5 12l63 16l30.

John Smith, The printer’s grammar, 1755

In 1893, Oliver Heaviside popularized the work of James Clerk 
Maxwell in his Electromagnetic theory, and was the “discoverer” of 
another type style when seeking a notation for vectors:

Maxwell employed German or Gothic type. This was unfortunate choice, 
being by itself sufficient to prejudice readers against vectorial analysis. … 
Some of them are so much alike that a close scrutiny of them with a glass 
is need to distinguish them unless one is lynx-eyed. … Rejecting Germans 
and Greeks, I formerly used ordinary Roman letters to mean the same 
as Maxwell’s corresponding Germans. … Finally I found salvation in 
Clarendons, and introduced the use of the kind of type so called I believe, 

Johnson, ibid.
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for vectors (Phil. Mag., August, 1886), and have found it thoroughly 
suitable.

Clarendon types were a relatively recent type style, characterized 
by low contrast between thick and thin strokes, heavy slab serifs 
and generous width. They provided a convenient solution to a 
notational problem, a solution now part of mathematical orthodoxy.

Sometimes a mathematician would come to the rescue of the 
printer. A bar over several characters is a very effective and easy-
to-understand notation when symbols are to be linked, For purely 
mechanical reasons, though, it is difficult to place bars over or under 
characters in typesetting. Leibniz suggested a printer-friendly 
alternative:

When one or both of the factors are compounded of several letters, they 
are distinguished by a line over them; … Leibnitz, Wolfius, and others, 
distinguish the compound factors, by including them in parenthesis  
thus ++(𝑎 + 𝑏 − 𝑐) 𝑑. 


J. Johnson, Typographia or the Printers’ Instructor, 1824

However, the effect of the mathematician raiding the printer’s 
reserves of type, while providing solutions to notational problems, 
tended not to produce very harmonious typography. It can be 
difficult enough to express a mathematical idea in symbols without 
the visual distraction of those symbols being a rag-bag of ill-
matching sorts.

Typical handset maths from D. A. Low, A 
pocket-book for mechanical engineers. 
Longmans, Green and Co., London, 1915.

Improving mathematical typography

One early attempt to improve mathematical typography involved 
the Inland Typefoundry of St Louis in 1900. At the suggestion of a 
publisher they cut punches and made sorts to match their existing 
Oldstyle No.11 type. They also rationalized the setting of sorts to 
uniform widths and the alignment of different typefaces on the 
body of the type. These innovations made the mechanical work of 
the hand compositor much easier. It is therefore unclear why more 
printers and publishers did not take advantage of this work, but it 
was largely neglected.

A more successful attempt involved Oxford University Press 
and the Monotype system for composing metal type mechanically. 
Following an audacious raid by the Oxford University Press into the 

“enemy territory” of Cambridge in March 1928, OUP’s printer, John 
Johnson, was presented with the problem of setting mathematics 
for a newly founded physics series and its first Cambridge-based 
author, P. A. M. Dirac. A pair of mathematical journals acquired 
at about the same time from a small Cambridge publisher and 
previously set in oldstyle types provided a training ground. Johnson 
rose to the challenge and set about researching a typeface to use. 
His choice was Monotype’s Modern Series 7, possibly because OUP 
already had a large investment in modern types and matching 
Greeks and special sorts for its dictionary work. Johnson did not just 

Inland Typefoundry’s improvements to 
oldstyle type for mathematical typesetting 
(excerpt from Old style type on bookwork, 
privately printed, St Louis, 1902.)
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commission new mathematical sorts to match the existing holdings of 
OUP, he also sought to formalize the rules of mathematical typesetting. 
With the assistance of a small panel of mathematicians, he codified the 
rules of mathematical typesetting. These were eventually published by 
Johnson’s successor, Charles Batey in The Printing of Mathematics [T. W. 
Chaundy et al. 1950]. More than half of the Oxford rules are given over to 
matters of spacing, emphasizing the great importance in mathematical 
typesetting not just of choosing the correct sort, but also its correct 
disposition in relation to others.

The Oxford rules were developed for use with Monotype keyboards 
and casters. This was the first mechanization of mathematical 
typesetting. Even though many elements of an equation could 

Monotype Modern Series 7 type 
employed by OUP for mathematical 
typesetting.

“Printing-house proprietors and 
authors, from force of circum-
stances, have had to be content 
with many characters imperfectly 
made, obtained from different 
sources, designed by different 
men and at different periods, 
varying often over fifty years.”

Carl Schraubstadter,  
Old style type on bookwork, 1902

be keyboarded in this system, the assembly of the elements 
required skilled handwork. But with good training and the 
inherent precision and controllability of the Monotype machinery, 
the results were exceptionally good compared to what went before. 
A new standard of mathematical typography had been set. 

The skilled handwork of the Oxford method made it slow and 
expensive both in operation and in training. With an increase in 
scientific publishing and in mathematical work in particular, the 
Monotype Corporation started to investigate ways to reduce handwork 
and increase what could be accomplished directly from the keyboard. 
Using the American Patton Method as inspiration, the Monotype 4-line 
system was born. The highly popular Times typeface was adapted 

as Series 569. The parent Times face was well provided with a range 
of sorts, but the peculiar spacing requirements of mathematics and 
the highly innovative technicalities of the 4-line system made special 
demands. At the system’s heart, a 10 point face was cast on a 6 point 
body and each equation was broken down into four lines. With the 
introduction of the Monotype 4‑line system in 1959 hot-metal typesetting 
had reached its “technological zenith” [David Saunders, The Monotype 
Recorder, New Series 10, 1997]. This and the previous Oxford system 
provide benchmarks that are still used today. 

The eclipsing of hot-metal systems

Mathematicians and scientists may have been well-served 
typographically by Monotype, but increasingly they wanted a less 
expensive way of composing mathematics that was more directly 
under their control. Publishers also wanted an inexpensive alternative 
method to compose mathematics in order to make more specialist 
and ephemeral publications viable. Technology new to printing was 
pressed into service. The IBM golfball typewriter and Varityper both 
offered strike-on typesetting with interchangeable type heads. The 
interchangeability gave access to the range of special sorts needed; good 
typists or the mathematicians themselves could operate the machine, 
reducing labor charges dramatically. Huge compromises had to be made 
in typographical quality, with very limited variations in character widths 

The details of Monotype’s 4-line 
system for setting mathematics.

Typewriter composition of 
mathematics.
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and spacing, but immediacy and cost reduction were important driving 
forces.

Phototypesetting, which had first been developed in the 1940s, started 
to appear as an common method of composition in the 1960s as offset 
lithographic printing became more popular. Photosetting machines 
generated lines of type from film masters, using a photographic process 
to set the type on rolls of paper or film from which lithographic plates 
could be made. Most early photosetters were limited in the number of 
sorts carried on their film masters, making them unsuitable for anything 
but the simplest mathematical work. An exception was the Monophoto 
machine from Monotype. Its film masters were carried in individual 
and interchangeable photomatrices. Coupled with an adaptation of 
the 4-line system, great flexibility and good quality were achieved for 
mathematical setting.

The advent of photocomposers with digital rather than photographic 
masters opened a new era in mathematical typesetting. Digital storage 
meant that a huge range of special sorts could be accessed easily 
and created almost as easily. Digital storage also meant computer 

control. That computing power could be harnessed to some of the 
trickier problems of mathematical spacing and layout in specialist 
programs and routines. The Linotron 404 and, more importantly, 202 
machines from Linotype used a high-definition cathode ray tube to 
project a digitally generated image onto photosensitive paper or film 
under microprocessor control. The 202 set the standard for quality 
mathematical composition from its introduction in 1978.

TEX

Despite these advances in professional typesetting, the poor 
typographical standards of the populist strike-on composition so 
disgusted one mathematician that he seized the moment, and the 
new technology of raster-based laser output, to completely change 
how mathematicians work. Donald Knuth developed TeX as a word-
processing and typesetting system capable of mathematical work. 
Intriguingly, Knuth’s explanation of the working principles in terms of 
boxes and glue, the boxes being the sorts and the glue variable amounts 
of space, shows similarity to the physical workings of the Monotype 
machine, with which Knuth was familiar. The fixed-size of a box dictates 
a certain size for the character to occupy the box (or vice versa). For TeX 
to operate, it needs information about the chosen typeface. Knuth was 
thorough in his research and also developed a program for drawing 
typefaces, Metafont. The typeface he chose to run with TeX was 

Digital structure of type used  
in the Linotron 202.

Linotron composition of mathematics.
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The Cambria Math font

As the previous section records, the history of mathematical typesetting 
has often mingled innovation with expedience, finding new uses for 
existing typographic elements and extending existing typefaces to 
incorporate specialised symbols. In this aspect, Microsoft has broken 
with tradition. While the Inland Typefoundry, Oxford University Press 
and Monotype historically sought to improve the typographic quality 
of mathematical setting by adapting existing types, Microsoft has 
commissioned a new typeface, Cambria Math, designed from the outset 
with the needs of mathematics in mind. The new type was also designed 
to perform well on screen and to leverage the benefits of Microsoft’s 
acclaimed ClearType® rendering, acknowledging the increasing 
importance of electronic publishing and information exchange.

The following section looks at key features of the Cambria Math font, 
including extensions of the OpenType Layout format and new font tables 
to support mathematical typography.

Computer Modern, similar to the Modern Series 7 of traditionally set 
mathematics books. TeX was a resounding success with mathematicians 
and scientists for a variety of reasons, not least of which was being free 
software. TeX quickly developed a base of very active and devoted users 
who cooperated to improve and extend it, and it produces results of 
remarkable quality and consistency which can be reliably reproduced 
on a variety of printers. It also allows data entry in a “mathematically 
logical” order when building equations: an advantage over traditional 
typesetting programs, which tended to require data entry to follow 
the mechanical constraints of the technology and which made no 
mathematical sense. Printers were initially very slow to make use of its 
potential: it bypassed all their existing systems and its data-entry order 
was alien to them. But TeX’s overwhelming success with authors means 
that mathematical typesetters have had to learn how to use it and apply 
their accumulated typographic and design experience to it.

Starting, as Knuth did, with no more than access to digital raster 
image setters and computing power, he was free to work from scratch 
without constraints of any pre-existing programs or systems. This 
allowed him to build a logical and very robust structure aimed at solving 
the problem, and TeX is certain to influence all future developments in 
mathematical typesetting.

Typographic elements in TEX; are 
defined as boxes. the x-y distance is 
the glyph height, the y-z is its depth. 
Where the two meet is the reference 
point (r).

TEX character boxes are ‘glued’ 
together to form word boxes (dotted 
line).

TEX word boxes are glued together 
to form line boxes (double-line) and 
line boxes are glued together to form 
paragraph boxes. The ‘glue’ between 
any of these boxes can be stretched 
or compressed to alter character 
spacing, word spacing etc. and to aid 
in paragraph justification.

r

z

y

x

y

x
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Features of the Cambria Math font

Custom type for mathematical typesetting is nothing new. Since its early 
days, the setting of mathematics has posed problems for the typesetter 
that have been answered by the manufacture of new typographic 
characters. The inventiveness of mathematicians and scientists in 
devising new symbols to express novel concepts has placed considerable 
demand on the makers of type, although the cost of manufacturing 
weighed against the relatively small returns on specialist publishing 
has limited the actual number of fonts available for mathematical work. 
The advent of computer typesetting for mathematics has not, so far, 
changed this situation, and if anything the variety of typefaces available 
is reduced, since most mathematical texts have been produced in 
application- and font-specific formats.

The recent inclusion of a large number of characters for mathematical 
publishing in Unicode and corresponding ISO standards, the 
specification of the MathML markup language by the World Wide 
Web Consortium, and the inclusion of mathematical typesetting tools 
in mainstream software such as Microsoft Office, opens the door to 
broader access and increased exchangeability of mathematical texts. 
These welcome developments also invite the design of new typefaces to 
facilitate the typesetting of mathematics in new environments and for 
new media.
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The Cambria Math font is an extension of Cambria, a four-style font 
family designed by Jelle Bosma as part of the Microsoft ClearType Font 
Collection. Cambria, like other members of the collection, was designed 
to take advantage of Microsoft’s ClearType rendering system, which 
is designed to improve the experience of screen reading. The weight 
and proportion of the letters, numerals and symbols in Cambria have 
been carefully designed to be clearly legible at the small sizes and 
low resolutions of the screen environment, enhanced by ClearType’s 
subpixel rendering and positioning.

Development of the Cambria Math font involved design of additional 
glyphs (the visual representations of the abstract characters encoded in 
text), revision of some of the existing glyphs from the original Cambria, 
and the inclusion of advanced information in the font to be used by the 
Microsoft math layout handler. This information includes new, math-
specific features within the OpenType Layout architecture already used 
for supporting complex scripts (e.g. Arabic) and high quality typography, 
and addition of a newly specified math table in the font containing 
values to be interpreted by the math handler during layout.

The values in the math table govern positioning, preferred scaling 
factors and substitution of glyph variants, e.g. for growing parentheses 
or braces; they are font-specific and are set by the type designer or font 
technician. Additional, non font-specific rules for positioning and spacing 
are incorporated into the math handler, which also has the capability to 
make positioning decisions by analysing the glyphs presented to it.

For more information about the 
ClearType Font Collection and the 
ClearType rendering system, see the 
Microsoft publication Now read this.

For general information about 
OpenType, see the Microsoft 
Typography website: 
www.microsoft.com/typography/
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Character support and glyph set

The character repertoire for Cambria Math was established by the 
mathematical characters which have been defined in the Unicode 
standard. These include a large number of operators and other 
symbols as well as alphanumeric characters in the wide range of style 
encountered in mathmatical text (bold, italic, script, fraktur, sans serif, 
etc.). In Cambria Math, an extensive subset of these characters were 
added to the pan-European multilingual character set of the original 
Cambria fonts, enabling the seamless intergration of mathematical 
settings into texts in a wide range of languages written in the Latin, 
Greek and Cyrillic scripts. 

In addition to the characters defined in Unicode, there is also a large 
number of unencoded variant glyphs, which are accessed through 
OpenType Layout features or math table rules. Most of these are variant 
sizes of a base character for stretching around large equations or over 
and under strings of text. For instance, there are several sizes of brackets, 
parentheses and radicals, as well as accents of different widths that can 
sit over wide characters or over multiple characters. Other unencoded 
glyphs include scaling forms tuned for use as superscripts or subscripts, 
and dotless versions of i and j characters for use with accents above.

The original Cambria Regular font contained 992 glyphs, already 
making it a “large font” by many standards. The Cambria Math font 
contains an additional 2,900 glyphs.

For more information about the 
mathematical characters in Unicode, 
refer to Unicode Technical Report 25:  
www.unicode.org/reports/tr25/

Overview of the math table

TrueType and OpenType are examples of “sfnt format” fonts, which 
are made up of a number of discrete tables, some required and some 
optional. This format is easily extensible by the addition of new tables.

The new math table communicates between the math font and the 
math handler. It contains data related to horizontal spacing, vertical 
positioning, glyph variants and assemblies, preferences for elements 
such as rules which are “drawn” by the handler, special math kerning, 
and additional global parameters. These are too many to be exhaustively 
detailed in this small booklet, but many of them are illustrated in the 
pages that follow and give some idea of both the general methodology 
and the level of control available to math font developers.

The information in the math table can be categorized into font-level 
values, glyph-level values, and glyph lists. Font-level values are stored 
as “constants”, in which the font developer is able to set more than 
fifty parameters related to e.g. superscript and subscript positioning; 
linespacing within stacked equations; axis height for vertical alignment; 
bar, rule and vinculum thickness; gap allowances between elements such 
as text and bars; and many others.

Glyph-level values apply to individual glyphs and include italics 
correction, which helps refine positioning of superscripts; accent 
attachment, which allows the developer to define preferred positioning 
of accents (rather than relying on automatic centering); and math 

A selection of math constants:
Math Leading
Axis Height
Accent Base Height
Flattened Accent Base Height
Subscript Shift Down
Subscript Top Max
Subscript Baseline Drop Min
Superscript Shift Up
Superscript Shift Up Cramped
Superscript Bottom Min
Superscript Baseline Drop Max
Sub-Superscript Min Gap
Superscript Bottom Max With Subscript
Space After Script
Upper Limit Gap Min
Upper Limit Baseline Rise Min
Lower Limit Gap Min
Lower Limit Baseline Drop Min
Stack Top Shift Up
Stack Top Display Style Shift Up
Stack Bottom Shift Down
Stack Bottom Display Style Shift Down
Stack Gap Min
Stack Display Style Gap Min
Stretch Stack Top Shift Up
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kerning, which gives fine control over relative horizontal spacing of 
glyphs at different vertical alignments.

Glyph lists provide character variant and assembly information. In 
simple terms, these indicate a base Unicode character and a list of 
variants for that character and/or ways to assemble the character from 
multiple glyphs. The variant list is accessed by the math handler when 
determining the best glyph to use in a given situation. For instance, as 
a fraction or stack grows in the vertical direction and is enclosed in a 
delimeters, e.g. parentheses, taller versions of the delimeter can be used. 
The math handler measures the height or width of an equation and then 
selects the best match the variant list or assemblies list. [See pages 29–30 
for more information about variants and assemblies.]
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Size-specific OpenType script-styles

When a letter or numeral is mechanically scaled, for example for use 
as a superscript, the strokes that make up the glyph are reduced in 
weight, while the internal spaces of the form are pinched. It is preferable 
for glyphs to become more robust as they are reduced in size, and for 
their proportions and spacing to become more generous, so that they 
harmonise well with nearby full-size glyphs.

In Microsoft math fonts, size-specific “script” and “script-script” 
variant glyphs are designed at full size relative to the base Unicode 
characters they represent, and are then scaled for use as super or 
subscript forms according to factors specified in the math table font 
constants. When displaying a character as script or script-script, the 
math handler calls a new OpenType Layout feature, <ssty>, which 
performs a glyph substitution of the appropriate size-specific glyph. The 
<ssty> feature employs an enumerated lookup type, so the same feature 
may include both script and script-script variants, mapped as the first 
and second alternates respectively.

The adjustments to weight and proportion desirable for the script and 
script-script styles are not necessarily linear relative to the base glyph. 
In the case of Cambria Math, the ascenders and capital height of the 
script variants were shortened so exponents would be more compact 
and work better for inline formulae, but in the script-script style they 
are taller to aid legibility at very small sizes.

𝑎 � �

ℎ � �
𝑥 � �

𝐸 � �

𝑥��
base

script

script-script
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Flattened accents and dotless forms

Two additional new OpenType Layout features have been introduced for 
mathematical typesetting: one is Flattened Accents <flac>, the other is 
Dotless Forms <dtls>.

The <flac> feature accesses variant accent forms which have been 
designed to sit above capitals or other tall letters. These accents are 
vertically shorter than regular accents designed for use with x-height 
lowercase letters, so allow for more compact linespacing and vertical 
gaps in stacked equations. The height at which flattened accents are 
deployed by the math handler is set in the math table and the <flac> 
feature lookup simply maps accents which have a “flattened” variants, as 
shown at right.

  The <dtls> feature maps dotted characters i and j, in all their 
forms, to variants with no dot. These are used when an accent needs to 
be placed above the character. Arbitrary accent positioning over base 
glyphs is controlled via the ‘accent attachment’ values set in the math 
table glyph-level values; if no accent attachment values are set, then the 
accent is centered over the base glyph.

𝑤� 𝑊�

𝚤𝚥 𝐼�𝐽�


ı  �  𝚤  𝚥  �  �  �  �  �  �  �  �  �  �  �  �  �  �
 
�  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �

�������� ��������

Variants and assemblies

The math font format allows the designer to define sets 
of both vertical and horizontal glyph variants. These are 
designed and then listed in the math table as variants of a 
base glyph.

Vertical variants are most often used to “grow” delimiters 
(parentheses, braces, brackets, etc.) or radical signs, 
which should match the height of expression they contain. 
Horizontal variants can be defined for characters such as 
over- and under-delimiters and arrows or vectors, e.g. ����. 
They can also be used to extend an accent over glyphs  
of various widths or over multiple glyphs, e.g. ���.

The math handler measures the width or height of a 
given expression, then checks the math table glyph lists 
and selects the variant whose height or width most closely 
corresponds to the size of the expression. The Cambria 
Math font contains up to eight different variants for some 
characters.

If the math handler determines that all the available 
variants are too small, it then proceeds to assembly 
information for the character. Assemblies are sub-character 
glyphs, i.e. two or more “pieces” that are assembled by the 

�  
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𝐿 𝑇�

𝐿�𝑇�


math handler to represent the character that needs to be resized to fit 
the expression.

Assemblies typically consist of top and bottom or left and right pieces, 
and medial sections. They are designed to align with one another and to 
smoothly connect. The connections and medial sections are necessarily 
straight, so elements built from assemblies, especially braces, lack the 
elegant curvature of the variant forms, but they are very versatile and 
because sections may overlap they can adapt very closely to the size of 
an expression.

The assembly pieces are listed in the math table lists for a given 
character and additional information is provided to specify how much 
overlap one piece can have with its adjoining piece. The math handler 
references this information and adjusts the positioning of the pieces to 
match the height or width of an expression.

�������

� � � � � � � �⇒

Variants:
A Unicode character, such as a 
parenthesis: 

(
is mapped to a series of glyph 
variants:

(→ �������

Assemblies:
If the largest of the variants is not 
tall or wide enough, an assembly 
can be constructed from a series of 
individual parts:

(→    ⎛ →   ⎛
(→    ⎜ →   ⎜

(→    ⎝ →   ⎝ 

1

2

3

Math kerning

In typical text setting, adjustments to improve spacing by moving glyphs 
closer or further apart, called kerning, generally involve only horizontal 
relationships. These adjustments can be easily managed by a single 
kerning value applied whenever two particular glyphs are next to one 
another. In mathematical setting, the relationship between adjacent 
glyphs may involve complex horizontal and vertical relationships, 
especially when glyphs are scaled and positioned for use in superscript 
or subscript roles.

Microsoft’s math font format uses “cut-ins” to enable superscript 
and subscript glyphs to nestle against adjacent glyphs while ensuring 
that sufficient distance is maintained. The cut-ins are stepped, so that 
as glyphs are moved vertically relative to each other an appropriate 
horizontal relationship is maintained.

Cut-in values are defined by the font developer in the math table 
and may be specified for each quadrant: upper-left, upper-right, lower-
left and lower-right. This allows for optimal spacing in relationships 
between any adjacent quadrant on two glyphs, e.g. upper-right to 
lower-left, as in a base to superscript relationship. The cut-in values can 
be either positive or negative, so may move glyphs closer together or 
further apart.

Where two sets of cut-ins meet, they may interract, affecting the 
spacing. In the illustrations here and overleaf, the yellow lines indicate 

�
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Italics correction

The angle of italics or other slanted glyphs may result in them appearing 
too close to or even colliding with following upright or superscript 
glyphs. In order to ensure that a reasonable minimum distance is 
maintained, the math table contains glyph-level values for “italics 
correction”. The italics correction value is added to the advance width of 
the glyph when it is followed by an upright character, e.g. a delimeter or 
operator, or by a superscript.

Italics correction is also used for positioning limits on n-ary operators,  
particularly integrals, as shown at right. Note that in this case, horizontal 
adjustment is defined according to the italics corrections value rather 
than by the cut-in kerning used for superscript and subscripts relative to 
base glyphs. Because the integral sign can grow and limits may be more 
complex than shown here, involving more than one line and requiring 
dynamic vertical adjustment, the italics correction value provides a 
flexible mechanism to ensure a consistent relationship between the 
limits. The position of the upper limit is determined by shifting the limit 
to the right by one half of the italics correction value of the integral glyph, 
and the lower limit is shifted to the left by the same amount. In this way, 
a consistent angle is maintained.

right-side cut-ins on the base glyph, and the orange lines indicate left-
side cut-ins on the corresponding quadrants of script style glyphs.

Each quadrant may have multiple cut-ins, defined at different heights, 
and the cut-ins may be as coarsely or finely defined as the font developer 
deems to be appropriate, taking into account the font constants that 
determine scaling and vertical positioning rules for glyphs. Some glyphs 
may have only a single cut-in, while others may have many, creating 
an envelope around the glyph shape or, if desirable, allowing part of 
the outline to extend beyond the cut in (as in the illustration on the 
preceding page, where the descending tail of the subscript 𝑓 pierces the 
edge of the cut-in).

Since the vertical position of superscript and subscript glyphs, 
initially defined in the math table font constants, may be dynamically 
adjusted dependent of the contents of a formula or equation, cut-ins 
provide flexible control of horizontal relationships based on glyph 
shapes. In the example of the superscript 𝐴 in the illustrations, if it were 
desirable to lower the superscript it would encounter a change in the 
cut-in envelope, which would prevent it from colliding with the terminal 
of the L (as shown at right).

Each cut-in can also have device correction values; i.e. size-specific 
adjustments to ensure optimal relationships between glyphs even at low 
resolutions on screen, where rounding errors on the coarse pixel grid 
might otherwise cause glyphs to be too close or too far apart.

𝛿� 𝛿�

Left, without italics correction;
right, with italics correction.
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Accent attachment

Base characters in mathematical typesetting may carry accents, which 
may not correspond to diacritics in natural language orthographies, 
and which need to be correctly positioned relative to the base. This is 
particularly important in the case of italics, when simply centering the 
accent glyph on the advance width of the base result in the accent being 
too far left, far from its ideal location relative to the top of the base glyph.

Accent attachment is specified in the math table on a glyph-to-glyph 
basis. If a pair of base and accent glyphs do not contain an accent 
attachment entry in the table, then the math handler defaults to 
centering the accent on the glyph. Since the absolute center of a glyph 
space and the optical center of a glyph seldom match exactly, and 
because so many glyphs have asymmetric shapes that call for the accent 
to be off-center, most glyphs will have accent attachment positions 
defined.

The illustration contrasts centered accents, blue, with accents 
positioned using accent attachment values, orange. Note that the accent 
attachment interacts with the flattened accents and dotless forms 
features discussed on page 28.

 𝐴� 𝐴� 𝐝� 𝐝�

𝑓� 𝑓� �̃ �̃

𝑔̀ 𝑔̀ �� ��


Cambria Math on screen

ClearType is a Microsoft text rendering technology for screen which 
takes advantage of discreet red, green and blue subpixels in liquid crystal 
displays (LCDs). To render text on screen, glyph outlines in the font must 
be “rasterised”, i.e. fitted to a grid of pixels to give the best representation 
of the glyph shape at a given size and resolution. At the small sizes 
normally used for text, and in the relatively low resolution of screen 
displays as contrasted with print media, the pixel grid is very coarse. 
With traditional black and white or greyscale rendering, it is often 
impossible to render details or even give a reasonable impression of a 
particular typeface design. ClearType significantly improves the display 
of text on screen by addressing individual subpixels during rasterisation, 
effectively tripling the resolution in one direction (usually horizontal). At 
the same time, ClearType uses sophisticated color filtering to maintain 
consistent stroke color, even for thick and thin strokes of variant weight, 
providing a cleaner and stronger glyph image than older greyscale font 
smoothing technologies.

The rapid growth and impact of the Internet in all areas of life in the 
past ten years has greatly increased the amount of text that we read on 
computer screens rather than in print. Mathematicians and scientists, 
of course, were among the earliest users of the Internet and electronic 
communications, but only fairly recent developments—the inclusion 
of specialist mathematical characters in Unicode and the specification 

An italic letter hinted for black & 
white display. The outline is distorted 
by hint instructions to turn on or off 
specific pixels.

ClearType rendering using individual 
subpixels results in smoother curves 
and more natural diagonal strokes.
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Input and layout

An examination of the examples in the previous sections gives some 
idea of the difficulties involved in mathematical layout and the intricate 
solutions required. Having looked at these issues from the perspective 
of the font tables and features, we can now look at how math layout is 
performed in the larger context of Microsoft applications, and at how the 
user creates mathematical content.

Describing math layout in all its complexities is beyond the scope 
of this publication, as is full documentation of the new math input 
language. Most of the material in the following section is introductory, 
and provides a basic overview of Microsoft’s approach to mathematical 
input and layout. The section concludes with a more technical discussion 
of the layout mechanisms employed in correctly typesetting a famous 
equation.

of the MathML markup language—have made possible the reliable 
interchange of mathematical content in electronic documents. Cambria 
Math is the first font developed specifically to provide high quality 
display of mathematical typesetting in a screen environment. This goal 
has guided all aspects of the font production, from the design of glyph 
outlines to the specification of math table values.

By leveraging the display improvements and positioning refinements 
of ClearType, even scaled glyphs in math settings, e.g. superscript and 
subscript forms, can be cleanly rendered at typical text sizes. Glyph 
rendering is assisted by “hints” in the font: instruction sets for each 
glyph that ensure the rasterizer maintains consistency of stroke weights 
and proportions in the low resolution grid. In addition to these general 
glyph hints, Cambria Math contains device-dependent adjustments to 
values in the math table, e.g. desired kerning cut-in depths and heights 
for specific sizes.

Above: a screenshot of a 12pt 
equation on a 145 pixel per inch 
display. It is difficult to accurately 
represent screen rendering in print, 
but this illustration, using full pixel 
color representation of the ClearType 
subpixel rendering, gives some idea 
of the clarity and legibility of the 
Cambria Math font on screen.
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Mathematical input and layout

Microsoft’s math layout depends on Unicode encoding and follows 
the lead of TeX and MathML 2.0 in key areas. It is performed as a 
collaboration between four entities: 

 •	a Unicode rich-text processing program such as Microsoft Word
 •	 the math handler built into the latest version of the Microsoft text  
	 layout component
 •	 the math font
 •	 the math font handler 

This collaboration is invoked whenever text inside a designated math 
zone needs to be displayed. A math zone is created in a document by 
the user, and is distinguished from regular text for layout purposes. All 
text in the math zone is rendered using appropriate glyphs (which may 
vary from related, non-math forms, as shown at right) and according to 
measurements dependent on glyph ascents, descents, and widths, as 
determined by the math handler rules and the contents of the font math 
table.

Within the math zone, text is entered using a special input language. 
This is intuitive and easy to learn, and allows the user to create 
mathematical content quickly while relying on the layout engine and font 
to ensure accurate glyph display, arrangement and spacing.

adfhiknvxy
Cambria Italic glyphs

����������
Cambria Math math-italic glyphs

The italic letters used for math 
variables in the Cambria Math 
font differ from the regular 
Cambria Italic font letters in both 
form and spacing. The math italics 
are encoded as Unicode math 
alphanumeric characters and are 
stored in the same font as the 
regular, upright characters and 
other alphanumeric forms such as 
blackletter, doublestruck, etc.

The math input language

In the simplest cases, such as an equation like � � � � �, the variables �, 
� and � are represented by Unicode math-italic letters and the operators 
are separated from the letters by spacing rules according to established 
math typesetting conventions (as documented by Donald Knuth in 
The TeXbook.) The input experience for the user in such a case is much 
simpler than the layout requirements might imply: he simply types the 
normal key sequence a=b+c in the math zone and the math handler 
takes care of the rest, converting the letters to the appropriate math-
italic characters from the math font and applying the correct form and 
spacing for the operators.

Input of characters in a math zone is achieved via a linear or “nearly 
plain text” input language. This linear language is a means of entering 
specialized characters into text by typing an escape sequence, usually a 
backslash \ followed by a keyword e.g. \alpha will display �; \sum will 
display ∑, and so forth. The ASCII characters on a standard keyboard are 
entered directly and autocorrected as required. Note that these keyboard 
characters are used only for input notation: the resulting text is stored 
using the appropriate Unicode math characters. Some keyed characters 
are used as switches or triggers; for instance, a forward slash / indicates 
that a fraction is to be constructed from what comes before and after the 
slash. An underscore character _ indicates a subscript, and a circumflex  ̂  
indicates a superscript. The space character also has a role, delimiting 

In a math zone, the user types:

a=b+c
As each character is entered, 
the application substitutes 
the appropriate math italic 
character and makes appropriate 
adjustments to the spacing.

� = � + �
In a math zone, the user types:

a/(b+c) [space]
As each character is entered, 
the application substitutes the 
appropriate math italic character. 
The space character triggers 
the fraction object layout and 
positioning:

	      � 
	  � + �
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the operands of the linear format notation. The space character indicates 
that preceding elements are to be built-up, e.g. a_2 followed by the space 
character would render ��. As well as keyboarding, other means of input 
are also possible, such as pull-down menus or handwriting recognition, 
on a Tablet PC for instance.

The math layout handler

The collaboration between the math layout handler and its text-
processing client, e.g. Microsoft Word, is carried out via a library of 
layout methods and rules, along with extensive communication between 
the math handler and the other layout components. The math handler 
uses a “callback” mechanism to ask for information about the text, such 
as where a run of text begins and ends, the properties and content of 
that run, the glyphs and glyph dimensions to be used, the math-object 
properties, line breaking data, etc. This results in callback functions that, 
for instance, examine the characters in the document’s backing store of 
characters or ask the math-font handler and operating system to obtain 
data to assist layout decisions.

For all this to work correctly, the client application needs to provide 
a backing store with the correct function names and arguments; the 
correct bases, subscripts or superscripts; the correct integrands, 
summands; etc. This means that the input model requires some 
understanding of the underlying mathematics. This is a key difference 

between computer typesetting of mathematics and a purely visual 
composition as practised in the days of metal type. It is not enough to 
look at a printed or manuscript equation to know how to reproduce 
it from the available glyphs in a font: it is necessary to understand at 
least something of what the equation means and how the parts of the 
equation relate to one another.

Although this requirement of the input model was introduced to 
enable aspects of typographical layout for mathematics, it is proving 
helpful in interacting with mathematical calculation engines, allowing 
for close integration between calculation and layout.

Math zone text is described in a mark-up language, an XML, called 
OMML (Office MathML). OMML can be converted to and from MathML 
2.04 and contains features of both the MathML presentation and content 
tag sets. OMML can be embedded in other XMLs such as WordML, and 
vice versa.

Full details on the math input 
language can be found in Unicode 
Technical Note 28:  
www.unicode.org/reports/tn28/
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Object	 Arguments	 Purpose
accent	 1	 Displays accent over base character(s)
box	 1	 Gives properties to base
boxed formula	 1	 Displays borders and/or lines through base
delimiters	 1	 Encloses base in parens, brackets, braces, etc.
delimiters with separators	 n	 Encloses bases separated by separator character, such as a vertical bar
equation array	 n	 Displays set of horizontally aligned equations
fraction	 2	 Displays normal or small built-up fraction
function apply	 2	 Displays trigonometric and other functions with function name and base
left subsup	 3	 Prefixes a subscript and/or superscript to base
lower limit	 2	 Displays limit below base
matrix	 n × m	 Displays matrix with n columns and m rows
n-ary	 3	 Displays large n-ary operator with a base and optional upper and lower limits
operator character	 1	 Used internally to give proper spacing to operators
overbar	 1	 Displays bar over base (boxed formula special case)
phantom	 1	 Suppresses any combination of base ascent, descent, width, display, or transparency
radical	 1, 2	 Displays square and nth roots
slashed fraction	 2	 Displays slashed or built-up linear fraction
stack	 2	 Displays first argument over second (like fraction but without bar)
stretch stack	 1	 Displays stretchable character above or below base, or limit above or below  
			   stretchable base character
subscript	 2	 Displays subscript relative to base
subsup	 3	 Display subscript and superscript relative to base
superscript	 2	 Display superscript relative to base
underbar	 1	 Display bar under base (boxed formula special case)
upper limit	 2	 Display limit above base

Math objects and spacing

The layout of a linear equation such as � � � � � is relatively easy. In 
more complicated equations, special built-up math handler objects are 
used to place the glyphs in the correct places. The math handler uses 
an extended set of spacing rules for operators and math objects to 
automate a number of spacing refinements that TeX delegates to the user. 
The built up math objects are summarized in the table opposite.

The function-apply object, for example, is used to insert proper 
spacing around sin and � in the expression sin �. The �-ary object is 
used to insert proper spacing around the �-ary symbol and around the 

“�-aryand”, e.g. integrand or summand. The subscript and superscript 
objects are used to provide the proper kerning between the base and the 
script element, using the cut-in values in the font math table.

The objects are based on a detailed analysis of the requirements 
of laying out mathematical notation, and provide the math handler, 
working with the math font, with precise control over the positioning of 
every element of an equation. Individual characters and smaller objects 
are positioned relative to each other and built up into larger objects that, 
in turn, are positioned relative to adjacent objects as appropriate to the 
overall shape of the equation.

Opposite: table of math layout 
handler objects, showing the number 
of arguments each object takes 
during processing and its purpose.
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Murray Sargent

Technical text consists of normal text with interspersed math zones. 
These zones contain all the mathematics and may contain as little as a 
single mathematical variable, or one or more complete equations. The 
layout process begins when a layout client, e.g. Microsoft Word, requests 
the line layout handler (LLH) to display the next line of text. The LLH 
then calls the “fetch-run” callback for the line’s first run of text. This 
callback distinguishes between text, math zones, and other in-line 
objects. When the LLH gets back the start of a math-zone object, it 
transfers control to the math layout handler (MLH). The MLH executes 
callbacks to the client to obtain math-zone properties, such as display 
versus in-line modes, zone ascent/descent, and a pointer to a client’s 
bag of properties that will be passed to the client in most subsequent 
callbacks in the math zone. The MLH then calls the fetch-run callback 
for the first run of the math zone. The fetch-run callback distinguishes 
between mathematical text, mathematical objects and mathematical 
operators. The operators are treated as special single-character 
mathematical objects. 

For example, consider Einstein’s most famous equation, � � ��2.  
The � is in its own text run, the equal sign is a mathematical operator 
object, the � is in its own text run, and the �2 is a superscript object 

with text runs for arguments. The text runs result in various callbacks 
to obtain character properties, widths, and glyphs, as well as to display 
the glyphs or variants thereof once the whole line is laid out. All text 
is treated using glyphs and glyph-ink measurements of ascents and 
descents. The math italic letters � � and � are encoded as Unicode math 
alphabetics. The operator object for the equal sign results in callbacks to 
determine the operator’s text characteristics and its default spacing class, 
in this case, relational. The superscript object results in callbacks to 
get text-run information for the base and superscript text, as well as to 
obtain the superscript vertical shift and the cut-in values for the upper-
right corner of the � and lower-left corner of the 2. These displacements 
are obtained from the math font handler, which is responsible for access 
to the math font’s math table along with appropriate scaling. When the 
glyph for the superscript 2 is fetched, the math font handler is requested 
to return a script level-1 glyph variant with a relative size specified by 
the font (typically about 70% of the text size).

This example shows how even a short and relatively simple equation 
involves interplay between the client, the math layout handler, the math 
font handler, and the font itself. More complicated examples, such as 
those shown in the following specimen pages, involve math objects like 
brackets or integrals and need glyph assemblies and other information. 
In addition, larger equations may need to be wrapped to two or more 
lines, a process that involves further callbacks and information.

An example: displaying � � ��2
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Sample settings

The following pages present specimens of the Cambria Math font used 
to typeset equations from a variety of mathematical and scientific 
disciplines. They are selected to illustrate many different aspects of the 
font and math layout behaviour discussed earlier in this book, as well as 
features that, due to space constraints, have not been covered in detail.

The creation of the sample settings is itself of some interest in the 
context of the development and testing of the the math font and layout 
handler. In order to test font behaviour and layout accuracy, Microsoft 
developed a test application with a large number of pre-loaded 
equations, as well as the ability to accept user input of additional test 
cases. This test tool was used to generate some of the sample settings 
on these specimen pages. Other samples are extracts from mathematical 
documents created using Microsoft’s math typesetting solutions.

p. 49 
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Note that the equation above is 
the same as shown in the screen 
rendering image on page 38. 
The legibility of the latter can be 
compared to the high resolution print 
version shown here.
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p. 53 
In general, we have the following formula.
The Binomial Theorem

If 𝑘 is a positive integer, then
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EXAMPLE 13
SOLUTION

The Binomial Theorem

EXAMPLE 13
SOLUTION

Radicals

The Binomial Theorem

EXAMPLE 13
SOLUTION

Radicals
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Conclusion

Conclusion

The development of support for mathematical typesetting in Microsoft 
products has been a major undertaking, involving more than forty 
people—software developers, managers and testers from many different 
groups at Microsoft, external type designers and font technicians, 
experts in mathematics and typography—, whose collaboration is 
celebrated in this book. The goal of this undertaking is the same 
that has guided earlier collaborations between mathematicians and 
typographers: to express mathematical ideas and concepts in clear, 
succinct and beautiful visual form.

Mathematicians and scientists are ‘symbol-hungry’, and neither 
the current Unicode math character encoding nor Microsoft’s 
implementation is exhaustive or closed to further extension. The 
work recorded in this book is a significant advance in many respects: 
in providing access to mathematical typesetting in the context of 
common word processing tools and a widely supported font format, 
in automating refinements to spacing and positioning that previously 
had to be made manually, and in addressing directly the appearance of 
mathematical text on screen. But this work is only the latest instance of 
an historic collaboration that will continue.

Despite the complexity of math layout requirements and the 
specialised features of math fonts and the tools for making them, type 
designers and typographers should not be hesitant in engaging in this 
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ongoing collaboration. One of the things that became apparent in the 
course of this project was just how enthusiastic mathematicians and 
scientists are to see their work well-typeset and how appreciative they 
are of the efforts involved.

The material cost of producing new fonts for metal and even photo-
typesetting effectively limited the range of typographic options available 
to mathematicians. It was always easier and cheaper to add new 
symbols to an existing typeface than to start afresh. With the advent of 
computer typography, the options expanded a little—notably with the 
collaboration of Hermann Zapf with Donald Knuth on the AMS Euler 
types—, but mathematical typesetting has yet to fully benefit from 
the digital revolution with extensive options in basic type styles. The 
Cambria Math font breaks new ground, not only via its technical features 
but also in demonstrating what is possible in terms of fresh approaches 
to the design of mathematical typesetting. We hope this project will 
inspire others.


