This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at

http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Performing
Batch Updates

Introduction

In the preceding tutorial we examined how to create an item-level DataList. Like the standard editable

GridView, each item in the Datalist included an Edit button that, when clicked, would make the item
editable. While this item-level editing works well for data that is only updated occasionally, certain use case
scenarios require the user to edit many records. If a user needs to edit dozens of records and is forced to
click Edit, make their changes, and click Update for each one, the amount of clicking can hamper her
productivity. In such situations, a better option is to provide a fully-editable DataList, one where all of its
items are in edit mode and whose values can be edited by clicking an “Update All” button on the page (see
Figure 1).

B Untitled Page - Microsolt Internet Explorer mﬁ| r._.][E E|
| Be Edt Wew Favortes Took Heb i

P Qsak =) - [@ £8 | Foeach SrFavodtes & (e G W] < G e gl Ib
ieddress | 8] it flocalust: 4791 [CodeEc DieletaDiat L istfBat chilplsbe. asp « | a6
Working with Data Tutorials Homs > Editing and Daleting with the

Datalist > Batech Update

Horme

Batch Updating with the Datalist

Easic Feporting

date all
Simple Display Jpoam s
Dredlarative Exotic Liguids
Parameters
Setting Paramater Address: 49 Gilbert St
Values City: |London
Flltering Reports Countey: | Uk
Filter by Drop-Dawn
List Mew Orleans Cajun Delights
Master-Details-
Cetsils Address: PO Box TESEY
Master/Detail Across City: |New Orlaans
TWo Pages Country: Uss
Detalls of Selected
ROw Grandma Kelly's Homestead

Formatting

Farmat Colors

Address: | 707 Oxford Rd.
City: LAnn Arbor

Custom Content in a Country: |Uss
Grichuiew
Custom Content in a Tokyo Traders

Details\visw
Cistom Cl:ﬂ_'ltg!‘l"lt e Address: 9-8 Sakimai Musask E

[e

&) oone & Localintranst.

Figure 1: Each Item in a Fully Editable DataList can be Modified

In this tutorial we’ll examine how to enable users to update suppliers’ address information using a fully

1 of 10

editable DataList.

Step 1: Create the Editable User Interface in the
DataList’s ItemTemplate

In the preceding tutorial, where we creating a standard, item-level editable DataList, we used two templates:

e ItemTemplate — contained the read-only user interface (the Label Web controls for displaying each
product’s name and price).
e EditItemTemplate — contained the edit mode user interface (the two TextBox Web controls).

The DataList’s EditItemIndex property dictates what bataListItem (if any) is rendered using the
EditItemTemplate. In particular, the patalistItem whose TtemIndex value matches the Datalist’s
EditItemIndex property is rendered using the EditItemTemplate. This model works well when only one
item can be edited at a time, but falls apart when creating a fully-editable DataList.

For a fully editable DataList, we want a// of the pataListItems to render using the editable interface. The
simplest way to accomplish this is to define the editable interface in the TtemTemplate. For modifying the
suppliers’ address information, the editable interface contains the supplier name as text and then TextBoxes
for the address, city, and country values.

Start by opening the BatchUpdate.aspx page, add a DataList control, and set its 1D property to suppliers.
From the DataList’s smart tag, opt to add a new ObjectDataSource control named suppliersbataSource.

Data Source Configuration Wizard

j Choose a Data Source Type

=l
Where will the application get data from?

T | i gl |

= 0 & & W

Arress Database Chiect Site Map ¥ML File
Databage

Specify an [0 Far the data source:
iSuppliersDataSnurcel

[Ok ll Cancel J

Figure 2: Create a New ObjectDataSource Named SuppliersDataSource

Configure the ObjectDataSource to retrieve data using the suppliersBLL class’s GetSuppliers () method
(see Figure 3). As with the preceding tutorial, rather than updating the supplier information through the
ObjectDataSource, we’ll work directly with the Business Logic Layer. Therefore, set the drop-down list to

20f10

(None) in the UPDATE tab (see Figure 4).

Configure Data Source - SuppliersDataSource E @ E,fgl

Define Data Methods

SELECT | UPDATE | INSERT | DELETE |
Chaose & methad of the business objeck that returns daks bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-twped collection,

Exarnple; GetProducts(Int32 cakegoryld), returms a DataSet,

Choose a methaod:

GetSuppliers(), returns SuppliersDataTable W

GetSupplierBySupplier I InkS2 supolierID), reburns SuppliersDataTable
GetSupplierst), returns SuppliersDakaTable :
GetSuppliersByCountry(String country), returns SuppliersDataTable |

o> |) ot]

Figure 3: Retrieve Supplier Information Using the GetSuppliers () Method

Configure Data Source - SuppliersDataSource

Define Data Methods

| SELECT | UPDATE | [SERT | DELETE |
Chaose & methad of the business objeck to associate wikh the UPDATE operation, The method shauld
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.
Examples: UpdateProduct{Product p), or UpdateProduck(Ing32 productiD, String name, Double price)
Chanse a method:
l (Mane) W]

UpdateSupplieraddress{Int32 supplierlD, String address, String ciby, String cownkry), returns Boolean

wi> | g [co

Figure 4: Set the Drop-Down List to (None) in the UPDATE Tab

30f 10

After completing the wizard, Visual Studio automatically generates the DataList’s ItemTemplate to display
each data field returned by the data source in a Label Web control. We need to modify this template so that
it provides the editing interface instead. The ItemTemplate can be customized through the Designer using
the Edit Templates option from the DataList’s smart tag or directly through the declarative syntax.

Take a moment to create an editing interface that displays the supplier’s name as text, but includes
TextBoxes for the supplier’s address, city, and country values. After making these changes, your page’s
declarative syntax should look similar to the following:

<asp:Datalist ID="Suppliers" runat="server" DataKeyField="SupplierID"
DataSourceID="SuppliersDataSource">
<ItemTemplate>
<h4><asp:Label ID="CompanyNameLabel" runat="server"
Text='<%# Eval ("CompanyName") %>' /></h4>

<table border="0">
<tr>
<td class="SupplierPropertyLabel">Address:</td>
<td class="SupplierPropertyValue">
<asp:TextBox ID="Address" runat="server"
Text='<%# Eval ("Address") %>' />
</td>
</tr>
<tr>
<td class="SupplierPropertyLabel">City:</td>
<td class="SupplierPropertyValue">
<asp:TextBox ID="City" runat="server"
Text='<%# Eval ("City") %>' />
</td>
</tr>
<tr>
<td class="SupplierPropertyLabel">Country:</td>
<td class="SupplierPropertyValue">
<asp:TextBox ID="Country" runat="server"
Text='<%# Eval ("Country") %>' />
</td>
</tr>
</table>

</ItemTemplate>
</asp:DataList>

<asp:0bjectDataSource ID="SuppliersDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetSuppliers" TypeName="SuppliersBLL">
</asp:0bjectDataSource>

Note: As with the preceding tutorial, the DataList in this tutorial must have its view state enabled.

In the TtemTemplate I’'m using two new CSS classes, SupplierPropertyLabel and
SupplierPropertyValue, Which have been added to the styles.css class and configured to use the same
style settings as the ProductPropertyLabel and ProductPropertyvalue CSS classes.

.ProductPropertylLabel, .SupplierPropertylLabel
{

font-weight: bold;

text-align: right;
}

.ProductPropertyValue, .SupplierPropertyValue
{

padding-right: 35px;
}

After making these changes, visit this page through a browser. As Figure 5 shows, each DataList item

4 0f 10

displays the supplier name as text and uses TextBoxes to display the address, city, and country.

3 Untitled Pape - Microsofl Internet Explorer FFII‘E I'__||E|!'§|
: Gl Bt Wew Favorkes Tools Hep B

4 3 M @) Foeach PrFavores 8 (e 5] o~ B G hof B

¢ fighdress |) hitp: fiocalhost: 4791 |Code EGDsleteD atalish BabcHLipdsta, s » 360
i i i Home > Editing and Deleting with the -

Working with Data Tutorials =~ oo e e s

Horme

Batch Updating with the DatalList

Basic Reporting
Simple Display Exotic Liquids
Declarative Address: (49 ailbas 5t
Parameters
City: Lendon
Setting Faramester i
"!.I"ﬂ]ues Country: Ue

Filtering Reports

Filter by Drop-Down

New Orleans Cajun Delights

LSt Address: p.0. Box 72924
Mﬂ5mf'ﬂ'¢m5' City: How Crlesns
Al Country: Usa
Master/Detail Across

Two Pages

Grandma Kelly's Homestead

Details of Selected
Roow Address: | 707 Coford Rd,
Clty: [ann fubor

Country: Usa

custom Content in a Tokyo Traders

Gridhiew

Custom Content i a Address: 9-2 Sekirmsi Mugssk

Dretailshiaw Clty: Tokyo
e Conntess e N ¥
] Do d Lol intranst

Figure 5: Each Supplier in the DataList is Editable

Step 2: Adding an “Update All” Button

While each supplier in Figure 5 has its address, city, and country fields displayed in a TextBox, there
currently is no Update button available. Rather than having an Update button per item, with fully editable
DatalLists there is typically a single “Update All” button on the page that, when clicked, updates all of the
records in the DataList. For this tutorial, let’s add two “Update All” buttons - one at the top of the page and
one at the bottom (although clicking either button will have the same effect).

Start by adding a Button Web control above the Datalist and set its 1D property to Updatea111. Next, add
the second Button Web control beneath the Datal ist, setting its 1D to Updatea112. Set the Text properties
for the two Buttons to “Update All”. Lastly, create event handlers for both Buttons’ c1ick events. Rather
than duplicating the update logic in each of the event handlers, let’s refactor that logic to a third method,
UpdateAllSupplierAddresses, having the event handlers simply invoking this third method.

Protected Sub UpdateAlll Click(sender As Object, e As EventArgs)
Handles UpdateAlll.Click
UpdateAllSupplierAddresses ()

End Sub

Protected Sub UpdateAll2 Click(sender As Object, e As EventArgs)

50f 10

Handles UpdateAll2.Click
UpdateAllSupplierAddresses ()
End Sub

Private Sub UpdateAllSupplierAddresses ()

' TODO: Write code to update all of the supplier addresses in the Datalist
End Sub

Figure 6 shows the page after the “Update All” buttons have been added.

A Untitied Pape - Microsofl Internel Explorer FVEI I"-_Il'ﬁi El
Ble Edt Www Favorites Toob Help

P Qbsk » £ 0 (B @) S Osewch rFaveies £ [0 G W] v G > &
| igdress | 8] http: {localst: 4791 /Code Edit DieletaDiatsList Bt chlipdabe. asps v| B
Working Wl‘th Data Tutr::-rlals Home > Editing and Delsting with the

D ata IJ51.‘ = Batch I.Ipdata

rome

Batch Updating with the Datalist

pdate .EJ-!

Basic Peportireg
Simple Display

Eeeclarative Exotic Liguids
Parameters

Setting Paramster
Vales

Address: |49 Gilbert St

City: London

"""" Country: UK
Filter tqr- Drop-Down
List MNew Orleans Cajun Delights
Master-Detalls-
Details Address: P.o. Box TES34
Master/Detall Across City: New Orlaans
Two Pages Country: Uss
Detalls of Selected

R.OW Grandma Kelly's Homestead

Address: |T07 Oxford Rd.
City: lann Arbor
Country: Usa

Format Colors.

‘Custom Content I a

GErichuiew

Custom Content in & Tokyo Traders

Dekadsifew

Gistmconutina| e .
£&] Dare igmwrhmu

Figure 6: Two “Update All” Buttons have been Added to the Page

Step 3: Updating All of the Suppliers’ Address
Information

With all of the DataList’s items displaying the editing interface and with the addition of the “Update All”
buttons, all that remains is writing the code to perform the batch update. Specifically, we need to loop
through the Datalist’s items and call the suppliersBLL class’s UpdateSupplieraAddress method for each
one.

The collection of pataListItem instances that makeup the DataList can be accessed via the DataList’s
Items property. With a reference to a DatalistItem, we can grab the corresponding supplierID from the
DataKeys collection and programmatically reference the TextBox Web controls within the TtemTemplate

6 0of 10

as the following code illustrates:

Private Sub UpdateAllSupplierAddresses ()
' Create an instance of the SuppliersBLL class
Dim suppliersAPI As New SuppliersBLL()

' ITterate through the Datalist's items
For Each item As DatalistItem In Suppliers.Items
' Get the supplierID from the DataKeys collection
Dim supplierID As Integer = Convert.ToInt32 (Suppliers.DataKeys (item.ItemIndex))

' Read in the user-entered values

Dim address As TextBox = CType (item.FindControl ("Address"), TextBox)
Dim city As TextBox = CType (item.FindControl ("City"), TextBox)

Dim country As TextBox = CType (item.FindControl ("Country"), TextBox)

Dim addressValue As String = Nothing,
cityValue As String = Nothing, _
countryValue As String = Nothing

If address.Text.Trim() .Length > 0 Then
addressValue = address.Text.Trim()

End If

If city.Text.Trim() .Length > 0 Then
cityValue = city.Text.Trim()

End If

If country.Text.Trim() .Length > 0 Then
countryValue = country.Text.Trim()

End If

' Call the SuppliersBLL class's UpdateSupplierAddress method
suppliersAPI.UpdateSupplierAddress _
(supplierID, addressValue, cityValue, countryValue)
Next
End Sub

When the user clicks one of the “Update All” buttons, the UpdateAllsupplierAddresses method iterates
through each pataListItem inthe suppliers Datalist and calls the suppliersBLL class’s
UpdateSupplierAddress method, passing in the corresponding values. A non-entered value for address,
city, or country passes is a value of Nothing to UpdateSupplierAddress (rather than a blank string), which
results in a database nULL for the underlying record’s fields.

Note: As an enhancement, you may want to add a status Label Web control to the page that provides some
confirmation message after the batch update is performed.

Updating Only Those Addresses That Have Been
Modified

The batch update algorithm used for this tutorial calls the UpdateSupplieraddress method for every
supplier in the DataList, regardless of whether their address information has been changed. While such blind
updates aren’t usually a performance issue, they can lead to superfluous records if you’re auditing changes
to the database table. For example, if you use triggers to record all upDATES to the suppliers table to an
auditing table, every time a user clicks the “Update All” button a new audit record will be created for each
supplier in the system, regardless of whether the user made any changes.

The ADO.NET DataTable and DataAdapter classes are designed to support batch updates where only
modified, deleted, and new records results in any database communication. Each row in the DataTable has a
RowState property that indicates whether the row has been added to the DataTable, deleted from it,
modified, or remains unchanged. When a DataTable is initially populated, all rows are marked unchanged.
Changing the value of any of the row’s columns marks the row as modified.

7 of 10

In the suppliersBLL class we update the specified supplier’s address information by first reading in the
single supplier record into a SuppliersDataTable and then set the Address, City, and Country column
values using the following code:

Public Function UpdateSupplierAddress
(supplierID As Integer, address As String, city As String, country As String)
As Boolean

Dim suppliers As Northwind.SuppliersDataTable = _
Adapter.GetSupplierBySupplierID (supplierID)

If suppliers.Count = 0 Then
' no matching record found, return false
Return False
Else
Dim supplier As Northwind.SuppliersRow = suppliers (0)

If address Is Nothing Then
supplier.SetAddressNull ()
Else
supplier.Address = address
End If

If city Is Nothing Then
supplier.SetCityNull ()
Else
supplier.City = city
End If

If country Is Nothing Then
supplier.SetCountryNull ()
Else
supplier.Country = country
End If

' Update the supplier Address-related information
Dim rowsAffected As Integer = Adapter.Update (supplier)

' Return true if precisely one row was updated, otherwise false
Return rowsAffected =1
End If
End Function

This code naively assigns the passed-in address, city, and country values to the suppliersRow in the
SuppliersDataTable regardless of whether or not the values have changed. These modifications cause the
SuppliersRow’S RowState property to be marked as modified. When the Data Access Layer’s update
method is called, it sees that the supplierRow has been modified and therefore sends an UPDATE command
to the database.

Imagine, however, that we added code to this method to only assign the passed-in address, city, and country
values if they differ from the suppliersrow’s existing values. In the case where the address, city, and
country are the same as the existing data, no changes will be made and the supplierRow’s RowState Will be
left marked as unchanged. The net result is that when the DAL’s update method is called, no database call
will be made because the suppliersRow has not been modified.

To enact this change, replace the statements that blindly assign the passed-in address, city, and country
values with the following code:

' Only assign the values to the SupplierRow's column values if they differ
If address Is Nothing AndAlso Not supplier.IsAddressNull () Then
supplier.SetAddressNull ()
ElseIf (address IsNot Nothing AndAlso supplier.IsAddressNull)
OrElse (Not supplier.IsAddressNull () AndAlso _
String.Compare (supplier.Address, address) <> 0) Then

8 of 10

supplier.Address = address
End If

If city Is Nothing AndAlso Not supplier.IsCityNull() Then
supplier.SetCityNull ()
ElseIf (city IsNot Nothing AndAlso supplier.IsCityNull)
OrElse (Not supplier.IsCityNull() AndAlso _
String.Compare (supplier.City, city) <> 0) Then
supplier.City = city
End If

If country Is Nothing AndAlso Not supplier.IsCountryNull () Then
supplier.SetCountryNull ()
ElseIf (country IsNot Nothing AndAlso supplier.IsCountryNull)
OrElse (Not supplier.IsCountryNull () AndAlso _
String.Compare (supplier.Country, country) <> 0) Then
supplier.Country = country
End If

With this added code, the DAL’s update method sends an UPDATE statement to the database for only those
records whose address-related values have changed.

Alternatively, we could keep track of whether there are any differences between the passed-in address fields
and the database data and, if there are none, simply bypass the call to the DAL’s update method. This
approach works well if you’re using the DB direct method, since the DB direct method isn’t passed a
SuppliersRow instance whose rRowsState can be checked to determine whether a database call is actually
needed.

Note: Each time the UpdateSupplierAddress method is invoked, a call is made to the database to retrieve
information about the updated record. Then, if there are any changes in data, another call to the database is
made to update the table row. This workflow could be optimized by creating an UpdateSupplierAddress
method overload that accepts an EmployeesDataTable instance that has a// of the changes from the
BatchUpdate.aspx page. Then, it could make one call to the database to get all of the records from the
suppliers table. The two resultsets could then be enumerated and only those records where changes have
occurred could be updated.

Summary

In this tutorial we saw how to create a fully editable DataList, allowing a user to quickly modify the address
information for multiple suppliers. We started by defining the editing interface — a TextBox Web control
for the supplier’s address, city, and country values — in the DataList’s TtemTemplate. Next, we added
“Update All” buttons above and below the DataList. After a user has made his changes and clicked one of
the “Update All” buttons, the pataListItems are enumerated and a call to the suppliersBLL class’s
UpdateSupplierAddress method is made.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

90of 10

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Zack
Jones and Ken Pespisa. Interested in reviewing my upcoming articles? If so, drop me a line at
mitchell@4guysfromrolla.com.

10 of 10

