Double Structure

Définition

Représente un nombre à virgule flottante double précision.

public value class double : IComparable, IComparable<double>, IConvertible, IEquatable<double>, IFormattable
public value class double : IComparable, IComparable<double>, IConvertible, IEquatable<double>, ISpanFormattable
public value class double : IComparable, IConvertible, IFormattable
public value class double : IComparable, IComparable<double>, IEquatable<double>, IFormattable
public struct Double : IComparable, IComparable<double>, IConvertible, IEquatable<double>, IFormattable
public struct Double : IComparable, IComparable<double>, IConvertible, IEquatable<double>, ISpanFormattable
[System.Serializable]
public struct Double : IComparable, IConvertible, IFormattable
[System.Serializable]
[System.Runtime.InteropServices.ComVisible(true)]
public struct Double : IComparable, IComparable<double>, IConvertible, IEquatable<double>, IFormattable
public struct Double : IComparable, IComparable<double>, IEquatable<double>, IFormattable
type double = struct
    interface IConvertible
    interface IFormattable
type double = struct
    interface IConvertible
    interface ISpanFormattable
    interface IFormattable
[<System.Serializable>]
type double = struct
    interface IFormattable
    interface IConvertible
[<System.Serializable>]
[<System.Runtime.InteropServices.ComVisible(true)>]
type double = struct
    interface IFormattable
    interface IConvertible
type double = struct
    interface IFormattable
Public Structure Double
Implements IComparable, IComparable(Of Double), IConvertible, IEquatable(Of Double), IFormattable
Public Structure Double
Implements IComparable, IComparable(Of Double), IConvertible, IEquatable(Of Double), ISpanFormattable
Public Structure Double
Implements IComparable, IConvertible, IFormattable
Public Structure Double
Implements IComparable, IComparable(Of Double), IEquatable(Of Double), IFormattable
Héritage
Double
Attributs
Implémente

Exemples

L’exemple de code suivant illustre l’utilisation de Double :

// The Temperature class stores the temperature as a Double
// and delegates most of the functionality to the Double 
// implementation.
public ref class Temperature: public IComparable, public IFormattable
{
   // IComparable.CompareTo implementation.
public:
   virtual int CompareTo( Object^ obj )
   {
      if (obj == nullptr) return 1;
      
      if (dynamic_cast<Temperature^>(obj) )
      {
         Temperature^ temp = (Temperature^)(obj);
         return m_value.CompareTo( temp->m_value );
      }
      throw gcnew ArgumentException( "object is not a Temperature" );
   }

   // IFormattable.ToString implementation.
   virtual String^ ToString( String^ format, IFormatProvider^ provider )
   {
      if ( format != nullptr )
      {
         if ( format->Equals( "F" ) )
         {
            return String::Format( "{0}'F", this->Value.ToString() );
         }

         if ( format->Equals( "C" ) )
         {
            return String::Format( "{0}'C", this->Celsius.ToString() );
         }
      }
      return m_value.ToString( format, provider );
   }

   // Parses the temperature from a string in the form
   // [ws][sign]digits['F|'C][ws]
   static Temperature^ Parse( String^ s, NumberStyles styles, IFormatProvider^ provider )
   {
      Temperature^ temp = gcnew Temperature;

      if ( s->TrimEnd(nullptr)->EndsWith( "'F" ) )
      {
         temp->Value = Double::Parse( s->Remove( s->LastIndexOf( '\'' ), 2 ), styles, provider );
      }
      else
      if ( s->TrimEnd(nullptr)->EndsWith( "'C" ) )
      {
         temp->Celsius = Double::Parse( s->Remove( s->LastIndexOf( '\'' ), 2 ), styles, provider );
      }
      else
      {
         temp->Value = Double::Parse( s, styles, provider );
      }
      return temp;
   }

protected:
   double m_value;

public:
   property double Value 
   {
      double get()
      {
         return m_value;
      }

      void set( double value )
      {
         m_value = value;
      }
   }

   property double Celsius 
   {
      double get()
      {
         return (m_value - 32.0) / 1.8;
      }

      void set( double value )
      {
         m_value = 1.8 * value + 32.0;
      }
   }
};
// The Temperature class stores the temperature as a Double
// and delegates most of the functionality to the Double
// implementation.
public class Temperature : IComparable, IFormattable
{
    // IComparable.CompareTo implementation.
    public int CompareTo(object obj) {
        if (obj == null) return 1;

        Temperature temp = obj as Temperature;
        if (obj != null)
            return m_value.CompareTo(temp.m_value);
        else
            throw new ArgumentException("object is not a Temperature");	
    }

    // IFormattable.ToString implementation.
    public string ToString(string format, IFormatProvider provider) {
        if( format != null ) {
            if( format.Equals("F") ) {
                return String.Format("{0}'F", this.Value.ToString());
            }
            if( format.Equals("C") ) {
                return String.Format("{0}'C", this.Celsius.ToString());
            }
        }

        return m_value.ToString(format, provider);
    }

    // Parses the temperature from a string in the form
    // [ws][sign]digits['F|'C][ws]
    public static Temperature Parse(string s, NumberStyles styles, IFormatProvider provider) {
        Temperature temp = new Temperature();

        if( s.TrimEnd(null).EndsWith("'F") ) {
            temp.Value = Double.Parse( s.Remove(s.LastIndexOf('\''), 2), styles, provider);
        }
        else if( s.TrimEnd(null).EndsWith("'C") ) {
            temp.Celsius = Double.Parse( s.Remove(s.LastIndexOf('\''), 2), styles, provider);
        }
        else {
            temp.Value = Double.Parse(s, styles, provider);
        }

        return temp;
    }

    // The value holder
    protected double m_value;

    public double Value {
        get {
            return m_value;
        }
        set {
            m_value = value;
        }
    }

    public double Celsius {
        get {
            return (m_value-32.0)/1.8;
        }
        set {
            m_value = 1.8*value+32.0;
        }
    }
}
' Temperature class stores the value as Double
' and delegates most of the functionality 
' to the Double implementation.
Public Class Temperature
    Implements IComparable, IFormattable

    Public Overloads Function CompareTo(ByVal obj As Object) As Integer _
        Implements IComparable.CompareTo

        If TypeOf obj Is Temperature Then
            Dim temp As Temperature = CType(obj, Temperature)

            Return m_value.CompareTo(temp.m_value)
        End If

        Throw New ArgumentException("object is not a Temperature")
    End Function

    Public Overloads Function ToString(ByVal format As String, ByVal provider As IFormatProvider) As String _
        Implements IFormattable.ToString

        If Not (format Is Nothing) Then
            If format.Equals("F") Then
                Return [String].Format("{0}'F", Me.Value.ToString())
            End If
            If format.Equals("C") Then
                Return [String].Format("{0}'C", Me.Celsius.ToString())
            End If
        End If

        Return m_value.ToString(format, provider)
    End Function

    ' Parses the temperature from a string in form
    ' [ws][sign]digits['F|'C][ws]
    Public Shared Function Parse(ByVal s As String, ByVal styles As NumberStyles, ByVal provider As IFormatProvider) As Temperature
        Dim temp As New Temperature()

        If s.TrimEnd(Nothing).EndsWith("'F") Then
            temp.Value = Double.Parse(s.Remove(s.LastIndexOf("'"c), 2), styles, provider)
        Else
            If s.TrimEnd(Nothing).EndsWith("'C") Then
                temp.Celsius = Double.Parse(s.Remove(s.LastIndexOf("'"c), 2), styles, provider)
            Else
                temp.Value = Double.Parse(s, styles, provider)
            End If
        End If
        Return temp
    End Function

    ' The value holder
    Protected m_value As Double

    Public Property Value() As Double
        Get
            Return m_value
        End Get
        Set(ByVal Value As Double)
            m_value = Value
        End Set
    End Property

    Public Property Celsius() As Double
        Get
            Return (m_value - 32) / 1.8
        End Get
        Set(ByVal Value As Double)
            m_value = Value * 1.8 + 32
        End Set
    End Property
End Class

Remarques

Le Double type valeur représente un nombre de 64 bits double précision dont les valeurs sont comprises entre 1.79769313486232 E308 négatif et 1.79769313486232 E308 positif, ainsi qu’un zéro positif ou négatif, PositiveInfinity , NegativeInfinity et non un nombre ( NaN ). Elle est destinée à représenter des valeurs extrêmement volumineuses (telles que les distances entre les planètes ou les galaxies) ou très petites (par exemple, la masse moléculaire d’une substance en kilogrammes) et qui sont souvent imprécises (par exemple, la distance entre la terre et un autre système solaire). Le Double type est conforme à la norme IEC 60559:1989 (IEEE 754) pour l’arithmétique à virgule flottante binaire.

Cette rubrique contient les sections suivantes :

Représentation et précision des Floating-Point

Le Double type de données stocke des valeurs à virgule flottante double précision dans un format binaire 64 bits, comme indiqué dans le tableau suivant :

Élément Bits
Mantisse ou mantisse 0-51
Exponent 52-62
Sign (0 = positif, 1 = négatif) 63

Tout comme les fractions décimales ne peuvent pas représenter précisément des valeurs fractionnaires (par exemple Math.PI , 1/3 ou), les fractions binaires ne peuvent pas représenter des valeurs fractionnaires. Par exemple, 1/10, qui est représenté précisément par 1 comme une fraction décimale, est représenté par. 001100110011 comme une fraction binaire, avec le modèle « 0011 » qui se répète à l’infini. Dans ce cas, la valeur à virgule flottante fournit une représentation imprécise du nombre qu’elle représente. L’exécution d’opérations mathématiques supplémentaires sur la valeur à virgule flottante d’origine tend souvent à augmenter son manque de précision. Par exemple, si nous comparons le résultat de la multiplication de 1 par 10 et l’ajout de 1 à 1 9 fois, nous voyons que l’addition, car elle a impliqué huit opérations supplémentaires, a produit le résultat moins précis. Notez que cette disparité est apparente uniquement si nous affichons les deux Double valeurs en utilisant la chaîne de format numérique standard« R », ce qui, si nécessaire, affiche les 17 chiffres de précision pris en charge par le Double type.

using System;

public class Example
{
   public static void Main()
   {
      Double value = .1;
      Double result1 = value * 10;
      Double result2 = 0;
      for (int ctr = 1; ctr <= 10; ctr++)
         result2 += value;

      Console.WriteLine(".1 * 10:           {0:R}", result1);
      Console.WriteLine(".1 Added 10 times: {0:R}", result2);
   }
}
// The example displays the following output:
//       .1 * 10:           1
//       .1 Added 10 times: 0.99999999999999989
Module Example
   Public Sub Main()
      Dim value As Double = .1
      Dim result1 As Double = value * 10
      Dim result2 As Double
      For ctr As Integer = 1 To 10
         result2 += value
      Next
      Console.WriteLine(".1 * 10:           {0:R}", result1)
      Console.WriteLine(".1 Added 10 times: {0:R}", result2)
   End Sub
End Module
' The example displays the following output:
'       .1 * 10:           1
'       .1 Added 10 times: 0.99999999999999989

Comme certains nombres ne peuvent pas être représentés exactement comme des valeurs binaires fractionnaires, les nombres à virgule flottante peuvent uniquement se rapprocher des nombres réels.

Tous les nombres à virgule flottante ont également un nombre limité de chiffres significatifs, qui détermine également la précision avec laquelle une valeur à virgule flottante se rapproche d’un nombre réel. Une Double valeur peut comporter jusqu’à 15 chiffres décimaux, bien qu’un maximum de 17 chiffres soit géré en interne. Cela signifie que certaines opérations à virgule flottante peuvent ne pas avoir la précision pour modifier une valeur à virgule flottante. L'exemple suivant illustre cette situation. Il définit une valeur à virgule flottante très grande, puis ajoute le produit de Double.Epsilon et un quadrillion à celui-ci. Toutefois, le produit est trop petit pour modifier la valeur à virgule flottante d’origine. Son chiffre le moins significatif est les millièmes, tandis que le chiffre le plus significatif dans le produit est de 10à 309.

using System;

public class Example
{
   public static void Main()
   {
      Double value = 123456789012.34567;
      Double additional = Double.Epsilon * 1e15;
      Console.WriteLine("{0} + {1} = {2}", value, additional,
                                           value + additional);
   }
}
// The example displays the following output:
//    123456789012.346 + 4.94065645841247E-309 = 123456789012.346
Module Example
   Public Sub Main()
      Dim value As Double = 123456789012.34567
      Dim additional As Double = Double.Epsilon * 1e15
      Console.WriteLine("{0} + {1} = {2}", value, additional, 
                                           value + additional)
   End Sub
End Module
' The example displays the following output:
'   123456789012.346 + 4.94065645841247E-309 = 123456789012.346

La précision limitée d’un nombre à virgule flottante a plusieurs conséquences :

  • Deux nombres à virgule flottante qui apparaissent égaux pour une précision particulière peuvent ne pas l'être parce que leurs chiffres de droite sont différents. Dans l’exemple suivant, une série de nombres est ajoutée ensemble, et son total est comparé au total prévu. Bien que les deux valeurs semblent identiques, un appel à la Equals méthode indique qu’elles ne le sont pas.

    using System;
    
    public class Example
    {
       public static void Main()
       {
          Double[] values = { 10.0, 2.88, 2.88, 2.88, 9.0 };
          Double result = 27.64;
          Double total = 0;
          foreach (var value in values)
             total += value;
    
          if (total.Equals(result))
             Console.WriteLine("The sum of the values equals the total.");
          else
             Console.WriteLine("The sum of the values ({0}) does not equal the total ({1}).",
                               total, result);
       }
    }
    // The example displays the following output:
    //      The sum of the values (36.64) does not equal the total (36.64).
    //
    // If the index items in the Console.WriteLine statement are changed to {0:R},
    // the example displays the following output:
    //       The sum of the values (27.639999999999997) does not equal the total (27.64).
    
    Module Example
       Public Sub Main()
          Dim values() As Double = { 10.0, 2.88, 2.88, 2.88, 9.0 }
          Dim result As Double = 27.64
          Dim total As Double
          For Each value In values
             total += value
          Next
          If total.Equals(result) Then
             Console.WriteLine("The sum of the values equals the total.")
          Else
             Console.WriteLine("The sum of the values ({0}) does not equal the total ({1}).",
                               total, result) 
          End If     
       End Sub
    End Module
    ' The example displays the following output:
    '      The sum of the values (36.64) does not equal the total (36.64).   
    '
    ' If the index items in the Console.WriteLine statement are changed to {0:R},
    ' the example displays the following output:
    '       The sum of the values (27.639999999999997) does not equal the total (27.64).
    

    Si vous modifiez les éléments de mise en forme dans l' Console.WriteLine(String, Object, Object) instruction de {0} et {1} en {0:R} et pour {1:R} Afficher tous les chiffres significatifs des deux Double valeurs, il est clair que les deux valeurs sont inégales en raison d’une perte de précision pendant les opérations d’addition. Dans ce cas, le problème peut être résolu en appelant la Math.Round(Double, Int32) méthode pour arrondir les Double valeurs à la précision souhaitée avant d’effectuer la comparaison.

  • Une opération mathématique ou de comparaison qui utilise un nombre à virgule flottante peut ne pas donner le même résultat si un nombre décimal est utilisé, car le nombre à virgule flottante binaire peut ne pas être égal au nombre décimal. Un exemple précédent illustre cela en affichant le résultat de la multiplication de 1 par 10 et en ajoutant. 1 fois.

    Lorsque la précision dans les opérations numériques avec des valeurs fractionnaires est importante, vous pouvez utiliser le Decimal plutôt que le Double type. Lorsque la précision dans les opérations numériques avec des valeurs intégrales au-delà de la plage des Int64 UInt64 types ou est importante, utilisez le BigInteger type.

  • Une valeur peut ne pas aller-retour si un nombre à virgule flottante est impliqué. Une valeur est dite aller-retour si une opération convertit un nombre à virgule flottante d’origine en une autre forme, une opération inverse transforme le formulaire converti en nombre à virgule flottante, et le nombre à virgule flottante final n’est pas égal au nombre à virgule flottante d’origine. L’aller-retour peut échouer parce qu’un ou plusieurs chiffres les moins significatifs sont perdus ou modifiés dans une conversion. Dans l’exemple suivant, trois Double valeurs sont converties en chaînes et enregistrées dans un fichier. Comme le montre la sortie, toutefois, même si les valeurs semblent identiques, les valeurs restaurées ne sont pas égales aux valeurs d’origine.

    using System;
    using System.IO;
    
    public class Example
    {
       public static void Main()
       {
          StreamWriter sw = new StreamWriter(@".\Doubles.dat");
          Double[] values = { 2.2/1.01, 1.0/3, Math.PI };
          for (int ctr = 0; ctr < values.Length; ctr++) {
             sw.Write(values[ctr].ToString());
             if (ctr != values.Length - 1)
                sw.Write("|");
          }
          sw.Close();
    
          Double[] restoredValues = new Double[values.Length];
          StreamReader sr = new StreamReader(@".\Doubles.dat");
          string temp = sr.ReadToEnd();
          string[] tempStrings = temp.Split('|');
          for (int ctr = 0; ctr < tempStrings.Length; ctr++)
             restoredValues[ctr] = Double.Parse(tempStrings[ctr]);
    
          for (int ctr = 0; ctr < values.Length; ctr++)
             Console.WriteLine("{0} {2} {1}", values[ctr],
                               restoredValues[ctr],
                               values[ctr].Equals(restoredValues[ctr]) ? "=" : "<>");
       }
    }
    // The example displays the following output:
    //       2.17821782178218 <> 2.17821782178218
    //       0.333333333333333 <> 0.333333333333333
    //       3.14159265358979 <> 3.14159265358979
    
    Imports System.IO
    
    Module Example
       Public Sub Main()
          Dim sw As New StreamWriter(".\Doubles.dat")
          Dim values() As Double = { 2.2/1.01, 1.0/3, Math.PI }
          For ctr As Integer = 0 To values.Length - 1
             sw.Write(values(ctr).ToString())
             If ctr <> values.Length - 1 Then sw.Write("|")
          Next      
          sw.Close()
          
          Dim restoredValues(values.Length - 1) As Double
          Dim sr As New StreamReader(".\Doubles.dat")
          Dim temp As String = sr.ReadToEnd()
          Dim tempStrings() As String = temp.Split("|"c)
          For ctr As Integer = 0 To tempStrings.Length - 1
             restoredValues(ctr) = Double.Parse(tempStrings(ctr))   
          Next 
    
          For ctr As Integer = 0 To values.Length - 1
             Console.WriteLine("{0} {2} {1}", values(ctr), 
                               restoredValues(ctr),
                               If(values(ctr).Equals(restoredValues(ctr)), "=", "<>"))
          Next
       End Sub
    End Module
    ' The example displays the following output:
    '       2.17821782178218 <> 2.17821782178218
    '       0.333333333333333 <> 0.333333333333333
    '       3.14159265358979 <> 3.14159265358979
    

    Dans ce cas, les valeurs peuvent être arrondies avec succès à l’aide de la chaîne de format numérique standard « G17 » afin de conserver la précision totale des Double valeurs, comme le montre l’exemple suivant.

    using System;
    using System.IO;
    
    public class Example
    {
       public static void Main()
       {
          StreamWriter sw = new StreamWriter(@".\Doubles.dat");
          Double[] values = { 2.2/1.01, 1.0/3, Math.PI };
          for (int ctr = 0; ctr < values.Length; ctr++)
             sw.Write("{0:G17}{1}", values[ctr], ctr < values.Length - 1 ? "|" : "" );
    
          sw.Close();
    
          Double[] restoredValues = new Double[values.Length];
          StreamReader sr = new StreamReader(@".\Doubles.dat");
          string temp = sr.ReadToEnd();
          string[] tempStrings = temp.Split('|');
          for (int ctr = 0; ctr < tempStrings.Length; ctr++)
             restoredValues[ctr] = Double.Parse(tempStrings[ctr]);
    
          for (int ctr = 0; ctr < values.Length; ctr++)
             Console.WriteLine("{0} {2} {1}", values[ctr],
                               restoredValues[ctr],
                               values[ctr].Equals(restoredValues[ctr]) ? "=" : "<>");
       }
    }
    // The example displays the following output:
    //       2.17821782178218 = 2.17821782178218
    //       0.333333333333333 = 0.333333333333333
    //       3.14159265358979 = 3.14159265358979
    
    Imports System.IO
    
    Module Example
       Public Sub Main()
          Dim sw As New StreamWriter(".\Doubles.dat")
          Dim values() As Double = { 2.2/1.01, 1.0/3, Math.PI }
          For ctr As Integer = 0 To values.Length - 1
             sw.Write("{0:G17}{1}", values(ctr), 
                      If(ctr < values.Length - 1, "|", ""))
          Next      
          sw.Close()
          
          Dim restoredValues(values.Length - 1) As Double
          Dim sr As New StreamReader(".\Doubles.dat")
          Dim temp As String = sr.ReadToEnd()
          Dim tempStrings() As String = temp.Split("|"c)
          For ctr As Integer = 0 To tempStrings.Length - 1
             restoredValues(ctr) = Double.Parse(tempStrings(ctr))   
          Next 
    
          For ctr As Integer = 0 To values.Length - 1
             Console.WriteLine("{0} {2} {1}", values(ctr), 
                               restoredValues(ctr),
                               If(values(ctr).Equals(restoredValues(ctr)), "=", "<>"))
          Next
       End Sub
    End Module
    ' The example displays the following output:
    '       2.17821782178218 = 2.17821782178218
    '       0.333333333333333 = 0.333333333333333
    '       3.14159265358979 = 3.14159265358979
    

Important

Lorsqu’il est utilisé avec une Double valeur, le spécificateur de format "R" dans certains cas ne parvient pas à effectuer un aller-retour correct de la valeur d’origine. Pour garantir Double l’aller-retour des valeurs, utilisez le spécificateur de format "G17".

  • Single les valeurs ont une précision inférieure à celle des Double valeurs. Une Single valeur qui est convertie en apparemment équivalente Double n’est souvent pas égale à la Double valeur en raison de différences de précision. Dans l’exemple suivant, le résultat des opérations de division identiques est assigné à un Double et une Single valeur. Une fois que la Single valeur est castée en Double , une comparaison des deux valeurs indique qu’elles sont inégales.

    using System;
    
    public class Example
    {
       public static void Main()
       {
          Double value1 = 1/3.0;
          Single sValue2 = 1/3.0f;
          Double value2 = (Double) sValue2;
          Console.WriteLine("{0:R} = {1:R}: {2}", value1, value2,
                                              value1.Equals(value2));
       }
    }
    // The example displays the following output:
    //        0.33333333333333331 = 0.3333333432674408: False
    
    Module Example
       Public Sub Main()
          Dim value1 As Double = 1/3
          Dim sValue2 As Single = 1/3
          Dim value2 As Double = CDbl(sValue2)
          Console.WriteLine("{0} = {1}: {2}", value1, value2, value1.Equals(value2))
       End Sub
    End Module
    ' The example displays the following output:
    '       0.33333333333333331 = 0.3333333432674408: False
    

    Pour éviter ce problème, utilisez la Double à la place du Single type de données ou utilisez la Round méthode afin que les deux valeurs aient la même précision.

En outre, le résultat des opérations arithmétiques et d’assignation avec des Double valeurs peut varier légèrement en fonction de la plateforme en raison de la perte de précision du Double type. Par exemple, le résultat de l’assignation d’une Double valeur littérale peut différer dans les versions 32 bits et 64 bits de l' .NET Framework. L’exemple suivant illustre cette différence lorsque la valeur littérale-4.42330604244772 E-305 et une variable dont la valeur est-4.42330604244772 E-305 sont assignées à une Double variable. Notez que le résultat de la Parse(String) méthode dans ce cas ne subit pas de perte de précision.

double value = -4.42330604244772E-305;

double fromLiteral = -4.42330604244772E-305;
double fromVariable = value;
double fromParse = Double.Parse("-4.42330604244772E-305");

Console.WriteLine("Double value from literal: {0,29:R}", fromLiteral);
Console.WriteLine("Double value from variable: {0,28:R}", fromVariable);
Console.WriteLine("Double value from Parse method: {0,24:R}", fromParse);
// On 32-bit versions of the .NET Framework, the output is:
//    Double value from literal:        -4.42330604244772E-305
//    Double value from variable:       -4.42330604244772E-305
//    Double value from Parse method:   -4.42330604244772E-305
//
// On other versions of the .NET Framework, the output is:
//    Double value from literal:      -4.4233060424477198E-305
//    Double value from variable:     -4.4233060424477198E-305
//    Double value from Parse method:   -4.42330604244772E-305
Dim value As Double = -4.42330604244772E-305

Dim fromLiteral As Double = -4.42330604244772E-305
Dim fromVariable As Double = value
Dim fromParse As Double = Double.Parse("-4.42330604244772E-305")

Console.WriteLine("Double value from literal: {0,29:R}", fromLiteral)
Console.WriteLine("Double value from variable: {0,28:R}", fromVariable)
Console.WriteLine("Double value from Parse method: {0,24:R}", fromParse)      
' On 32-bit versions of the .NET Framework, the output is:
'    Double value from literal:        -4.42330604244772E-305
'    Double value from variable:       -4.42330604244772E-305
'    Double value from Parse method:   -4.42330604244772E-305
'
' On other versions of the .NET Framework, the output is:
'    Double value from literal:        -4.4233060424477198E-305
'    Double value from variable:       -4.4233060424477198E-305
'    Double value from Parse method:     -4.42330604244772E-305

Test de l’égalité

Pour être considéré comme égal, deux Double valeurs doivent représenter des valeurs identiques. Toutefois, en raison de différences de précision entre les valeurs, ou en raison d’une perte de précision par une ou les deux valeurs, les valeurs à virgule flottante supposées être identiques sont souvent inégales en raison de différences dans leurs chiffres les moins significatifs. Par conséquent, les appels à la Equals méthode pour déterminer si deux valeurs sont égales, ou les appels à la CompareTo méthode pour déterminer la relation entre deux Double valeurs, produisent souvent des résultats inattendus. Cela est évident dans l’exemple suivant, où deux valeurs apparemment égales ne Double sont pas égales, car la première a 15 chiffres de précision, tandis que la seconde a 17.

using System;

public class Example
{
   public static void Main()
   {
      double value1 = .333333333333333;
      double value2 = 1.0/3;
      Console.WriteLine("{0:R} = {1:R}: {2}", value1, value2, value1.Equals(value2));
   }
}
// The example displays the following output:
//        0.333333333333333 = 0.33333333333333331: False
Module Example
   Public Sub Main()
      Dim value1 As Double = .333333333333333
      Dim value2 As Double = 1/3
      Console.WriteLine("{0:R} = {1:R}: {2}", value1, value2, value1.Equals(value2))
   End Sub
End Module
' The example displays the following output:
'       0.333333333333333 = 0.33333333333333331: False

Les valeurs calculées qui suivent des chemins de code différents et qui sont manipulés de différentes façons s’avèrent souvent inégales. Dans l’exemple suivant, une Double valeur est carrée, puis la racine carrée est calculée pour restaurer la valeur d’origine. Une seconde Double est multipliée par 3,51 et au carré avant que la racine carrée du résultat soit divisée par 3,51 pour restaurer la valeur d’origine. Bien que les deux valeurs semblent identiques, un appel à la Equals(Double) méthode indique qu’elles ne sont pas égales. L’utilisation de la chaîne de format standard « R » pour retourner une chaîne de résultat qui affiche tous les chiffres significatifs de chaque valeur double indique que la deuxième valeur est .0000000000001 inférieure à la première.

using System;

public class Example
{
   public static void Main()
   {
      double value1 = 100.10142;
      value1 = Math.Sqrt(Math.Pow(value1, 2));
      double value2 = Math.Pow(value1 * 3.51, 2);
      value2 = Math.Sqrt(value2) / 3.51;
      Console.WriteLine("{0} = {1}: {2}\n",
                        value1, value2, value1.Equals(value2));
      Console.WriteLine("{0:R} = {1:R}", value1, value2);
   }
}
// The example displays the following output:
//    100.10142 = 100.10142: False
//
//    100.10142 = 100.10141999999999
Module Example
   Public Sub Main()
      Dim value1 As Double = 100.10142
      value1 = Math.Sqrt(Math.Pow(value1, 2))
      Dim value2 As Double = Math.Pow(value1 * 3.51, 2)
      value2 = Math.Sqrt(value2) / 3.51
      Console.WriteLine("{0} = {1}: {2}", 
                        value1, value2, value1.Equals(value2)) 
      Console.WriteLine()
      Console.WriteLine("{0:R} = {1:R}", value1, value2) 
   End Sub
End Module
' The example displays the following output:
'    100.10142 = 100.10142: False
'    
'    100.10142 = 100.10141999999999

Dans les cas où une perte de précision est susceptible d’affecter le résultat d’une comparaison, vous pouvez adopter l’une des alternatives suivantes pour appeler Equals la CompareTo méthode ou :

  • Appelez la Math.Round méthode pour vous assurer que les deux valeurs ont la même précision. L’exemple suivant modifie un exemple précédent pour utiliser cette approche afin que deux valeurs fractionnaires soient équivalentes.

    using System;
    
    public class Example
    {
       public static void Main()
       {
          double value1 = .333333333333333;
          double value2 = 1.0/3;
          int precision = 7;
          value1 = Math.Round(value1, precision);
          value2 = Math.Round(value2, precision);
          Console.WriteLine("{0:R} = {1:R}: {2}", value1, value2, value1.Equals(value2));
       }
    }
    // The example displays the following output:
    //        0.3333333 = 0.3333333: True
    
    Module Example
       Public Sub Main()
          Dim value1 As Double = .333333333333333
          Dim value2 As Double = 1/3
          Dim precision As Integer = 7
          value1 = Math.Round(value1, precision)
          value2 = Math.Round(value2, precision)
          Console.WriteLine("{0:R} = {1:R}: {2}", value1, value2, value1.Equals(value2))
       End Sub
    End Module
    ' The example displays the following output:
    '       0.3333333 = 0.3333333: True
    

    Le problème de précision s’applique toujours à l’arrondi des valeurs de milieu. Pour plus d'informations, voir la méthode Math.Round(Double, Int32, MidpointRounding).

  • Test de l’égalité approximative plutôt que l’égalité. Pour cela, vous devez définir une valeur absolue selon laquelle les deux valeurs peuvent différer, mais être égales, ou définir une valeur relative par laquelle la valeur la plus petite peut divergent de la plus grande valeur.

    Avertissement

    Double.Epsilon est parfois utilisé comme mesure absolue de la distance entre deux Double valeurs lors du test d’égalité. Toutefois, Double.Epsilon mesure la plus petite valeur possible qui peut être ajoutée ou soustraite d’un Double dont la valeur est égale à zéro. Pour la plupart des valeurs positives et négatives Double , la valeur de Double.Epsilon est trop petite pour être détectée. Par conséquent, à l’exception des valeurs qui sont égales à zéro, nous ne recommandons pas son utilisation dans les tests d’égalité.

    L’exemple suivant utilise la dernière approche pour définir une IsApproximatelyEqual méthode qui teste la différence relative entre deux valeurs. Il compare également le résultat des appels à la IsApproximatelyEqual méthode et à la Equals(Double) méthode.

    using System;
    
    public class Example
    {
       public static void Main()
       {
          double one1 = .1 * 10;
          double one2 = 0;
          for (int ctr = 1; ctr <= 10; ctr++)
             one2 += .1;
    
          Console.WriteLine("{0:R} = {1:R}: {2}", one1, one2, one1.Equals(one2));
          Console.WriteLine("{0:R} is approximately equal to {1:R}: {2}",
                            one1, one2,
                            IsApproximatelyEqual(one1, one2, .000000001));
       }
    
       static bool IsApproximatelyEqual(double value1, double value2, double epsilon)
       {
          // If they are equal anyway, just return True.
          if (value1.Equals(value2))
             return true;
    
          // Handle NaN, Infinity.
          if (Double.IsInfinity(value1) | Double.IsNaN(value1))
             return value1.Equals(value2);
          else if (Double.IsInfinity(value2) | Double.IsNaN(value2))
             return value1.Equals(value2);
    
          // Handle zero to avoid division by zero
          double divisor = Math.Max(value1, value2);
          if (divisor.Equals(0))
             divisor = Math.Min(value1, value2);
    
          return Math.Abs((value1 - value2) / divisor) <= epsilon;
       }
    }
    // The example displays the following output:
    //       1 = 0.99999999999999989: False
    //       1 is approximately equal to 0.99999999999999989: True
    
    Module Example
       Public Sub Main()
          Dim one1 As Double = .1 * 10
          Dim one2 As Double = 0
          For ctr As Integer = 1 To 10
             one2 += .1
          Next
          Console.WriteLine("{0:R} = {1:R}: {2}", one1, one2, one1.Equals(one2))
          Console.WriteLine("{0:R} is approximately equal to {1:R}: {2}", 
                            one1, one2, 
                            IsApproximatelyEqual(one1, one2, .000000001))   
       End Sub
    
       Function IsApproximatelyEqual(value1 As Double, value2 As Double, 
                                     epsilon As Double) As Boolean
          ' If they are equal anyway, just return True.
          If value1.Equals(value2) Then Return True
          
          ' Handle NaN, Infinity.
          If Double.IsInfinity(value1) Or Double.IsNaN(value1) Then
             Return value1.Equals(value2)
          Else If Double.IsInfinity(value2) Or Double.IsNaN(value2)
             Return value1.Equals(value2)
          End If
          
          ' Handle zero to avoid division by zero
          Dim divisor As Double = Math.Max(value1, value2)
          If divisor.Equals(0) Then
             divisor = Math.Min(value1, value2)
          End If 
          
          Return Math.Abs((value1 - value2) / divisor) <= epsilon           
       End Function
    End Module
    ' The example displays the following output:
    '       1 = 0.99999999999999989: False
    '       1 is approximately equal to 0.99999999999999989: True
    

Valeurs de Floating-Point et exceptions

Contrairement aux opérations avec des types intégraux, qui lèvent des exceptions en cas de dépassement de capacité ou d’opérations illégales telles que la division par zéro, les opérations avec des valeurs à virgule flottante ne lèvent pas d’exceptions. Au lieu de cela, dans des situations exceptionnelles, le résultat d’une opération à virgule flottante est zéro, l’infini positif, l’infini négatif ou une valeur non numérique (NaN) :

  • Si le résultat d’une opération à virgule flottante est trop petit pour le format de destination, le résultat est égal à zéro. Cela peut se produire lorsque deux nombres très petits sont multipliés, comme le montre l’exemple suivant.

    using System;
    
    public class Example
    {
       public static void Main()
       {
          Double value1 = 1.1632875981534209e-225;
          Double value2 = 9.1642346778e-175;
          Double result = value1 * value2;
          Console.WriteLine("{0} * {1} = {2}", value1, value2, result);
          Console.WriteLine("{0} = 0: {1}", result, result.Equals(0.0));
       }
    }
    // The example displays the following output:
    //       1.16328759815342E-225 * 9.1642346778E-175 = 0
    //       0 = 0: True
    
    Module Example
       Public Sub Main()
          Dim value1 As Double = 1.1632875981534209e-225
          Dim value2 As Double = 9.1642346778e-175
          Dim result As Double = value1 * value2
          Console.WriteLine("{0} * {1} = {2}", value1, value2, result)
          Console.WriteLine("{0} = 0: {1}", result, result.Equals(0.0))
       End Sub
    End Module
    ' The example displays the following output:
    '       1.16328759815342E-225 * 9.1642346778E-175 = 0
    '       0 = 0: True
    
  • Si la grandeur du résultat d’une opération à virgule flottante dépasse la plage du format de destination, le résultat de l’opération est PositiveInfinity ou NegativeInfinity , selon le cas pour le signe du résultat. Le résultat d’une opération qui dépasse le résultat Double.MaxValue est PositiveInfinity , et le résultat d’une opération qui dépasse le résultat Double.MinValue est NegativeInfinity , comme le montre l’exemple suivant.

    using System;
    
    public class Example
    {
       public static void Main()
       {
          Double value1 = 4.565e153;
          Double value2 = 6.9375e172;
          Double result = value1 * value2;
          Console.WriteLine("PositiveInfinity: {0}",
                             Double.IsPositiveInfinity(result));
          Console.WriteLine("NegativeInfinity: {0}\n",
                            Double.IsNegativeInfinity(result));
    
          value1 = -value1;
          result = value1 * value2;
          Console.WriteLine("PositiveInfinity: {0}",
                             Double.IsPositiveInfinity(result));
          Console.WriteLine("NegativeInfinity: {0}",
                            Double.IsNegativeInfinity(result));
       }
    }
    
    // The example displays the following output:
    //       PositiveInfinity: True
    //       NegativeInfinity: False
    //
    //       PositiveInfinity: False
    //       NegativeInfinity: True
    
    Module Example
       Public Sub Main()
          Dim value1 As Double = 4.565e153
          Dim value2 As Double = 6.9375e172
          Dim result As Double = value1 * value2
          Console.WriteLine("PositiveInfinity: {0}", 
                             Double.IsPositiveInfinity(result))
          Console.WriteLine("NegativeInfinity: {0}", 
                            Double.IsNegativeInfinity(result))
          Console.WriteLine()                  
          value1 = -value1
          result = value1 * value2
          Console.WriteLine("PositiveInfinity: {0}", 
                             Double.IsPositiveInfinity(result))
          Console.WriteLine("NegativeInfinity: {0}", 
                            Double.IsNegativeInfinity(result))
       End Sub
    End Module
    ' The example displays the following output:
    '       PositiveInfinity: True
    '       NegativeInfinity: False
    '       
    '       PositiveInfinity: False
    '       NegativeInfinity: True
    

    PositiveInfinity résulte également d’une division par zéro avec un dividende positif et des NegativeInfinity résultats d’une division par zéro avec un dividende négatif.

  • Si une opération à virgule flottante n’est pas valide, le résultat de l’opération est NaN . Par exemple, NaN les résultats des opérations suivantes :

  • Toute opération à virgule flottante avec une entrée non valide. Par exemple, l’appel de la Math.Sqrt méthode avec une valeur négative retourne NaN , tout comme l’appel de la Math.Acos méthode avec une valeur supérieure à 1 ou inférieure à 1 négatif.

  • Toute opération avec un argument dont la valeur est Double.NaN .

Conversions de type et structure double

La Double structure ne définit pas d’opérateurs de conversion explicites ou implicites ; à la place, les conversions sont implémentées par le compilateur.

La conversion de la valeur d’un type numérique primitif en un Double est une conversion étendue et ne nécessite donc pas d’opérateur de cast explicite ou d’appel à une méthode de conversion à moins qu’un compilateur l’exige explicitement. par exemple, le compilateur C# requiert un opérateur de cast pour les conversions de Decimal en Double , contrairement au compilateur Visual Basic. L’exemple suivant convertit la valeur minimale ou maximale d’autres types numériques primitifs en Double .

using System;

public class Example
{
   public static void Main()
   {
      dynamic[] values = { Byte.MinValue, Byte.MaxValue, Decimal.MinValue,
                           Decimal.MaxValue, Int16.MinValue, Int16.MaxValue,
                           Int32.MinValue, Int32.MaxValue, Int64.MinValue,
                           Int64.MaxValue, SByte.MinValue, SByte.MaxValue,
                           Single.MinValue, Single.MaxValue, UInt16.MinValue,
                           UInt16.MaxValue, UInt32.MinValue, UInt32.MaxValue,
                           UInt64.MinValue, UInt64.MaxValue };
      double dblValue;
      foreach (var value in values) {
         if (value.GetType() == typeof(Decimal))
            dblValue = (Double) value;
         else
            dblValue = value;
         Console.WriteLine("{0} ({1}) --> {2:R} ({3})",
                           value, value.GetType().Name,
                           dblValue, dblValue.GetType().Name);
      }
   }
}
// The example displays the following output:
//    0 (Byte) --> 0 (Double)
//    255 (Byte) --> 255 (Double)
//    -79228162514264337593543950335 (Decimal) --> -7.9228162514264338E+28 (Double)
//    79228162514264337593543950335 (Decimal) --> 7.9228162514264338E+28 (Double)
//    -32768 (Int16) --> -32768 (Double)
//    32767 (Int16) --> 32767 (Double)
//    -2147483648 (Int32) --> -2147483648 (Double)
//    2147483647 (Int32) --> 2147483647 (Double)
//    -9223372036854775808 (Int64) --> -9.2233720368547758E+18 (Double)
//    9223372036854775807 (Int64) --> 9.2233720368547758E+18 (Double)
//    -128 (SByte) --> -128 (Double)
//    127 (SByte) --> 127 (Double)
//    -3.402823E+38 (Single) --> -3.4028234663852886E+38 (Double)
//    3.402823E+38 (Single) --> 3.4028234663852886E+38 (Double)
//    0 (UInt16) --> 0 (Double)
//    65535 (UInt16) --> 65535 (Double)
//    0 (UInt32) --> 0 (Double)
//    4294967295 (UInt32) --> 4294967295 (Double)
//    0 (UInt64) --> 0 (Double)
//    18446744073709551615 (UInt64) --> 1.8446744073709552E+19 (Double)
Module Example
   Public Sub Main()
      Dim values() As Object = { Byte.MinValue, Byte.MaxValue, Decimal.MinValue,
                                 Decimal.MaxValue, Int16.MinValue, Int16.MaxValue,
                                 Int32.MinValue, Int32.MaxValue, Int64.MinValue,
                                 Int64.MaxValue, SByte.MinValue, SByte.MaxValue,
                                 Single.MinValue, Single.MaxValue, UInt16.MinValue,
                                 UInt16.MaxValue, UInt32.MinValue, UInt32.MaxValue,
                                 UInt64.MinValue, UInt64.MaxValue }
      Dim dblValue As Double
      For Each value In values
         dblValue = value
         Console.WriteLine("{0} ({1}) --> {2:R} ({3})",
                           value, value.GetType().Name,
                           dblValue, dblValue.GetType().Name)
      Next
   End Sub
End Module
' The example displays the following output:
'    0 (Byte) --> 0 (Double)
'    255 (Byte) --> 255 (Double)
'    -79228162514264337593543950335 (Decimal) --> -7.9228162514264338E+28 (Double)
'    79228162514264337593543950335 (Decimal) --> 7.9228162514264338E+28 (Double)
'    -32768 (Int16) --> -32768 (Double)
'    32767 (Int16) --> 32767 (Double)
'    -2147483648 (Int32) --> -2147483648 (Double)
'    2147483647 (Int32) --> 2147483647 (Double)
'    -9223372036854775808 (Int64) --> -9.2233720368547758E+18 (Double)
'    9223372036854775807 (Int64) --> 9.2233720368547758E+18 (Double)
'    -128 (SByte) --> -128 (Double)
'    127 (SByte) --> 127 (Double)
'    -3.402823E+38 (Single) --> -3.4028234663852886E+38 (Double)
'    3.402823E+38 (Single) --> 3.4028234663852886E+38 (Double)
'    0 (UInt16) --> 0 (Double)
'    65535 (UInt16) --> 65535 (Double)
'    0 (UInt32) --> 0 (Double)
'    4294967295 (UInt32) --> 4294967295 (Double)
'    0 (UInt64) --> 0 (Double)
'    18446744073709551615 (UInt64) --> 1.8446744073709552E+19 (Double)

En outre, les Single valeurs Single.NaN , Single.PositiveInfinity et sont Single.NegativeInfinity respectivement converties en Double.NaN , Double.PositiveInfinity et Double.NegativeInfinity .

Notez que la conversion de la valeur de certains types numériques en Double valeur peut impliquer une perte de précision. Comme l’illustre l’exemple, une perte de précision est possible lors de la conversion des Decimal Int64 valeurs, et UInt64 en Double valeurs.

la conversion d’une Double valeur en une valeur de n’importe quel autre type de données numérique primitif est une conversion restrictive et requiert un opérateur de cast (en C#), une méthode de conversion (en Visual Basic) ou un appel à une Convert méthode. Les valeurs qui se trouvent en dehors de la plage du type de données cible, qui sont définies par les propriétés et du type cible MinValue MaxValue , se comportent comme indiqué dans le tableau suivant.

Type cible Résultat
Tout type intégral OverflowExceptionException si la conversion se produit dans un contexte vérifié.

Si la conversion se produit dans un contexte non vérifié (valeur par défaut en C#), l’opération de conversion s’effectue correctement, mais la valeur déborde.
Decimal Exception OverflowException.
Single Single.NegativeInfinity pour les valeurs négatives.

Single.PositiveInfinity pour les valeurs positives.

En outre, Double.NaN , Double.PositiveInfinity et Double.NegativeInfinity lèvent un OverflowException pour les conversions en entiers dans un contexte vérifié, mais ces valeurs sont dépassées en cas de conversion en entiers dans un contexte non vérifié. Pour les conversions en Decimal , elles lèvent toujours un OverflowException . Pour les conversions en Single , elles sont respectivement converties en Single.NaN , Single.PositiveInfinity et Single.NegativeInfinity .

Notez qu’une perte de précision peut résulter de la conversion d’une Double valeur en un autre type numérique. dans le cas d’une conversion vers l’un des types intégraux, comme le montre la sortie de l’exemple, le composant fractionnaire est perdu lorsque la Double valeur est arrondie (comme dans Visual Basic) ou tronquée (comme en C#). Pour les conversions Decimal en Single valeurs et, la Double valeur peut ne pas avoir une représentation précise dans le type de données cible.

L’exemple suivant convertit un certain nombre de Double valeurs en plusieurs autres types numériques. les conversions se produisent dans un contexte vérifié dans Visual Basic (valeur par défaut) et en C# (en raison du mot clé checked ). La sortie de l’exemple montre le résultat des conversions dans un contexte désactivé. vous pouvez effectuer des conversions dans un contexte non vérifié dans Visual Basic en compilant avec le /removeintchecks+ commutateur de compilateur et en C# en commentant l' checked instruction.

using System;

public class Example
{
   public static void Main()
   {
      Double[] values = { Double.MinValue, -67890.1234, -12345.6789,
                          12345.6789, 67890.1234, Double.MaxValue,
                          Double.NaN, Double.PositiveInfinity,
                          Double.NegativeInfinity };
      checked {
         foreach (var value in values) {
            try {
                Int64 lValue = (long) value;
                Console.WriteLine("{0} ({1}) --> {2} (0x{2:X16}) ({3})",
                                  value, value.GetType().Name,
                                  lValue, lValue.GetType().Name);
            }
            catch (OverflowException) {
               Console.WriteLine("Unable to convert {0} to Int64.", value);
            }
            try {
                UInt64 ulValue = (ulong) value;
                Console.WriteLine("{0} ({1}) --> {2} (0x{2:X16}) ({3})",
                                  value, value.GetType().Name,
                                  ulValue, ulValue.GetType().Name);
            }
            catch (OverflowException) {
               Console.WriteLine("Unable to convert {0} to UInt64.", value);
            }
            try {
                Decimal dValue = (decimal) value;
                Console.WriteLine("{0} ({1}) --> {2} ({3})",
                                  value, value.GetType().Name,
                                  dValue, dValue.GetType().Name);
            }
            catch (OverflowException) {
               Console.WriteLine("Unable to convert {0} to Decimal.", value);
            }
            try {
                Single sValue = (float) value;
                Console.WriteLine("{0} ({1}) --> {2} ({3})",
                                  value, value.GetType().Name,
                                  sValue, sValue.GetType().Name);
            }
            catch (OverflowException) {
               Console.WriteLine("Unable to convert {0} to Single.", value);
            }
            Console.WriteLine();
         }
      }
   }
}
// The example displays the following output for conversions performed
// in a checked context:
//       Unable to convert -1.79769313486232E+308 to Int64.
//       Unable to convert -1.79769313486232E+308 to UInt64.
//       Unable to convert -1.79769313486232E+308 to Decimal.
//       -1.79769313486232E+308 (Double) --> -Infinity (Single)
//
//       -67890.1234 (Double) --> -67890 (0xFFFFFFFFFFFEF6CE) (Int64)
//       Unable to convert -67890.1234 to UInt64.
//       -67890.1234 (Double) --> -67890.1234 (Decimal)
//       -67890.1234 (Double) --> -67890.13 (Single)
//
//       -12345.6789 (Double) --> -12345 (0xFFFFFFFFFFFFCFC7) (Int64)
//       Unable to convert -12345.6789 to UInt64.
//       -12345.6789 (Double) --> -12345.6789 (Decimal)
//       -12345.6789 (Double) --> -12345.68 (Single)
//
//       12345.6789 (Double) --> 12345 (0x0000000000003039) (Int64)
//       12345.6789 (Double) --> 12345 (0x0000000000003039) (UInt64)
//       12345.6789 (Double) --> 12345.6789 (Decimal)
//       12345.6789 (Double) --> 12345.68 (Single)
//
//       67890.1234 (Double) --> 67890 (0x0000000000010932) (Int64)
//       67890.1234 (Double) --> 67890 (0x0000000000010932) (UInt64)
//       67890.1234 (Double) --> 67890.1234 (Decimal)
//       67890.1234 (Double) --> 67890.13 (Single)
//
//       Unable to convert 1.79769313486232E+308 to Int64.
//       Unable to convert 1.79769313486232E+308 to UInt64.
//       Unable to convert 1.79769313486232E+308 to Decimal.
//       1.79769313486232E+308 (Double) --> Infinity (Single)
//
//       Unable to convert NaN to Int64.
//       Unable to convert NaN to UInt64.
//       Unable to convert NaN to Decimal.
//       NaN (Double) --> NaN (Single)
//
//       Unable to convert Infinity to Int64.
//       Unable to convert Infinity to UInt64.
//       Unable to convert Infinity to Decimal.
//       Infinity (Double) --> Infinity (Single)
//
//       Unable to convert -Infinity to Int64.
//       Unable to convert -Infinity to UInt64.
//       Unable to convert -Infinity to Decimal.
//       -Infinity (Double) --> -Infinity (Single)
// The example displays the following output for conversions performed
// in an unchecked context:
//       -1.79769313486232E+308 (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
//       -1.79769313486232E+308 (Double) --> 9223372036854775808 (0x8000000000000000) (UInt64)
//       Unable to convert -1.79769313486232E+308 to Decimal.
//       -1.79769313486232E+308 (Double) --> -Infinity (Single)
//
//       -67890.1234 (Double) --> -67890 (0xFFFFFFFFFFFEF6CE) (Int64)
//       -67890.1234 (Double) --> 18446744073709483726 (0xFFFFFFFFFFFEF6CE) (UInt64)
//       -67890.1234 (Double) --> -67890.1234 (Decimal)
//       -67890.1234 (Double) --> -67890.13 (Single)
//
//       -12345.6789 (Double) --> -12345 (0xFFFFFFFFFFFFCFC7) (Int64)
//       -12345.6789 (Double) --> 18446744073709539271 (0xFFFFFFFFFFFFCFC7) (UInt64)
//       -12345.6789 (Double) --> -12345.6789 (Decimal)
//       -12345.6789 (Double) --> -12345.68 (Single)
//
//       12345.6789 (Double) --> 12345 (0x0000000000003039) (Int64)
//       12345.6789 (Double) --> 12345 (0x0000000000003039) (UInt64)
//       12345.6789 (Double) --> 12345.6789 (Decimal)
//       12345.6789 (Double) --> 12345.68 (Single)
//
//       67890.1234 (Double) --> 67890 (0x0000000000010932) (Int64)
//       67890.1234 (Double) --> 67890 (0x0000000000010932) (UInt64)
//       67890.1234 (Double) --> 67890.1234 (Decimal)
//       67890.1234 (Double) --> 67890.13 (Single)
//
//       1.79769313486232E+308 (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
//       1.79769313486232E+308 (Double) --> 0 (0x0000000000000000) (UInt64)
//       Unable to convert 1.79769313486232E+308 to Decimal.
//       1.79769313486232E+308 (Double) --> Infinity (Single)
//
//       NaN (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
//       NaN (Double) --> 0 (0x0000000000000000) (UInt64)
//       Unable to convert NaN to Decimal.
//       NaN (Double) --> NaN (Single)
//
//       Infinity (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
//       Infinity (Double) --> 0 (0x0000000000000000) (UInt64)
//       Unable to convert Infinity to Decimal.
//       Infinity (Double) --> Infinity (Single)
//
//       -Infinity (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
//       -Infinity (Double) --> 9223372036854775808 (0x8000000000000000) (UInt64)
//       Unable to convert -Infinity to Decimal.
//       -Infinity (Double) --> -Infinity (Single)
Module Example
   Public Sub Main()
      Dim values() As Double = { Double.MinValue, -67890.1234, -12345.6789,
                                 12345.6789, 67890.1234, Double.MaxValue,
                                 Double.NaN, Double.PositiveInfinity,
                                 Double.NegativeInfinity }
      For Each value In values
         Try
             Dim lValue As Int64 = CLng(value)
             Console.WriteLine("{0} ({1}) --> {2} (0x{2:X16}) ({3})",
                               value, value.GetType().Name,
                               lValue, lValue.GetType().Name)
         Catch e As OverflowException
            Console.WriteLine("Unable to convert {0} to Int64.", value)
         End Try
         Try
             Dim ulValue As UInt64 = CULng(value)
             Console.WriteLine("{0} ({1}) --> {2} (0x{2:X16}) ({3})",
                               value, value.GetType().Name,
                               ulValue, ulValue.GetType().Name)
         Catch e As OverflowException
            Console.WriteLine("Unable to convert {0} to UInt64.", value)
         End Try
         Try
             Dim dValue As Decimal = CDec(value)
             Console.WriteLine("{0} ({1}) --> {2} ({3})",
                               value, value.GetType().Name,
                               dValue, dValue.GetType().Name)
         Catch e As OverflowException
            Console.WriteLine("Unable to convert {0} to Decimal.", value)
         End Try
         Try
             Dim sValue As Single = CSng(value)
             Console.WriteLine("{0} ({1}) --> {2} ({3})",
                               value, value.GetType().Name,
                               sValue, sValue.GetType().Name)
         Catch e As OverflowException
            Console.WriteLine("Unable to convert {0} to Single.", value)
         End Try
         Console.WriteLine()
      Next
   End Sub
End Module
' The example displays the following output for conversions performed
' in a checked context:
'       Unable to convert -1.79769313486232E+308 to Int64.
'       Unable to convert -1.79769313486232E+308 to UInt64.
'       Unable to convert -1.79769313486232E+308 to Decimal.
'       -1.79769313486232E+308 (Double) --> -Infinity (Single)
'
'       -67890.1234 (Double) --> -67890 (0xFFFFFFFFFFFEF6CE) (Int64)
'       Unable to convert -67890.1234 to UInt64.
'       -67890.1234 (Double) --> -67890.1234 (Decimal)
'       -67890.1234 (Double) --> -67890.13 (Single)
'
'       -12345.6789 (Double) --> -12346 (0xFFFFFFFFFFFFCFC6) (Int64)
'       Unable to convert -12345.6789 to UInt64.
'       -12345.6789 (Double) --> -12345.6789 (Decimal)
'       -12345.6789 (Double) --> -12345.68 (Single)
'
'       12345.6789 (Double) --> 12346 (0x000000000000303A) (Int64)
'       12345.6789 (Double) --> 12346 (0x000000000000303A) (UInt64)
'       12345.6789 (Double) --> 12345.6789 (Decimal)
'       12345.6789 (Double) --> 12345.68 (Single)
'
'       67890.1234 (Double) --> 67890 (0x0000000000010932) (Int64)
'       67890.1234 (Double) --> 67890 (0x0000000000010932) (UInt64)
'       67890.1234 (Double) --> 67890.1234 (Decimal)
'       67890.1234 (Double) --> 67890.13 (Single)
'
'       Unable to convert 1.79769313486232E+308 to Int64.
'       Unable to convert 1.79769313486232E+308 to UInt64.
'       Unable to convert 1.79769313486232E+308 to Decimal.
'       1.79769313486232E+308 (Double) --> Infinity (Single)
'
'       Unable to convert NaN to Int64.
'       Unable to convert NaN to UInt64.
'       Unable to convert NaN to Decimal.
'       NaN (Double) --> NaN (Single)
'
'       Unable to convert Infinity to Int64.
'       Unable to convert Infinity to UInt64.
'       Unable to convert Infinity to Decimal.
'       Infinity (Double) --> Infinity (Single)
'
'       Unable to convert -Infinity to Int64.
'       Unable to convert -Infinity to UInt64.
'       Unable to convert -Infinity to Decimal.
'       -Infinity (Double) --> -Infinity (Single)
' The example displays the following output for conversions performed
' in an unchecked context:
'       -1.79769313486232E+308 (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
'       -1.79769313486232E+308 (Double) --> 9223372036854775808 (0x8000000000000000) (UInt64)
'       Unable to convert -1.79769313486232E+308 to Decimal.
'       -1.79769313486232E+308 (Double) --> -Infinity (Single)
'
'       -67890.1234 (Double) --> -67890 (0xFFFFFFFFFFFEF6CE) (Int64)
'       -67890.1234 (Double) --> 18446744073709483726 (0xFFFFFFFFFFFEF6CE) (UInt64)
'       -67890.1234 (Double) --> -67890.1234 (Decimal)
'       -67890.1234 (Double) --> -67890.13 (Single)
'
'       -12345.6789 (Double) --> -12346 (0xFFFFFFFFFFFFCFC6) (Int64)
'       -12345.6789 (Double) --> 18446744073709539270 (0xFFFFFFFFFFFFCFC6) (UInt64)
'       -12345.6789 (Double) --> -12345.6789 (Decimal)
'       -12345.6789 (Double) --> -12345.68 (Single)
'
'       12345.6789 (Double) --> 12346 (0x000000000000303A) (Int64)
'       12345.6789 (Double) --> 12346 (0x000000000000303A) (UInt64)
'       12345.6789 (Double) --> 12345.6789 (Decimal)
'       12345.6789 (Double) --> 12345.68 (Single)
'
'       67890.1234 (Double) --> 67890 (0x0000000000010932) (Int64)
'       67890.1234 (Double) --> 67890 (0x0000000000010932) (UInt64)
'       67890.1234 (Double) --> 67890.1234 (Decimal)
'       67890.1234 (Double) --> 67890.13 (Single)
'
'       1.79769313486232E+308 (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
'       1.79769313486232E+308 (Double) --> 0 (0x0000000000000000) (UInt64)
'       Unable to convert 1.79769313486232E+308 to Decimal.
'       1.79769313486232E+308 (Double) --> Infinity (Single)
'
'       NaN (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
'       NaN (Double) --> 0 (0x0000000000000000) (UInt64)
'       Unable to convert NaN to Decimal.
'       NaN (Double) --> NaN (Single)
'
'       Infinity (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
'       Infinity (Double) --> 0 (0x0000000000000000) (UInt64)
'       Unable to convert Infinity to Decimal.
'       Infinity (Double) --> Infinity (Single)
'
'       -Infinity (Double) --> -9223372036854775808 (0x8000000000000000) (Int64)
'       -Infinity (Double) --> 9223372036854775808 (0x8000000000000000) (UInt64)
'       Unable to convert -Infinity to Decimal.
'       -Infinity (Double) --> -Infinity (Single)

pour plus d’informations sur la conversion des types numériques, consultez conversion de type dans le .NET Framework et Tables de conversion de type.

Fonctionnalités de Floating-Point

La Double structure et les types connexes fournissent des méthodes pour effectuer des opérations dans les domaines suivants :

  • Comparaison des valeurs. Vous pouvez appeler la Equals méthode pour déterminer si deux Double valeurs sont égales ou la CompareTo méthode pour déterminer la relation entre deux valeurs.

    La Double structure prend également en charge un jeu complet d’opérateurs de comparaison. Par exemple, vous pouvez tester l’égalité ou l’inégalité, ou déterminer si une valeur est supérieure ou égale à une autre. Si l’un des opérandes est un type numérique autre qu’un Double , il est converti en un Double avant d’effectuer la comparaison.

    Avertissement

    En raison des différences de précision, deux Double valeurs qui sont égales peuvent ne pas être égales, ce qui affecte le résultat de la comparaison. Pour plus d’informations sur la comparaison de deux valeurs, consultez la section test d’égalité Double .

    Vous pouvez également appeler les IsNaN méthodes,, IsInfinity IsPositiveInfinity et IsNegativeInfinity pour tester ces valeurs spéciales.

  • Opérations mathématiques. Les opérations arithmétiques courantes, telles que l’addition, la soustraction, la multiplication et la Division, sont implémentées par les compilateurs de langages et les instructions de Common Intermediate Language (CIL), plutôt que par les Double méthodes. Si l’un des opérandes d’une opération mathématique est un type numérique autre qu’un Double , il est converti en un Double avant d’effectuer l’opération. Le résultat de l’opération est également une Double valeur.

    d’autres opérations mathématiques peuvent être effectuées en static appelant Shared les méthodes (dans Visual Basic) de la System.Math classe. Il comprend des méthodes supplémentaires couramment utilisées pour les opérations arithmétiques (telles que Math.Abs , Math.Sign et Math.Sqrt ), la géométrie (comme Math.Cos et Math.Sin ) et le calcul (par exemple, Math.Log ).

    Vous pouvez également manipuler les bits individuels dans une Double valeur. La BitConverter.DoubleToInt64Bits méthode conserve le Double modèle binaire d’une valeur dans un entier 64 bits. La BitConverter.GetBytes(Double) méthode retourne son modèle binaire dans un tableau d’octets.

  • Arrondi. L’arrondi est souvent utilisé comme une technique pour réduire l’impact des différences entre les valeurs provoquées par les problèmes de représentation à virgule flottante et de précision. Vous pouvez arrondir une Double valeur en appelant la Math.Round méthode.

  • Mise en forme. Vous pouvez convertir une Double valeur en représentation sous forme de chaîne en appelant la ToString méthode ou en utilisant la fonctionnalité de mise en forme composite. Pour plus d’informations sur la façon dont les chaînes de format contrôlent la représentation sous forme de chaîne des valeurs à virgule flottante, consultez les rubriques chaînes de format numériques standard et chaînes de format numériques personnalisées .

  • Analyse des chaînes. Vous pouvez convertir la représentation sous forme de chaîne d’une valeur à virgule flottante en Double valeur en appelant la Parse TryParse méthode ou. Si l’opération d’analyse échoue, la Parse méthode lève une exception, tandis que la TryParse méthode retourne false .

  • Conversion de type. la Double structure fournit une implémentation d’interface explicite pour l' IConvertible interface, qui prend en charge la conversion entre deux types de données .NET Framework standard. Les compilateurs de langage prennent également en charge la conversion implicite des valeurs de tous les autres types numériques standard en Double valeurs. La conversion d’une valeur de n’importe quel type numérique standard en Double est une conversion étendue et ne requiert pas l’utilisateur d’un opérateur de cast ou d’une méthode de conversion.

    Toutefois, la conversion Int64 de Single valeurs et peut impliquer une perte de précision. Le tableau suivant répertorie les différences de précision pour chacun de ces types :

    Type Précision maximale Précision interne
    Double 15 17
    Int64 19 chiffres décimaux 19 chiffres décimaux
    Single 7 chiffres décimaux 9 chiffres décimaux

    Le problème de la précision le plus souvent affecte les Single valeurs qui sont converties en Double valeurs. Dans l’exemple suivant, deux valeurs produites par des opérations de division identiques sont inégales, car l’une des valeurs est une valeur à virgule flottante simple précision convertie en Double .

    using System;
    
    public class Example
    {
       public static void Main()
       {
          Double value = .1;
          Double result1 = value * 10;
          Double result2 = 0;
          for (int ctr = 1; ctr <= 10; ctr++)
             result2 += value;
    
          Console.WriteLine(".1 * 10:           {0:R}", result1);
          Console.WriteLine(".1 Added 10 times: {0:R}", result2);
       }
    }
    // The example displays the following output:
    //       .1 * 10:           1
    //       .1 Added 10 times: 0.99999999999999989
    
    Module Example
       Public Sub Main()
          Dim value As Double = .1
          Dim result1 As Double = value * 10
          Dim result2 As Double
          For ctr As Integer = 1 To 10
             result2 += value
          Next
          Console.WriteLine(".1 * 10:           {0:R}", result1)
          Console.WriteLine(".1 Added 10 times: {0:R}", result2)
       End Sub
    End Module
    ' The example displays the following output:
    '       .1 * 10:           1
    '       .1 Added 10 times: 0.99999999999999989
    

Champs

Epsilon

Représente la valeur Double positive la plus petite qui est supérieure à zéro. Ce champ est constant.

MaxValue

Représente la plus grande valeur possible d'un Double. Ce champ est constant.

MinValue

Représente la plus petite valeur possible de Double. Ce champ est constant.

NaN

Représente une valeur qui n'est pas un nombre (NaN). Ce champ est constant.

NegativeInfinity

Représente l'infini négatif. Ce champ est constant.

PositiveInfinity

Représente l'infini positif. Ce champ est constant.

Méthodes

CompareTo(Double)

Compare cette instance à un nombre à virgule flottante double précision spécifié et retourne un entier qui indique si la valeur de cette instance est inférieure, égale ou supérieure à celle du nombre à virgule flottante double précision spécifié.

CompareTo(Object)

Compare cette instance à un objet spécifié et retourne un entier qui indique si la valeur de cette instance est inférieure, égale ou supérieure à la valeur de l'objet spécifié.

Equals(Double)

Retourne une valeur indiquant si cette instance et un objet Double spécifié représentent la même valeur.

Equals(Object)

Retourne une valeur indiquant si cette instance équivaut à un objet spécifié.

GetHashCode()

Retourne le code de hachage de cette instance.

GetTypeCode()

Retourne le TypeCode du type valeur Double.

IsFinite(Double)

Détermine si la valeur spécifiée est finie (zéro, inférieure à la normale ou normale).

IsInfinity(Double)

Retourne une valeur indiquant si la valeur du nombre spécifié est l'infini négatif ou positif.

IsNaN(Double)

Retourne une valeur qui indique si la valeur spécifiée n'est pas un nombre (NaN).

IsNegative(Double)

Détermine si la valeur spécifiée est négative.

IsNegativeInfinity(Double)

Retourne une valeur indiquant si le nombre spécifié est équivalent à l'infini négatif.

IsNormal(Double)

Détermine si la valeur spécifiée est normale.

IsPositiveInfinity(Double)

Retourne une valeur indiquant si le nombre spécifié est équivalent à l'infini positif.

IsSubnormal(Double)

Détermine si la valeur spécifiée est inférieure à la normale.

Parse(ReadOnlySpan<Char>, NumberStyles, IFormatProvider)

Convertit une étendue de caractères contenant la représentation sous forme de chaîne d'un nombre dans un style et un format propre à la culture spécifiés en nombre à virgule flottante double précision équivalent.

Parse(String)

Convertit la représentation sous forme de chaîne d'un nombre en nombre à virgule flottante double précision équivalent.

Parse(String, IFormatProvider)

Convertit la représentation sous forme de chaîne d'un nombre dans un format propre à la culture spécifié en nombre à virgule flottante double précision équivalent.

Parse(String, NumberStyles)

Convertit la représentation sous forme de chaîne d'un nombre dans un style spécifié en nombre à virgule flottante double précision équivalent.

Parse(String, NumberStyles, IFormatProvider)

Convertit la représentation sous forme de chaîne d'un nombre dans un style et un format propre à la culture spécifiés en nombre à virgule flottante double précision équivalent.

ToString()

Convertit la valeur numérique de cette instance en sa représentation équivalente sous forme de chaîne.

ToString(IFormatProvider)

Convertit la valeur numérique de cette instance en sa représentation sous forme de chaîne équivalente à l'aide des informations de format spécifiques à la culture donnée.

ToString(String)

Convertit la valeur numérique de cette instance en sa représentation sous forme de chaîne équivalente en utilisant le format spécifié.

ToString(String, IFormatProvider)

Convertit la valeur numérique de cette instance en sa représentation sous forme de chaîne équivalente à l'aide du format spécifié et des informations de format spécifiques à la culture.

TryFormat(Span<Char>, Int32, ReadOnlySpan<Char>, IFormatProvider)

Tente de mettre en forme la valeur de l’instance de nombre double actuelle dans la plage de caractères fournie.

TryParse(ReadOnlySpan<Char>, Double)

Convertit la représentation sous forme d’étendue d'un nombre dans un style et un format propre à la culture spécifiés en nombre à virgule flottante double précision équivalent. Une valeur de retour indique si la conversion a réussi ou a échoué.

TryParse(ReadOnlySpan<Char>, NumberStyles, IFormatProvider, Double)

Convertit une étendue de caractères contenant la représentation sous forme de chaîne d'un nombre dans un style et un format propre à la culture spécifiés en nombre à virgule flottante double précision équivalent. Une valeur de retour indique si la conversion a réussi ou a échoué.

TryParse(String, Double)

Convertit la représentation sous forme de chaîne d'un nombre en nombre à virgule flottante double précision équivalent. Une valeur de retour indique si la conversion a réussi ou a échoué.

TryParse(String, NumberStyles, IFormatProvider, Double)

Convertit la représentation sous forme de chaîne d'un nombre dans un style et un format propre à la culture spécifiés en nombre à virgule flottante double précision équivalent. Une valeur de retour indique si la conversion a réussi ou a échoué.

Opérateurs

Equality(Double, Double)

Retourne une valeur qui indique si deux valeurs Double spécifiées sont égales.

GreaterThan(Double, Double)

Retourne une valeur qui indique si une valeur Double spécifique est supérieure à une autre valeur Double spécifique.

GreaterThanOrEqual(Double, Double)

Retourne une valeur qui indique si une valeur Double spécifique est supérieure ou égale à une autre valeur Double spécifique.

Inequality(Double, Double)

Retourne une valeur qui indique si deux valeurs Double spécifiées sont différentes.

LessThan(Double, Double)

Retourne une valeur qui indique si une valeur Double spécifique est inférieure à une autre valeur Double spécifique.

LessThanOrEqual(Double, Double)

Retourne une valeur qui indique si une valeur Double spécifique est inférieure ou égale à une autre valeur Double spécifique.

Implémentations d’interfaces explicites

IComparable.CompareTo(Object)

Compare l'instance actuelle à un autre objet du même type et retourne un entier qui indique si l'instance actuelle précède ou suit un autre objet ou se trouve à la même position que ce dernier dans l'ordre de tri.

IConvertible.GetTypeCode()

Retourne le TypeCode de cette instance.

IConvertible.ToBoolean(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToBoolean(IFormatProvider).

IConvertible.ToByte(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToByte(IFormatProvider).

IConvertible.ToChar(IFormatProvider)

Cette conversion n'est pas prise en charge. Toute tentative d'utilisation de cette méthode lève une InvalidCastException.

IConvertible.ToDateTime(IFormatProvider)

Cette conversion n'est pas prise en charge. Toute tentative d'utilisation de cette méthode lève une InvalidCastException.

IConvertible.ToDecimal(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToDecimal(IFormatProvider).

IConvertible.ToDouble(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToDouble(IFormatProvider).

IConvertible.ToInt16(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToInt16(IFormatProvider).

IConvertible.ToInt32(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToInt32(IFormatProvider).

IConvertible.ToInt64(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToInt64(IFormatProvider).

IConvertible.ToSByte(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToSByte(IFormatProvider).

IConvertible.ToSingle(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToSingle(IFormatProvider).

IConvertible.ToType(Type, IFormatProvider)

Pour obtenir une description de ce membre, consultez ToType(Type, IFormatProvider).

IConvertible.ToUInt16(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToUInt16(IFormatProvider).

IConvertible.ToUInt32(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToUInt32(IFormatProvider).

IConvertible.ToUInt64(IFormatProvider)

Pour obtenir une description de ce membre, consultez ToUInt64(IFormatProvider).

S’applique à

Cohérence de thread

Tous les membres de ce type sont thread-safe. Les membres qui semblent modifier l’état de l’instance retournent en fait une nouvelle instance initialisée avec la nouvelle valeur. Comme pour tout autre type, la lecture et l’écriture dans une variable partagée qui contient une instance de ce type doivent être protégées par un verrou pour garantir la sécurité des threads.

Voir aussi