Random Random Random Random Class

Definizione

Rappresenta un generatore di numeri pseudo-casuali, ovvero un dispositivo che produce una sequenza di numeri che soddisfano determinati requisiti statistici di casualità.Represents a pseudo-random number generator, which is a device that produces a sequence of numbers that meet certain statistical requirements for randomness.

public ref class Random
[System.Runtime.InteropServices.ComVisible(true)]
[System.Serializable]
public class Random
type Random = class
Public Class Random
Ereditarietà
RandomRandomRandomRandom
Attributi

Esempi

L'esempio seguente crea un singolo generatore di numeri casuali e le chiamate relative NextBytes, Next, e NextDouble metodi per generare le sequenze di numeri casuali all'interno degli intervalli diversi.The following example creates a single random number generator and calls its NextBytes, Next, and NextDouble methods to generate sequences of random numbers within different ranges.

using namespace System;

void main()
{
   // Instantiate random number generator using system-supplied value as seed.
   Random^ rand = gcnew Random();
   // Generate and display 5 random byte (integer) values.
   array<Byte>^ bytes = gcnew array<Byte>(4);
   rand->NextBytes(bytes);
   Console::WriteLine("Five random byte values:");
   for each (Byte byteValue in bytes)
      Console::Write("{0, 5}", byteValue);
   Console::WriteLine();
   // Generate and display 5 random integers.
   Console::WriteLine("Five random integer values:");
   for (int ctr = 0; ctr <= 4; ctr++)
      Console::Write("{0,15:N0}", rand->Next());
   Console::WriteLine();
   // Generate and display 5 random integers between 0 and 100.//
   Console::WriteLine("Five random integers between 0 and 100:");
   for (int ctr = 0; ctr <= 4; ctr++)
      Console::Write("{0,8:N0}", rand->Next(101));
   Console::WriteLine();
   // Generate and display 5 random integers from 50 to 100.
   Console::WriteLine("Five random integers between 50 and 100:");
   for (int ctr = 0; ctr <= 4; ctr++)
      Console::Write("{0,8:N0}", rand->Next(50, 101));
   Console::WriteLine();
   // Generate and display 5 random floating point values from 0 to 1.
   Console::WriteLine("Five Doubles.");
   for (int ctr = 0; ctr <= 4; ctr++)
      Console::Write("{0,8:N3}", rand->NextDouble());
   Console::WriteLine();
   // Generate and display 5 random floating point values from 0 to 5.
   Console::WriteLine("Five Doubles between 0 and 5.");
   for (int ctr = 0; ctr <= 4; ctr++)
      Console::Write("{0,8:N3}", rand->NextDouble() * 5);
}
// The example displays output like the following:
//    Five random byte values:
//      194  185  239   54  116
//    Five random integer values:
//        507,353,531  1,509,532,693  2,125,074,958  1,409,512,757    652,767,128
//    Five random integers between 0 and 100:
//          16      78      94      79      52
//    Five random integers between 50 and 100:
//          56      66      96      60      65
//    Five Doubles.
//       0.943   0.108   0.744   0.563   0.415
//    Five Doubles between 0 and 5.
//       2.934   3.130   0.292   1.432   4.369
using System;

public class Class1
{
   public static void Main()
   {
      // Instantiate random number generator using system-supplied value as seed.
      Random rand = new Random();
      // Generate and display 5 random byte (integer) values.
      byte[] bytes = new byte[5];
      rand.NextBytes(bytes);
      Console.WriteLine("Five random byte values:");
      foreach (byte byteValue in bytes)
         Console.Write("{0, 5}", byteValue);
      Console.WriteLine();   
      // Generate and display 5 random integers.
      Console.WriteLine("Five random integer values:");
      for (int ctr = 0; ctr <= 4; ctr++)
         Console.Write("{0,15:N0}", rand.Next());
      Console.WriteLine();
      // Generate and display 5 random integers between 0 and 100.//
      Console.WriteLine("Five random integers between 0 and 100:");
      for (int ctr = 0; ctr <= 4; ctr++)
         Console.Write("{0,8:N0}", rand.Next(101));
      Console.WriteLine();
      // Generate and display 5 random integers from 50 to 100.
      Console.WriteLine("Five random integers between 50 and 100:");
      for (int ctr = 0; ctr <= 4; ctr++)
         Console.Write("{0,8:N0}", rand.Next(50, 101));
      Console.WriteLine();
      // Generate and display 5 random floating point values from 0 to 1.
      Console.WriteLine("Five Doubles.");
      for (int ctr = 0; ctr <= 4; ctr++)
         Console.Write("{0,8:N3}", rand.NextDouble());
      Console.WriteLine();
      // Generate and display 5 random floating point values from 0 to 5.
      Console.WriteLine("Five Doubles between 0 and 5.");
      for (int ctr = 0; ctr <= 4; ctr++)
         Console.Write("{0,8:N3}", rand.NextDouble() * 5);
   }
}
// The example displays output like the following:
//    Five random byte values:
//      194  185  239   54  116
//    Five random integer values:
//        507,353,531  1,509,532,693  2,125,074,958  1,409,512,757    652,767,128
//    Five random integers between 0 and 100:
//          16      78      94      79      52
//    Five random integers between 50 and 100:
//          56      66      96      60      65
//    Five Doubles.
//       0.943   0.108   0.744   0.563   0.415
//    Five Doubles between 0 and 5.
//       2.934   3.130   0.292   1.432   4.369
Module Example
   Public Sub Main()
      ' Instantiate random number generator using system-supplied value as seed.
      Dim rand As New Random()
      ' Generate and display 5 random byte (integer) values.
      Dim bytes(4) As Byte
      rand.NextBytes(bytes)
      Console.WriteLine("Five random byte values:")
      For Each byteValue As Byte In bytes
         Console.Write("{0, 5}", byteValue)
      Next
      Console.WriteLine()   
      ' Generate and display 5 random integers.
      Console.WriteLine("Five random integer values:")
      For ctr As Integer = 0 To 4
         Console.Write("{0,15:N0}", rand.Next)
      Next                     
      Console.WriteLine()
      ' Generate and display 5 random integers between 0 and 100.'
      Console.WriteLine("Five random integers between 0 and 100:")
      For ctr As Integer = 0 To 4
         Console.Write("{0,8:N0}", rand.Next(101))
      Next                     
      Console.WriteLine()
      ' Generate and display 5 random integers from 50 to 100.
      Console.WriteLine("Five random integers between 50 and 100:")
      For ctr As Integer = 0 To 4
         Console.Write("{0,8:N0}", rand.Next(50, 101))
      Next                     
      Console.WriteLine()
      ' Generate and display 5 random floating point values from 0 to 1.
      Console.WriteLine("Five Doubles.")
      For ctr As Integer = 0 To 4
         Console.Write("{0,8:N3}", rand.NextDouble())
      Next                     
      Console.WriteLine()
      ' Generate and display 5 random floating point values from 0 to 5.
      Console.WriteLine("Five Doubles between 0 and 5.")
      For ctr As Integer = 0 To 4
         Console.Write("{0,8:N3}", rand.NextDouble() * 5)
      Next                     
   End Sub
End Module
' The example displays output like the following:
'    Five random byte values:
'      194  185  239   54  116
'    Five random integer values:
'        507,353,531  1,509,532,693  2,125,074,958  1,409,512,757    652,767,128
'    Five random integers between 0 and 100:
'          16      78      94      79      52
'    Five random integers between 50 and 100:
'          56      66      96      60      65
'    Five Doubles.
'       0.943   0.108   0.744   0.563   0.415
'    Five Doubles between 0 and 5.
'       2.934   3.130   0.292   1.432   4.369

Nell'esempio seguente genera un integer casuale che viene utilizzato come indice per recuperare un valore stringa da una matrice.The following example generates a random integer that it uses as an index to retrieve a string value from an array.

using namespace System;

void main()
{
   Random^ rnd = gcnew Random();
   array<String^>^ malePetNames = { "Rufus", "Bear", "Dakota", "Fido",
                                    "Vanya", "Samuel", "Koani", "Volodya",
                                    "Prince", "Yiska" };
   array<String^>^ femalePetNames = { "Maggie", "Penny", "Saya", "Princess",
                                      "Abby", "Laila", "Sadie", "Olivia",
                                      "Starlight", "Talla" };
      
   // Generate random indexes for pet names.
   int mIndex = rnd->Next(malePetNames->Length);
   int fIndex = rnd->Next(femalePetNames->Length);
      
   // Display the result.
   Console::WriteLine("Suggested pet name of the day: ");
   Console::WriteLine("   For a male:     {0}", malePetNames[mIndex]);
   Console::WriteLine("   For a female:   {0}", femalePetNames[fIndex]);
}
// The example displays the following output:
//       Suggested pet name of the day:
//          For a male:     Koani
//          For a female:   Maggie
using System;

public class Example
{
   public static void Main()
   {
      Random rnd = new Random();
      string[] malePetNames = { "Rufus", "Bear", "Dakota", "Fido", 
                                "Vanya", "Samuel", "Koani", "Volodya", 
                                "Prince", "Yiska" };
      string[] femalePetNames = { "Maggie", "Penny", "Saya", "Princess", 
                                  "Abby", "Laila", "Sadie", "Olivia", 
                                  "Starlight", "Talla" };                                      
      
      // Generate random indexes for pet names.
      int mIndex = rnd.Next(malePetNames.Length);
      int fIndex = rnd.Next(femalePetNames.Length);
      
      // Display the result.
      Console.WriteLine("Suggested pet name of the day: ");
      Console.WriteLine("   For a male:     {0}", malePetNames[mIndex]);
      Console.WriteLine("   For a female:   {0}", femalePetNames[fIndex]);
   }
}
// The example displays the following output:
//       Suggested pet name of the day:
//          For a male:     Koani
//          For a female:   Maggie
Module Example
   Public Sub Main()
      Dim rnd As New Random()
      Dim malePetNames() As String = { "Rufus", "Bear", "Dakota", "Fido", 
                                    "Vanya", "Samuel", "Koani", "Volodya", 
                                    "Prince", "Yiska" }
      Dim femalePetNames() As String = { "Maggie", "Penny", "Saya", "Princess", 
                                         "Abby", "Laila", "Sadie", "Olivia", 
                                         "Starlight", "Talla" }                                      
      
      ' Generate random indexes for pet names.
      Dim mIndex As Integer = rnd.Next(malePetNames.Length)
      Dim fIndex As Integer = rnd.Next(femalePetNames.Length)
      
      ' Display the result.
      Console.WriteLine("Suggested pet name of the day: ")
      Console.WriteLine("   For a male:     {0}", malePetNames(mIndex))
      Console.WriteLine("   For a female:   {0}", femalePetNames(fIndex))
   End Sub
End Module
' The example displays output like the following:
'       Suggested pet name of the day:
'          For a male:     Koani
'          For a female:   Maggie

Commenti

Numeri pseudo-casuali vengono scelti con uguale probabilità di un set di numeri.Pseudo-random numbers are chosen with equal probability from a finite set of numbers. I numeri selezionati non sono completamente casuali perché viene usato un algoritmo matematico per selezionarli, ma sono sufficientemente casuale ai fini pratici.The chosen numbers are not completely random because a mathematical algorithm is used to select them, but they are sufficiently random for practical purposes. L'implementazione corrente del Random classe si basa su una versione modificata del sottrattivo casuale di numeri generatore Knuth Donald E. Knuth.The current implementation of the Random class is based on a modified version of Donald E. Knuth's subtractive random number generator algorithm. Per altre informazioni, vedere E. D.For more information, see D. E. Knuth.Knuth. L'arte della programmazione, il Volume 2 Computer: Gli algoritmi seminumerical.The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition, 1997.Addison-Wesley, Reading, MA, third edition, 1997.

Per generare un numero casuale crittograficamente sicuro, ad esempio quella più adatta per la creazione di una password casuale, usare il RNGCryptoServiceProvider classe oppure derivare una classe da System.Security.Cryptography.RandomNumberGenerator.To generate a cryptographically secure random number, such as one that's suitable for creating a random password, use the RNGCryptoServiceProvider class or derive a class from System.Security.Cryptography.RandomNumberGenerator.

In questo argomentoIn this topic:

Creazione di un'istanza del generatore di numeri casuali Instantiating the random number generator
Come evitare più creazioni di istanza Avoiding multiple instantiations
La sicurezza di thread e classe Random The System.Random class and thread safety
Generazione di tipi diversi di numeri casuali Generating different types of random numbers
Sostituzione di un algoritmo personalizzato Substituting your own algorithm
Come si usa System. Random per... How do you use System.Random to…
Recuperare la stessa sequenza di valori casualiRetrieve the same sequence of random values
Recuperare le sequenze univoche di valori casualiRetrieve unique sequences of random values
Recuperare interi in un intervallo specificatoRetrieve integers in a specified range
Recuperare interi con un numero di cifre specificatoRetrieve integers with a specified number of digits
Recuperare i valori a virgola mobile in un intervallo specificatoRetrieve floating-point values in a specified range
Generare i valori booleani casualeGenerate random Boolean values
Generare numeri interi a 64 bit casualiGenerate random 64-bit integers
Recuperare byte in un intervallo specificatoRetrieve bytes in a specified range
Recuperare un elemento da una matrice o raccolta in modo casualeRetrieve an element from an array or collection at random
Recuperare un elemento univoco da una matrice o raccoltaRetrieve a unique element from an array or collection

Creazione di un'istanza del generatore di numeri casualiInstantiating the random number generator

Si crea un'istanza del generatore di numeri casuali, fornendo un valore di inizializzazione (un valore iniziale per l'algoritmo di generazione di numeri pseudo-casuali) per un Random costruttore della classe.You instantiate the random number generator by providing a seed value (a starting value for the pseudo-random number generation algorithm) to a Random class constructor. È possibile fornire il valore di inizializzazione in modo implicito o esplicito:You can supply the seed value either explicitly or implicitly:

  • Il Random(Int32) costruttore utilizza un valore di inizializzazione esplicita che viene fornito.The Random(Int32) constructor uses an explicit seed value that you supply.

  • Il Random() costruttore Usa l'orologio di sistema per fornire un valore di inizializzazione.The Random() constructor uses the system clock to provide a seed value. Questo è il modo più comune di un'istanza del generatore di numeri casuali.This is the most common way of instantiating the random number generator.

Se il valore di inizializzazione stessa viene utilizzato per separato Random oggetti, i generatori produrranno la stessa serie di numeri casuali.If the same seed is used for separate Random objects, they will generate the same series of random numbers. Ciò può essere utile per la creazione di un gruppo di test che elabora i valori casuali o per la riproduzione dei giochi che derivano i propri dati da numeri casuali.This can be useful for creating a test suite that processes random values, or for replaying games that derive their data from random numbers. Si noti tuttavia che Random oggetti nei processi in esecuzione in versioni diverse di .NET Framework possono restituire diverse serie di numeri casuali, anche se ne è creata l'istanza con i valori di inizializzazione identici.However, note that Random objects in processes running under different versions of the .NET Framework may return different series of random numbers even if they're instantiated with identical seed values.

Per produrre un gruppo di sequenze di numeri casuali, è possibile apportare il valore di inizializzazione dipendente dal tempo, in tal modo producendo così una serie diversa con ogni nuova istanza di Random.To produce different sequences of random numbers, you can make the seed value time-dependent, thereby producing a different series with each new instance of Random. Con i parametri Random(Int32) costruttore può accettare un' Int32 valore in base al numero di tick nell'ora corrente, mentre senza parametri Random() costruttore Usa l'orologio di sistema per generare il valore di inizializzazione.The parameterized Random(Int32) constructor can take an Int32 value based on the number of ticks in the current time, whereas the parameterless Random() constructor uses the system clock to generate its seed value. Tuttavia, poiché l'orologio ha una risoluzione finita, usando il costruttore senza parametri per creare diversi Random gli oggetti in successione Chiudi crea generatori di numeri casuali che generano identiche sequenze di numeri casuali.However, because the clock has finite resolution, using the parameterless constructor to create different Random objects in close succession creates random number generators that produce identical sequences of random numbers. Nell'esempio seguente viene illustrato come due Random gli oggetti che vengono create istanze in successione Chiudi generano una serie di numeri casuali identica.The following example illustrates how two Random objects that are instantiated in close succession generate an identical series of random numbers. Nella maggior parte dei sistemi Windows, Random gli oggetti creati entro 15 millisecondi una da altra sono probabile che hanno valori di inizializzazione identici.On most Windows systems, Random objects created within 15 milliseconds of one another are likely to have identical seed values.

using namespace System;

void main()
{
   array<Byte>^ bytes1 = gcnew array<Byte>(100);
   array<Byte>^ bytes2 = gcnew array<Byte>(100);
   Random^ rnd1 = gcnew Random();
   Random^ rnd2 = gcnew Random();
   
   rnd1->NextBytes(bytes1);
   rnd2->NextBytes(bytes2);
   
   Console::WriteLine("First Series:");
   for (int ctr = bytes1->GetLowerBound(0);
        ctr <= bytes1->GetUpperBound(0);
        ctr++) { 
      Console::Write("{0, 5}", bytes1[ctr]);
      if ((ctr + 1) % 10 == 0) Console::WriteLine();
   } 
   Console::WriteLine();
   Console::WriteLine("Second Series:");
   for (int ctr = bytes2->GetLowerBound(0);
        ctr <= bytes2->GetUpperBound(0);
        ctr++) {
      Console::Write("{0, 5}", bytes2[ctr]);
      if ((ctr + 1) % 10 == 0) Console::WriteLine();
   }   
}
// The example displays output like the following:
//       First Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
//       
//       Second Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231        
using System;

public class Class1
{
   public static void Main()
   {
      byte[] bytes1 = new byte[100];
      byte[] bytes2 = new byte[100];
      Random rnd1 = new Random();
      Random rnd2 = new Random();
      
      rnd1.NextBytes(bytes1);
      rnd2.NextBytes(bytes2);
      
      Console.WriteLine("First Series:");
      for (int ctr = bytes1.GetLowerBound(0); 
           ctr <= bytes1.GetUpperBound(0); 
           ctr++) { 
         Console.Write("{0, 5}", bytes1[ctr]);
         if ((ctr + 1) % 10 == 0) Console.WriteLine();
      } 
      Console.WriteLine();
      Console.WriteLine("Second Series:");        
      for (int ctr = bytes2.GetLowerBound(0);
           ctr <= bytes2.GetUpperBound(0);
           ctr++) {
         Console.Write("{0, 5}", bytes2[ctr]);
         if ((ctr + 1) % 10 == 0) Console.WriteLine();
      }   
   }
}
// The example displays output like the following:
//       First Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
//       
//       Second Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231        
Module modMain

   Public Sub Main()
      Dim bytes1(99), bytes2(99) As Byte
      Dim rnd1 As New Random()
      Dim rnd2 As New Random()
      
      rnd1.NextBytes(bytes1)
      rnd2.NextBytes(bytes2)
      
      Console.WriteLine("First Series:")
      For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
         Console.Write("{0, 5}", bytes1(ctr))
         If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
      Next 
      Console.WriteLine()
      Console.WriteLine("Second Series:")        
      For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
         Console.Write("{0, 5}", bytes2(ctr))
         If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
      Next   
   End Sub
End Module
' The example displays output like the following:
'       First Series:
'          97  129  149   54   22  208  120  105   68  177
'         113  214   30  172   74  218  116  230   89   18
'          12  112  130  105  116  180  190  200  187  120
'           7  198  233  158   58   51   50  170   98   23
'          21    1  113   74  146  245   34  255   96   24
'         232  255   23    9  167  240  255   44  194   98
'          18  175  173  204  169  171  236  127  114   23
'         167  202  132   65  253   11  254   56  214  127
'         145  191  104  163  143    7  174  224  247   73
'          52    6  231  255    5  101   83  165  160  231
'       
'       Second Series:
'          97  129  149   54   22  208  120  105   68  177
'         113  214   30  172   74  218  116  230   89   18
'          12  112  130  105  116  180  190  200  187  120
'           7  198  233  158   58   51   50  170   98   23
'          21    1  113   74  146  245   34  255   96   24
'         232  255   23    9  167  240  255   44  194   98
'          18  175  173  204  169  171  236  127  114   23
'         167  202  132   65  253   11  254   56  214  127
'         145  191  104  163  143    7  174  224  247   73
'          52    6  231  255    5  101   83  165  160  231      

Per evitare questo problema, creare un singolo Random oggetto anziché più oggetti.To avoid this problem, create a single Random object instead of multiple objects.

Come evitare più creazioni di istanzaAvoiding multiple instantiations

L'inizializzazione due i generatori di numeri casuali in un ciclo o in rapida successione crea due generatori di numeri casuali che possono produrre identiche sequenze di numeri casuali.Initializing two random number generators in a tight loop or in rapid succession creates two random number generators that can produce identical sequences of random numbers. Nella maggior parte dei casi, ciò non è intenzione dello sviluppatore e può causare problemi di prestazioni, perché un'istanza e inizializzazione di un generatore di numeri casuali è un processo relativamente costoso.In most cases, this is not the developer's intent and can lead to performance issues, because instantiating and initializing a random number generator is a relatively expensive process.

Per migliorare le prestazioni sia per evitare di creare inavvertitamente separati i generatori di numeri casuali che generano le sequenze numeriche identiche, è consigliabile creare un Random oggetto per generare numeri casuali molti nel corso del tempo, invece di creare nuovo Random oggetti per generare un numero casuale.Both to improve performance and to avoid inadvertently creating separate random number generators that generate identical numeric sequences, we recommend that you create one Random object to generate many random numbers over time, instead of creating new Random objects to generate one random number.

Tuttavia, il Random classe non è thread-safe.However, the Random class isn't thread safe. Se si chiama Random metodi da più thread, seguire le linee guida illustrate nella sezione successiva.If you call Random methods from multiple threads, follow the guidelines discussed in the next section.

La sicurezza di thread e classe RandomThe System.Random class and thread safety

Anziché creare un'istanza di singoli Random oggetti, si consiglia di creare un singolo Random istanza da generare tutti i numeri casuali necessari all'applicazione.Instead of instantiating individual Random objects, we recommend that you create a single Random instance to generate all the random numbers needed by your app. Tuttavia, Random oggetti non sono thread-safe.However, Random objects are not thread safe. Se l'app chiama Random da più thread, è necessario usare un oggetto di sincronizzazione per garantire che solo un thread può accedere il generatore di numeri casuali in un momento.If your app calls Random methods from multiple threads, you must use a synchronization object to ensure that only one thread can access the random number generator at a time. Se si non assicura che il Random all'oggetto avviene in modo thread-safe, le chiamate ai metodi che restituiscono numeri casuali restituiscono 0.If you don't ensure that the Random object is accessed in a thread-safe way, calls to methods that return random numbers return 0.

L'esempio seguente usa il linguaggio C# istruzione lock e Visual Basic istruzione SyncLock per garantire che un singolo generatore di numeri casuali è accessibile da 11 thread in modo thread-safe.The following example uses the C# lock Statement and the Visual Basic SyncLock statement to ensure that a single random number generator is accessed by 11 threads in a thread-safe manner. Ogni thread genera numeri casuali di 2 milioni, Conta il numero di numeri casuali generati e viene calcolata la somma e quindi aggiorna i totali per tutti i thread quando termina l'esecuzione.Each thread generates 2 million random numbers, counts the number of random numbers generated and calculates their sum, and then updates the totals for all threads when it finishes executing.

using namespace System;
using namespace System::Threading;

ref class Example
{
private:
   [ThreadStatic] static double previous = 0.0;
   [ThreadStatic] static int perThreadCtr = 0;
   [ThreadStatic] static double perThreadTotal = 0.0;  
   static CancellationTokenSource^ source;
   static CountdownEvent^ countdown;
   static Object^ randLock;
   static Object^ numericLock;
   static Random^ rand;
   double totalValue = 0.0;
   int totalCount = 0;
   
public:
   Example()
   { 
      rand = gcnew Random();
      randLock = gcnew Object();
      numericLock = gcnew Object();
      countdown = gcnew CountdownEvent(1);
      source = gcnew CancellationTokenSource();
   } 

   void Execute()
   {   
      CancellationToken^ token = source->Token;

      for (int threads = 1; threads <= 10; threads++)
      {
         Thread^ newThread = gcnew Thread(gcnew ParameterizedThreadStart(this, &Example::GetRandomNumbers));
         newThread->Name = threads.ToString();
         newThread->Start(token);
      }
      this->GetRandomNumbers(token);
      
      countdown->Signal();
      // Make sure all threads have finished.
      countdown->Wait();

      Console::WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
      Console::WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
      Console::WriteLine("Random number mean: {0:N4}", totalValue/totalCount);
   }

private:
   void GetRandomNumbers(Object^ o)
   {
      CancellationToken^ token = (CancellationToken) o;
      double result = 0.0;
      countdown->AddCount(1);
         
      try { 
         for (int ctr = 0; ctr < 2000000; ctr++)
         {
            // Make sure there's no corruption of Random.
            token->ThrowIfCancellationRequested();

            Monitor::Enter(randLock);
            result = rand->NextDouble();
            Monitor::Exit(randLock);
            // Check for corruption of Random instance.
            if ((result == previous) && result == 0) {
               source->Cancel();
            }
            else {
               previous = result;
            }
            perThreadCtr++;
            perThreadTotal += result;
         }      
       
         Console::WriteLine("Thread {0} finished execution.", 
                           Thread::CurrentThread->Name);
         Console::WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
         Console::WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
         Console::WriteLine("Random number mean: {0:N4}\n", perThreadTotal/perThreadCtr);

         // Update overall totals.
         Monitor::Enter(numericLock);
         totalCount += perThreadCtr;
         totalValue += perThreadTotal;  
         Monitor::Exit(numericLock);
      }
      catch (OperationCanceledException^ e) {
         Console::WriteLine("Corruption in Thread {1}", e->GetType()->Name,
                            Thread::CurrentThread->Name);
      }
      finally {
         countdown->Signal();
      }
   }
};

void main()
{
   Example^ ex = gcnew Example();
   Thread::CurrentThread->Name = "Main";
   ex->Execute();
}
// The example displays output like the following:
//       Thread 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,491.05
//       Random number mean: 0.5002
//       
//       Thread 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,329.64
//       Random number mean: 0.4997
//       
//       Thread 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,166.89
//       Random number mean: 0.5001
//       
//       Thread 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,628.37
//       Random number mean: 0.4998
//       
//       Thread Main finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,920.89
//       Random number mean: 0.5000
//       
//       Thread 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,370.45
//       Random number mean: 0.4997
//       
//       Thread 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,330.92
//       Random number mean: 0.4997
//       
//       Thread 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,172.79
//       Random number mean: 0.5001
//       
//       Thread 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,079.43
//       Random number mean: 0.5000
//       
//       Thread 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,817.91
//       Random number mean: 0.4999
//       
//       Thread 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,930.63
//       Random number mean: 0.5000
//       
//       
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 10,998,238.98
//       Random number mean: 0.4999
using System;
using System.Threading;

public class Example
{
   [ThreadStatic] static double previous = 0.0;
   [ThreadStatic] static int perThreadCtr = 0;
   [ThreadStatic] static double perThreadTotal = 0.0;  
   static CancellationTokenSource source;
   static CountdownEvent countdown; 
   static Object randLock, numericLock;
   static Random rand;
   double totalValue = 0.0;
   int totalCount = 0;
   
   public Example()
   { 
      rand = new Random();
      randLock = new Object();
      numericLock = new Object();
      countdown = new CountdownEvent(1);
      source = new CancellationTokenSource();
   } 

   public static void Main()
   {
      Example ex = new Example();
      Thread.CurrentThread.Name = "Main";
      ex.Execute();
   }

   private void Execute()
   {   
      CancellationToken token = source.Token; 

      for (int threads = 1; threads <= 10; threads++)
      {
         Thread newThread = new Thread(this.GetRandomNumbers);
         newThread.Name = threads.ToString();
         newThread.Start(token);
      }
      this.GetRandomNumbers(token);
      
      countdown.Signal();
      // Make sure all threads have finished.
      countdown.Wait();
      source.Dispose();

      Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
      Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
      Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount);
   }

   private void GetRandomNumbers(Object o)
   {
      CancellationToken token = (CancellationToken) o;
      double result = 0.0;
      countdown.AddCount(1);
         
      try { 
         for (int ctr = 0; ctr < 2000000; ctr++)
         {
            // Make sure there's no corruption of Random.
            token.ThrowIfCancellationRequested();

            lock (randLock) {
               result = rand.NextDouble();
            }
            // Check for corruption of Random instance.
            if ((result == previous) && result == 0) {
               source.Cancel();
            }
            else {
               previous = result;
            }
            perThreadCtr++;
            perThreadTotal += result;
         }      
       
         Console.WriteLine("Thread {0} finished execution.", 
                           Thread.CurrentThread.Name);
         Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
         Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
         Console.WriteLine("Random number mean: {0:N4}\n", perThreadTotal/perThreadCtr);

         // Update overall totals.
         lock (numericLock) {
            totalCount += perThreadCtr;
            totalValue += perThreadTotal;  
         }
      }
      catch (OperationCanceledException e) {
         Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name);
      }
      finally {
         countdown.Signal();        
      }
   }
}
// The example displays output like the following:
//       Thread 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,491.05
//       Random number mean: 0.5002
//       
//       Thread 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,329.64
//       Random number mean: 0.4997
//       
//       Thread 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,166.89
//       Random number mean: 0.5001
//       
//       Thread 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,628.37
//       Random number mean: 0.4998
//       
//       Thread Main finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,920.89
//       Random number mean: 0.5000
//       
//       Thread 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,370.45
//       Random number mean: 0.4997
//       
//       Thread 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,330.92
//       Random number mean: 0.4997
//       
//       Thread 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,172.79
//       Random number mean: 0.5001
//       
//       Thread 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,079.43
//       Random number mean: 0.5000
//       
//       Thread 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,817.91
//       Random number mean: 0.4999
//       
//       Thread 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,930.63
//       Random number mean: 0.5000
//       
//       
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 10,998,238.98
//       Random number mean: 0.4999
Imports System.Threading

Module Example
   <ThreadStatic> Dim previous As Double = 0.0
   <ThreadStatic> Dim perThreadCtr As Integer = 0
   <ThreadStatic> Dim perThreadTotal As Double = 0.0  
   Dim source As New CancellationTokenSource()
   Dim countdown As New CountdownEvent(1) 
   Dim randLock As New Object()
   Dim numericLock As New Object()
   Dim rand As New Random()
   Dim totalValue As Double = 0.0
   Dim totalCount As Integer = 0
   
   Public Sub Main()
      Thread.CurrentThread.Name = "Main"

      Dim token As CancellationToken = source.Token 
      For threads As Integer = 1 To 10
         Dim newThread As New Thread(AddressOf GetRandomNumbers)
         newThread.Name = threads.ToString()
         newThread.Start(token)
      Next
      GetRandomNumbers(token)
      
      countdown.Signal()
      ' Make sure all threads have finished.
      countdown.Wait()

      Console.WriteLine()
      Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
      Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
      Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount)
   End Sub

   Private Sub GetRandomNumbers(o As Object)
      Dim token As CancellationToken = CType(o, CancellationToken)
      Dim result As Double = 0.0
      countdown.AddCount(1)
         
      Try  
         For ctr As Integer = 1 To 2000000
            ' Make sure there's no corruption of Random.
            token.ThrowIfCancellationRequested()

            SyncLock randLock
               result = rand.NextDouble()
            End SyncLock
            ' Check for corruption of Random instance.
            If result = previous AndAlso result = 0 Then 
               source.Cancel()
            Else 
               previous = result
            End If
            perThreadCtr += 1
            perThreadTotal += result
         Next      
       
         Console.WriteLine("Thread {0} finished execution.", 
                           Thread.CurrentThread.Name)
         Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
         Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
         Console.WriteLine("Random number mean: {0:N4}", perThreadTotal/perThreadCtr)
         Console.WriteLine()
         
         ' Update overall totals.
         SyncLock numericLock
            totalCount += perThreadCtr
            totalValue += perThreadTotal  
         End SyncLock
      Catch e As OperationCanceledException
         Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
      Finally 
         countdown.Signal()
         source.Dispose()
      End Try
   End Sub
End Module
' The example displays output like the following:
'       Thread 6 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,491.05
'       Random number mean: 0.5002
'       
'       Thread 10 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,329.64
'       Random number mean: 0.4997
'       
'       Thread 4 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,166.89
'       Random number mean: 0.5001
'       
'       Thread 8 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,628.37
'       Random number mean: 0.4998
'       
'       Thread Main finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,920.89
'       Random number mean: 0.5000
'       
'       Thread 3 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,370.45
'       Random number mean: 0.4997
'       
'       Thread 7 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,330.92
'       Random number mean: 0.4997
'       
'       Thread 9 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,172.79
'       Random number mean: 0.5001
'       
'       Thread 5 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,079.43
'       Random number mean: 0.5000
'       
'       Thread 1 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,817.91
'       Random number mean: 0.4999
'       
'       Thread 2 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,930.63
'       Random number mean: 0.5000
'       
'       
'       Total random numbers generated: 22,000,000
'       Total sum of all random numbers: 10,998,238.98
'       Random number mean: 0.4999

L'esempio specifica la thread safety nei modi seguenti:The example ensures thread-safety in the following ways:

  • Il ThreadStaticAttribute attributo viene usato per definire le variabili locali del thread che tengono traccia il numero totale di numeri casuali generati e la somma per ogni thread.The ThreadStaticAttribute attribute is used to define thread-local variables that track the total number of random numbers generated and their sum for each thread.

  • Un blocco (il lock istruzione in C# e il SyncLock istruzione in Visual Basic) consente di proteggere l'accesso alle variabili per il conteggio totale e la somma di tutti i numeri casuali generati su tutti i thread.A lock (the lock statement in C# and the SyncLock statement in Visual Basic) protects access to the variables for the total count and sum of all random numbers generated on all threads.

  • Un semaforo (il CountdownEvent oggetto) viene usato per garantire che il thread principale si blocca fino a tutti gli altri thread completamento dell'esecuzione.A semaphore (the CountdownEvent object) is used to ensure that the main thread blocks until all other threads complete execution.

  • L'esempio controlla se il generatore di numeri casuali sia stato danneggiato, determinando se due chiamate consecutive per i metodi di generazione di numeri casuali restituiscono 0.The example checks whether the random number generator has become corrupted by determining whether two consecutive calls to random number generation methods return 0. Se vengono rilevati dati danneggiati, nell'esempio viene usato il CancellationTokenSource oggetto per segnalare che tutti i thread devono essere annullati.If corruption is detected, the example uses the CancellationTokenSource object to signal that all threads should be canceled.

  • Prima di generare ogni numero casuale, ogni thread controlla lo stato del CancellationToken oggetto.Before generating each random number, each thread checks the state of the CancellationToken object. Se viene richiesto l'annullamento, viene chiamato il CancellationToken.ThrowIfCancellationRequested metodo per annullare il thread.If cancellation is requested, the example calls the CancellationToken.ThrowIfCancellationRequested method to cancel the thread.

L'esempio seguente è identico al primo, ad eccezione del fatto che usa un' Task oggetto e un'espressione lambda anziché Thread oggetti.The following example is identical to the first, except that it uses a Task object and a lambda expression instead of Thread objects.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

public class Example
{
   static Object randLock, numericLock;
   static Random rand;
   static CancellationTokenSource source;
   double totalValue = 0.0;
   int totalCount = 0;
   
   public Example()
   { 
      rand = new Random();
      randLock = new Object();
      numericLock = new Object();
      source = new CancellationTokenSource();
   } 

   public static async Task Main()
   {
      Example ex = new Example();
      Thread.CurrentThread.Name = "Main";
      await ex.Execute();
   }

   private Task Execute()
   {   
      List<Task> tasks = new List<Task>();
      
      for (int ctr = 0; ctr <= 10; ctr++)
      {
         CancellationToken token = source.Token; 
         int taskNo = ctr;
         tasks.Add(Task.Run( () =>
            {
               double previous = 0.0;
               int taskCtr = 0;
               double taskTotal = 0.0;  
               double result = 0.0;
                               
               for (int n = 0; n < 2000000; n++)
               {
                  // Make sure there's no corruption of Random.
                  token.ThrowIfCancellationRequested();

                  lock (randLock) {
                     result = rand.NextDouble();
                  }
                  // Check for corruption of Random instance.
                  if ((result == previous) && result == 0) {
                     source.Cancel();
                  }
                  else {
                     previous = result;
                  }
                  taskCtr++;
                  taskTotal += result;
               }

               // Show result.
               Console.WriteLine("Task {0} finished execution.", taskNo);
               Console.WriteLine("Random numbers generated: {0:N0}", taskCtr);
               Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal);
               Console.WriteLine("Random number mean: {0:N4}\n", taskTotal/taskCtr);
         
               // Update overall totals.
               lock (numericLock) {
                  totalCount += taskCtr;
                  totalValue += taskTotal;  
               }
            }, 
         token));
      }
      try {
         await Task.WhenAll(tasks.ToArray());
         Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
         Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
         Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount);
      }
      catch (AggregateException e) {
         foreach (Exception inner in e.InnerExceptions) {
            TaskCanceledException canc = inner as TaskCanceledException;
            if (canc != null)
               Console.WriteLine("Task #{0} cancelled.", canc.Task.Id);
            else
               Console.WriteLine("Exception: {0}", inner.GetType().Name);
         }         
      }
      finally {
         source.Dispose();
      }
   }
}
// The example displays output like the following:
//       Task 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,502.47
//       Random number mean: 0.5003
//       
//       Task 0 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,445.63
//       Random number mean: 0.5002
//       
//       Task 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,556.04
//       Random number mean: 0.5003
//       
//       Task 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,178.87
//       Random number mean: 0.5001
//       
//       Task 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,819.17
//       Random number mean: 0.4999
//       
//       Task 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,190.58
//       Random number mean: 0.5001
//       
//       Task 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,720.21
//       Random number mean: 0.4999
//       
//       Task 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,000.96
//       Random number mean: 0.4995
//       
//       Task 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,499.33
//       Random number mean: 0.4997
//       
//       Task 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,193.25
//       Random number mean: 0.5001
//       
//       Task 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,960.82
//       Random number mean: 0.5000
//       
//       
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 11,000,067.33
//       Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks

Module Example
   Dim source As New CancellationTokenSource()
   Dim randLock As New Object()
   Dim numericLock As New Object()
   Dim rand As New Random()
   Dim totalValue As Double = 0.0
   Dim totalCount As Integer = 0
   
   Public Sub Main()
      Dim tasks As New List(Of Task)()
      
      For ctr As Integer = 1 To 10
         Dim token As CancellationToken = source.Token 
         Dim taskNo As Integer = ctr
         tasks.Add(Task.Run( 
                   Sub()
                      Dim previous As Double = 0.0
                      Dim taskCtr As Integer = 0
                      Dim taskTotal As Double = 0.0
                      Dim result As Double = 0.0

                      For n As Integer = 1 To 2000000
                         ' Make sure there's no corruption of Random.
                         token.ThrowIfCancellationRequested()
      
                         SyncLock randLock
                           result = rand.NextDouble()
                         End SyncLock
                         ' Check for corruption of Random instance.
                         If result = previous AndAlso result = 0 Then
                           source.Cancel()
                         Else 
                           previous = result
                         End If
                        taskCtr += 1
                        taskTotal += result
                      Next   

                      ' Show result.
                     Console.WriteLine("Task {0} finished execution.", taskNo)
                     Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
                     Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
                     Console.WriteLine("Random number mean: {0:N4}", taskTotal/taskCtr)
                     Console.WriteLine()
                     
                     ' Update overall totals.
                     SyncLock numericLock
                        totalCount += taskCtr
                        totalValue += taskTotal  
                     End SyncLock
                   End Sub, token))
      Next

      Try
         Task.WaitAll(tasks.ToArray())
         Console.WriteLine()
         Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
         Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
         Console.WriteLine("Random number mean: {0:N4}", totalValue/totalCount)
      Catch e As AggregateException
         For Each inner As Exception In e.InnerExceptions
            Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
            If canc IsNot Nothing Then
               Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
            Else
               Console.WriteLine("Exception: {0}", inner.GetType().Name)
            End If   
         Next         
      Finally
         source.Dispose()
      End Try
   End Sub
End Module
' The example displays output like the following:
'       Task 1 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,502.47
'       Random number mean: 0.5003
'       
'       Task 0 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,445.63
'       Random number mean: 0.5002
'       
'       Task 2 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,556.04
'       Random number mean: 0.5003
'       
'       Task 3 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,178.87
'       Random number mean: 0.5001
'       
'       Task 4 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,819.17
'       Random number mean: 0.4999
'       
'       Task 5 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,190.58
'       Random number mean: 0.5001
'       
'       Task 6 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,720.21
'       Random number mean: 0.4999
'       
'       Task 7 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,000.96
'       Random number mean: 0.4995
'       
'       Task 8 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,499.33
'       Random number mean: 0.4997
'       
'       Task 9 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,193.25
'       Random number mean: 0.5001
'       
'       Task 10 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,960.82
'       Random number mean: 0.5000
'       
'       
'       Total random numbers generated: 22,000,000
'       Total sum of all random numbers: 11,000,067.33
'       Random number mean: 0.5000

È diverso dal primo esempio nei modi seguenti:It differs from the first example in the following ways:

  • Le variabili di tenere traccia del numero di numeri casuali generati e somma in ogni attività sono locali per l'attività, pertanto non è necessario usare il ThreadStaticAttribute attributo.The variables to keep track of the number of random numbers generated and their sum in each task are local to the task, so there is no need to use the ThreadStaticAttribute attribute.

  • Il metodo statico Task.WaitAll metodo viene usato per assicurarsi che il thread principale non viene completata prima di aver completato tutte le attività.The static Task.WaitAll method is used to ensure that the main thread doesn't complete before all tasks have finished. Non è necessario per il CountdownEvent oggetto.There is no need for the CountdownEvent object.

  • L'eccezione che deriva dall'annullamento delle attività viene esposto nel Task.WaitAll (metodo).The exception that results from task cancellation is surfaced in the Task.WaitAll method. Nell'esempio precedente, viene gestita da ogni thread.In the previous example, it is handled by each thread.

Generazione di tipi diversi di numeri casualiGenerating different types of random numbers

Generatore di numeri casuali fornisce metodi che consentono di generare i seguenti tipi di numeri casuali:The random number generator provides methods that let you generate the following kinds of random numbers:

  • Una serie di Byte valori.A series of Byte values. Determinare il numero di valori di byte passando una matrice inizializzata sul numero di elementi si desidera che il metodo per tornare al NextBytes (metodo).You determine the number of byte values by passing an array initialized to the number of elements you want the method to return to the NextBytes method. Nell'esempio seguente genera 20 byte.The following example generates 20 bytes.

    using namespace System;
    
    void main()
    {
       Random^ rnd = gcnew Random();
       array<Byte>^ bytes = gcnew array<Byte>(20);
       rnd->NextBytes(bytes);
       for (int ctr = 1; ctr <= bytes->Length; ctr++) {
          Console::Write("{0,3}   ", bytes[ctr - 1]);
          if (ctr % 10 == 0) Console::WriteLine();
       } 
    }
    // The example displays output like the following:
    //       141    48   189    66   134   212   211    71   161    56
    //       181   166   220   133     9   252   222    57    62    62
    
    using System;
    
    public class Example
    {
       public static void Main()
       {
          Random rnd = new Random();
          Byte[] bytes = new Byte[20];
          rnd.NextBytes(bytes);  
          for (int ctr = 1; ctr <= bytes.Length; ctr++) {
             Console.Write("{0,3}   ", bytes[ctr - 1]);
             if (ctr % 10 == 0) Console.WriteLine();
          } 
       }
    }
    // The example displays output like the following:
    //       141    48   189    66   134   212   211    71   161    56
    //       181   166   220   133     9   252   222    57    62    62
    
    Module Example
       Public Sub Main()
          Dim rnd As New Random()
          Dim bytes(19) As Byte
          rnd.NextBytes(bytes)  
          For ctr As Integer = 1 To bytes.Length
             Console.Write("{0,3}   ", bytes(ctr - 1))
             If ctr Mod 10 = 0 Then Console.WriteLine()
          Next 
       End Sub
    End Module
    ' The example displays output like the following:
    '       141    48   189    66   134   212   211    71   161    56
    '       181   166   220   133     9   252   222    57    62    62
    
  • Un numero intero.A single integer. È possibile scegliere se si desidera che un numero intero compreso tra 0 a un valore massimo (Int32.MaxValue - 1) chiamando il Next() metodo, un numero intero compreso tra 0 e un valore specifico chiamando il Next(Int32) metodo oppure un valore integer all'interno di un intervallo di valori chiamando il Next(Int32, Int32)metodo.You can choose whether you want an integer from 0 to a maximum value (Int32.MaxValue - 1) by calling the Next() method, an integer between 0 and a specific value by calling the Next(Int32) method, or an integer within a range of values by calling the Next(Int32, Int32) method. Negli overload con parametri, il valore massimo specificato è esclusivo; il numero massimo effettivo generato è uno minore del valore specificato.In the parameterized overloads, the specified maximum value is exclusive; that is, the actual maximum number generated is one less than the specified value.

    L'esempio seguente chiama il Next(Int32, Int32) metodo per generare 10 numeri casuale compreso tra -10 e 10.The following example calls the Next(Int32, Int32) method to generate 10 random numbers between -10 and 10. Si noti che il secondo argomento al metodo specifica il limite superiore esclusivo dell'intervallo di valori casuali restituito dal metodo.Note that the second argument to the method specifies the exclusive upper bound of the range of random values returned by the method. In altre parole, l'intero più grande che il metodo può restituire uno è minore di questo valore.In other words, the largest integer that the method can return is one less than this value.

    using namespace System;
    
    void main()
    {
       Random^ rnd = gcnew Random();
       for (int ctr = 0; ctr < 10; ctr++) {
          Console::Write("{0,3}   ", rnd->Next(-10, 11));
       }
    }
    // The example displays output like the following:
    //    2     9    -3     2     4    -7    -3    -8    -8     5
    
    using System;
    
    public class Example
    {
       public static void Main()
       {
          Random rnd = new Random();
          for (int ctr = 0; ctr < 10; ctr++) {
             Console.Write("{0,3}   ", rnd.Next(-10, 11));
          }
       }
    }
    // The example displays output like the following:
    //    2     9    -3     2     4    -7    -3    -8    -8     5
    
    Module Example
       Public Sub Main()
          Dim rnd As New Random()
          For ctr As Integer = 0 To 9
             Console.Write("{0,3}   ", rnd.Next(-10, 11))
          Next
       End Sub
    End Module
    ' The example displays output like the following:
    '    2     9    -3     2     4    -7    -3    -8    -8     5
    
  • Un singolo valore a virgola mobile compreso tra 0,0 e minore di 1,0 chiamando il NextDouble (metodo).A single floating-point value from 0.0 to less than 1.0 by calling the NextDouble method. Limite superiore esclusivo del numero casuale restituito dal metodo è 1, pertanto il limite massimo effettivo è 0.99999999999999978.The exclusive upper bound of the random number returned by the method is 1, so its actual upper bound is 0.99999999999999978. Nell'esempio seguente genera l'errore 10 numeri a virgola mobile casuale.The following example generates 10 random floating-point numbers.

    using namespace System;
    
    void main()
    {
       Random^ rnd = gcnew Random();
       for (int ctr = 0; ctr < 10; ctr++) {
          Console::Write("{0,-19:R}   ", rnd->NextDouble());
          if ((ctr + 1) % 3 == 0) Console::WriteLine();
       }
    }
    // The example displays output like the following:
    //    0.7911680553998649    0.0903414949264105    0.79776258291572455    
    //    0.615568345233597     0.652644504165577     0.84023809378977776   
    //    0.099662564741290441   0.91341467383942321  0.96018602045261581   
    //    0.74772306473354022
    
    using System;
    
    public class Example
    {
       public static void Main()
       {
          Random rnd = new Random();
          for (int ctr = 0; ctr < 10; ctr++) {
             Console.Write("{0,-19:R}   ", rnd.NextDouble());
             if ((ctr + 1) % 3 == 0) Console.WriteLine();
          }
       }
    }
    // The example displays output like the following:
    //    0.7911680553998649    0.0903414949264105    0.79776258291572455    
    //    0.615568345233597     0.652644504165577     0.84023809378977776   
    //    0.099662564741290441   0.91341467383942321  0.96018602045261581   
    //    0.74772306473354022
    
    Module Example
       Public Sub Main()
          Dim rnd As New Random()
          For ctr As Integer = 0 To 9
             Console.Write("{0,-19:R}   ", rnd.NextDouble())
             If (ctr + 1) Mod 3 = 0 Then Console.WriteLine()
          Next
       End Sub
    End Module
    ' The example displays output like the following:
    '    0.7911680553998649    0.0903414949264105    0.79776258291572455    
    '    0.615568345233597     0.652644504165577     0.84023809378977776   
    '    0.099662564741290441  0.91341467383942321   0.96018602045261581   
    '    0.74772306473354022
    

Importante

Il Next(Int32, Int32) metodo consente di specificare l'intervallo del numero casuale restituito.The Next(Int32, Int32) method allows you to specify the range of the returned random number. Tuttavia, il maxValue parametro che specifica l'intervallo superiore restituiti numeri, è un'esclusiva e non un inclusivo, valore.However, the maxValue parameter, which specifies the upper range returned number, is an exclusive, not an inclusive, value. Ciò significa che la chiamata al metodo Next(0, 100) restituisce un valore compreso tra 0 e 99 e non è compreso tra 0 e 100.This means that the method call Next(0, 100) returns a value between 0 and 99, and not between 0 and 100.

È anche possibile usare la Random classe per attività quali la generazione valori casuali T:System.Boolean, generazione valori a virgola mobile casuale con un intervallo diverso da 0 a 1, generazione numeri interi a 64 bit casuali, e richiamo in modo casuale di un elemento univoco da una matrice o raccolta.You can also use the Random class for such tasks as generating random T:System.Boolean values, generating random floating point values with a range other than 0 to 1, generating random 64-bit integers, and randomly retrieving a unique element from an array or collection. Per queste e altre attività comuni, vedere il come si usa System. Random per...For these and other common tasks, see the How do you use System.Random to… sezione.section.

Sostituzione di un algoritmo personalizzatoSubstituting your own algorithm

È possibile implementare il proprio generatore di numeri casuali ereditando dal Random classe e specificando l'algoritmo di generazione di numeri casuali.You can implement your own random number generator by inheriting from the Random class and supplying your random number generation algorithm. Per fornire il proprio algoritmo, è necessario eseguire l'override di Sample metodo, che implementa l'algoritmo di generazione di numeri casuali.To supply your own algorithm, you must override the Sample method, which implements the random number generation algorithm. È inoltre consigliabile eseguire l'override di Next(), Next(Int32, Int32), e NextBytes metodi per garantire che chiamano sottoposto a override Sample (metodo).You should also override the Next(), Next(Int32, Int32), and NextBytes methods to ensure that they call your overridden Sample method. Non è necessario eseguire l'override di Next(Int32) e NextDouble metodi.You don't have to override the Next(Int32) and NextDouble methods.

Per un esempio che deriva dal Random classe e modifica, il generatore di numeri pseudo-casuali predefinito vedere il Sample pagina di riferimento.For an example that derives from the Random class and modifies its default pseudo-random number generator, see the Sample reference page.

Come si usa System. Random per...How do you use System.Random to…

Le sezioni seguenti forniscono informazioni e codice di esempio per alcuni dei metodi che si potrebbe voler usare numeri casuali nell'app.The following sections discuss and provide sample code for some of the ways you might want to use random numbers in your app.

Recuperare la stessa sequenza di valori casualiRetrieve the same sequence of random values

Talvolta si desidera generare la stessa sequenza di numeri casuali negli scenari di test di software e la riproduzione del gioco.Sometimes you want to generate the same sequence of random numbers in software test scenarios and in game playing. Test con la stessa sequenza di numeri casuali consente di rilevare le regressioni e confermare le correzioni di bug.Testing with the same sequence of random numbers allows you to detect regressions and confirm bug fixes. Utilizzando la stessa sequenza di numero casuale nei giochi è possibile riprodurre giochi precedente.Using the same sequence of random number in games allows you to replay previous games.

È possibile generare la stessa sequenza di numeri casuali, fornendo lo stesso valore di inizializzazione per il Random(Int32) costruttore.You can generate the same sequence of random numbers by providing the same seed value to the Random(Int32) constructor. Il valore di inizializzazione fornisce un valore iniziale per l'algoritmo di generazione di numeri pseudo-casuali.The seed value provides a starting value for the pseudo-random number generation algorithm. L'esempio seguente usa 100100 come un valore di inizializzazione arbitrario per creare un'istanza di Random oggetto, vengono visualizzati 20 valori a virgola mobile casuali e mantiene il valore di inizializzazione.The following example uses 100100 as an arbitrary seed value to instantiate the Random object, displays 20 random floating-point values, and persists the seed value. Quindi Ripristina il valore di inizializzazione, crea un'istanza di un nuovo generatore di numeri casuali e visualizza le stessi 20 casuale valori a virgola mobile.It then restores the seed value, instantiates a new random number generator, and displays the same 20 random floating-point values. Si noti che l'esempio può produrre un gruppo di sequenze di numeri casuali se eseguiti in versioni diverse di .NET Framework.Note that the example may produce different sequences of random numbers if run on different versions of the .NET Framework.

using namespace System;
using namespace System::IO;

ref class RandomMethods
{
internal:
   static void ShowRandomNumbers(int seed)
   {
      Random^ rnd = gcnew Random(seed);
      for (int ctr = 0; ctr <= 20; ctr++)
         Console::WriteLine(rnd->NextDouble());
   }
   
   static void PersistSeed(int seed)
   {
      FileStream^ fs = gcnew FileStream(".\\seed.dat", FileMode::Create);
      BinaryWriter^ bin = gcnew BinaryWriter(fs);
      bin->Write(seed);
      bin->Close();
   }
   
   static void DisplayNewRandomNumbers()
   {
      FileStream^ fs = gcnew FileStream(".\\seed.dat", FileMode::Open);
      BinaryReader^ bin = gcnew BinaryReader(fs);
      int seed = bin->ReadInt32();
      bin->Close();
      
      Random^ rnd = gcnew Random(seed);
      for (int ctr = 0; ctr <= 20; ctr++)
         Console::WriteLine(rnd->NextDouble());
   }
};

void main()
{
   int seed = 100100;
   RandomMethods::ShowRandomNumbers(seed);
   Console::WriteLine();

   RandomMethods::PersistSeed(seed);

   RandomMethods::DisplayNewRandomNumbers();
}
// The example displays output like the following:
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
//       
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
using System;
using System.IO;

public class Example
{
   public static void Main()
   {
      int seed = 100100;
      ShowRandomNumbers(seed);
      Console.WriteLine();
      
      PersistSeed(seed);
      
      DisplayNewRandomNumbers(); 
   }
   
   private static void ShowRandomNumbers(int seed)
   {
      Random rnd = new Random(seed);
      for (int ctr = 0; ctr <= 20; ctr++)
         Console.WriteLine(rnd.NextDouble());
   }
   
   private static void PersistSeed(int seed)
   {
      FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
      BinaryWriter bin = new BinaryWriter(fs);
      bin.Write(seed);
      bin.Close();
   }
   
   private static void DisplayNewRandomNumbers()
   {
      FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
      BinaryReader bin = new BinaryReader(fs);
      int seed = bin.ReadInt32();
      bin.Close();
      
      Random rnd = new Random(seed);
      for (int ctr = 0; ctr <= 20; ctr++)
         Console.WriteLine(rnd.NextDouble());
   }
}
// The example displays output like the following:
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
//       
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
Imports System.IO

Module Example
   Public Sub Main()
      Dim seed As Integer = 100100
      ShowRandomNumbers(seed)
      Console.WriteLine()
      
      PersistSeed(seed)
      
      DisplayNewRandomNumbers() 
   End Sub
   
   Private Sub ShowRandomNumbers(seed As Integer)
      Dim rnd As New Random(seed)
      For ctr As Integer = 0 To 20
         Console.WriteLine(rnd.NextDouble())
      Next
   End Sub
   
   Private Sub PersistSeed(seed As Integer)
      Dim fs As New FileStream(".\seed.dat", FileMode.Create)
      Dim bin As New BinaryWriter(fs)
      bin.Write(seed)
      bin.Close()
   End Sub
   
   Private Sub DisplayNewRandomNumbers()
      Dim fs As New FileStream(".\seed.dat", FileMode.Open)
      Dim bin As New BinaryReader(fs)
      Dim seed As Integer = bin.ReadInt32()
      bin.Close()
      
      Dim rnd As New Random(seed)
      For ctr As Integer = 0 To 20
         Console.WriteLine(rnd.NextDouble())
      Next
   End Sub
End Module
' The example displays output like the following:
'       0.500193602172748
'       0.0209461245783354
'       0.465869495396442
'       0.195512794514891
'       0.928583675496552
'       0.729333720509584
'       0.381455668891527
'       0.0508996467343064
'       0.019261200921266
'       0.258578445417145
'       0.0177532266908107
'       0.983277184415272
'       0.483650274334313
'       0.0219647376900375
'       0.165910115077118
'       0.572085966622497
'       0.805291457942357
'       0.927985211335116
'       0.4228545699375
'       0.523320379910674
'       0.157783938645285
'       
'       0.500193602172748
'       0.0209461245783354
'       0.465869495396442
'       0.195512794514891
'       0.928583675496552
'       0.729333720509584
'       0.381455668891527
'       0.0508996467343064
'       0.019261200921266
'       0.258578445417145
'       0.0177532266908107
'       0.983277184415272
'       0.483650274334313
'       0.0219647376900375
'       0.165910115077118
'       0.572085966622497
'       0.805291457942357
'       0.927985211335116
'       0.4228545699375
'       0.523320379910674
'       0.157783938645285

Recuperare le sequenze univoche di numeri casualiRetrieve unique sequences of random numbers

Fornire i valori di inizializzazione diversi per le istanze del Random classe fa in modo che ogni generatore di numeri casuali per produrre una sequenza di valori diversi.Providing different seed values to instances of the Random class causes each random number generator to produce a different sequence of values. È possibile fornire un valore di inizializzazione in modo esplicito chiamando il Random(Int32) costruttore, oppure in modo implicito chiamando la Random() costruttore.You can provide a seed value either explicitly by calling the Random(Int32) constructor, or implicitly by calling the Random() constructor. La maggior parte degli sviluppatori di chiamano il costruttore senza parametri, che usa il clock di sistema.Most developers call the parameterless constructor, which uses the system clock. L'esempio seguente usa questo approccio per creare un'istanza di due Random istanze.The following example uses this approach to instantiate two Random instances. Ogni istanza viene visualizzata una serie di 10 numeri interi casuali.Each instance displays a series of 10 random integers.

using namespace System;
using namespace System::Threading;

void main()
{
   Console::WriteLine("Instantiating two random number generators...");
   Random^ rnd1 = gcnew Random();
   Thread::Sleep(2000);
   Random^ rnd2 = gcnew Random();
   
   Console::WriteLine("\nThe first random number generator:");
   for (int ctr = 1; ctr <= 10; ctr++)
      Console::WriteLine("   {0}", rnd1->Next());

   Console::WriteLine("\nThe second random number generator:");
   for (int ctr = 1; ctr <= 10; ctr++)
      Console::WriteLine("   {0}", rnd2->Next());
}
// The example displays output like the following:
//       Instantiating two random number generators...
//       
//       The first random number generator:
//          643164361
//          1606571630
//          1725607587
//          2138048432
//          496874898
//          1969147632
//          2034533749
//          1840964542
//          412380298
//          47518930
//       
//       The second random number generator:
//          1251659083
//          1514185439
//          1465798544
//          517841554
//          1821920222
//          195154223
//          1538948391
//          1548375095
//          546062716
//          897797880
using System;
using System.Threading;

public class Example
{
   public static void Main()
   {
      Console.WriteLine("Instantiating two random number generators...");
      Random rnd1 = new Random();
      Thread.Sleep(2000);
      Random rnd2 = new Random();
      
      Console.WriteLine("\nThe first random number generator:");
      for (int ctr = 1; ctr <= 10; ctr++)
         Console.WriteLine("   {0}", rnd1.Next());

      Console.WriteLine("\nThe second random number generator:");
      for (int ctr = 1; ctr <= 10; ctr++)
         Console.WriteLine("   {0}", rnd2.Next());
   }
}
// The example displays output like the following:
//       Instantiating two random number generators...
//       
//       The first random number generator:
//          643164361
//          1606571630
//          1725607587
//          2138048432
//          496874898
//          1969147632
//          2034533749
//          1840964542
//          412380298
//          47518930
//       
//       The second random number generator:
//          1251659083
//          1514185439
//          1465798544
//          517841554
//          1821920222
//          195154223
//          1538948391
//          1548375095
//          546062716
//          897797880
Imports System.Threading

Module Example
   Public Sub Main()
      Console.WriteLine("Instantiating two random number generators...")
      Dim rnd1 As New Random()
      Thread.Sleep(2000)
      Dim rnd2 As New Random()
      Console.WriteLine()
      
      Console.WriteLine("The first random number generator:")
      For ctr As Integer = 1 To 10
         Console.WriteLine("   {0}", rnd1.Next())
      Next  
      Console.WriteLine()
       
      Console.WriteLine("The second random number generator:")
      For ctr As Integer = 1 To 10
         Console.WriteLine("   {0}", rnd2.Next())
      Next   
   End Sub
End Module
' The example displays output like the following:
'       Instantiating two random number generators...
'       
'       The first random number generator:
'          643164361
'          1606571630
'          1725607587
'          2138048432
'          496874898
'          1969147632
'          2034533749
'          1840964542
'          412380298
'          47518930
'       
'       The second random number generator:
'          1251659083
'          1514185439
'          1465798544
'          517841554
'          1821920222
'          195154223
'          1538948391
'          1548375095
'          546062716
'          897797880

Tuttavia, a causa di risoluzione finita, l'orologio di sistema non rileva le differenze di orario di minore di circa 15 millisecondi.However, because of its finite resolution, the system clock doesn't detect time differences that are less than approximately 15 milliseconds. Pertanto, se il codice chiama il Random() per creare un'istanza di due overload Random gli oggetti in successione, si potrebbero inavvertitamente fornire gli oggetti con valori di inizializzazione identici.Therefore, if your code calls the Random() overload to instantiate two Random objects in succession, you might inadvertently be providing the objects with identical seed values. Per verificarlo nell'esempio precedente, impostare come commento il Thread.Sleep chiamata al metodo e compilazione ed eseguire l'esempio di nuovo.To see this in the previous example, comment out the Thread.Sleep method call, and compile and run the example again.

Per evitare che ciò accada, è consigliabile che si crea un'istanza di un singolo Random oggetto anziché più sessioni.To prevent this from happening, we recommend that you instantiate a single Random object rather than multiple ones. Tuttavia, poiché Random non è thread-safe, è necessario usare un dispositivo di sincronizzazione se si accede a un Random dell'istanza da più thread; per altre informazioni, vedere casuale la sicurezza della classe e thread più indietro in questo argomento.However, since Random isn't thread safe, you must use some synchronization device if you access a Random instance from multiple threads; for more information, see The Random class and thread safety earlier in this topic. In alternativa, è possibile usare un meccanismo di ritardo, ad esempio il Sleep metodo usato nell'esempio precedente, per garantire che le istanze create si distanti più di 15 millisecondi.Alternately, you can use a delay mechanism, such as the Sleep method used in the previous example, to ensure that the instantiations occur more than 15 millisecond apart.

Recuperare interi in un intervallo specificatoRetrieve integers in a specified range

È possibile recuperare valori interi in un intervallo specificato chiamando il Next(Int32, Int32) metodo, che consente di specificare sia il limite minimo e il limite superiore dei numeri di cui si vuole che il generatore di numeri casuali da restituire.You can retrieve integers in a specified range by calling the Next(Int32, Int32) method, which lets you specify both the lower and the upper bound of the numbers you'd like the random number generator to return. Il limite superiore è un'esclusiva e non un inclusivo, valore.The upper bound is an exclusive, not an inclusive, value. Vale a dire non è incluso nell'intervallo dei valori restituiti dal metodo.That is, it isn't included in the range of values returned by the method. L'esempio seguente usa questo metodo per generare numeri casuali interi compresi tra -10 e 10.The following example uses this method to generate random integers between -10 and 10. Si noti che specifichi 11, ovvero una maggiore del valore desiderato, come il valore della maxValue argomento nella chiamata al metodo.Note that it specifies 11, which is one greater than the desired value, as the value of the maxValue argument in the method call.

using namespace System;

void main()
{
   Random^ rnd = gcnew Random();
   for (int ctr = 1; ctr <= 15; ctr++) {
      Console::Write("{0,3}    ", rnd->Next(-10, 11));
      if(ctr % 5 == 0) Console::WriteLine();
   }
}
// The example displays output like the following:
//        -2     -5     -1     -2     10
//        -3      6     -4     -8      3
//        -7     10      5     -2      4
using System;

public class Example
{
   public static void Main()
   {
      Random rnd = new Random();
      for (int ctr = 1; ctr <= 15; ctr++) {
         Console.Write("{0,3}    ", rnd.Next(-10, 11));
         if(ctr % 5 == 0) Console.WriteLine();
      }   
   }
}
// The example displays output like the following:
//        -2     -5     -1     -2     10
//        -3      6     -4     -8      3
//        -7     10      5     -2      4
Module Example
   Public Sub Main()
      Dim rnd As New Random()
      For ctr As Integer = 1 To 15
         Console.Write("{0,3}    ", rnd.Next(-10, 11))
         If ctr Mod 5 = 0 Then Console.WriteLine()
      Next   
   End Sub
End Module
' The example displays output like the following:
'        -2     -5     -1     -2     10
'        -3      6     -4     -8      3
'        -7     10      5     -2      4

Recuperare interi con un numero di cifre specificatoRetrieve integers with a specified number of digits

È possibile chiamare il Next(Int32, Int32) metodo per recuperare numeri con un numero di cifre specificato.You can call the Next(Int32, Int32) method to retrieve numbers with a specified number of digits. Ad esempio, per recuperare numeri con quattro cifre (ovvero numeri compresi tra 1000 e 9999), si chiama il Next(Int32, Int32) metodo con un minValue pari a 1000 e un maxValue pari a 10000, come illustrato nell'esempio seguente.For example, to retrieve numbers with four digits (that is, numbers that range from 1000 to 9999), you call the Next(Int32, Int32) method with a minValue value of 1000 and a maxValue value of 10000, as the following example shows.

using namespace System;

void main()
{
   Random^ rnd = gcnew Random();
   for (int ctr = 1; ctr <= 50; ctr++) {
      Console::Write("{0,3}   ", rnd->Next(1000, 10000));
      if(ctr % 10 == 0) Console::WriteLine();
   }   
}
// The example displays output like the following:
//    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
//    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
//    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
//    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
//    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593
using System;

public class Example
{
   public static void Main()
   {
      Random rnd = new Random();
      for (int ctr = 1; ctr <= 50; ctr++) {
         Console.Write("{0,3}    ", rnd.Next(1000, 10000));
         if(ctr % 10 == 0) Console.WriteLine();
      }   
   }
}
// The example displays output like the following:
//    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
//    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
//    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
//    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
//    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593
Module Example
   Public Sub Main()
      Dim rnd As New Random()
      For ctr As Integer = 1 To 50
         Console.Write("{0,3}    ", rnd.Next(1000, 10000))
         If ctr Mod 10 = 0 Then Console.WriteLine()
      Next   
   End Sub
End Module
' The example displays output like the following:
'    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
'    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
'    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
'    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
'    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593

Recuperare i valori a virgola mobile in un intervallo specificatoRetrieve floating-point values in a specified range

Il NextDouble metodo restituisce valori a virgola mobile casuale quell'intervallo da 0 a meno di 1.The NextDouble method returns random floating-point values that range from 0 to less than 1. Tuttavia, spesso è opportuno generare valori casuali in un altro intervallo.However, you'll often want to generate random values in some other range.

Se l'intervallo tra i valori minimi e massimo desiderati è 1, è possibile aggiungere la differenza tra l'intervallo inizia desiderato e 0 per il numero restituito dal NextDouble (metodo).If the interval between the minimum and maximum desired values is 1, you can add the difference between the desired starting interval and 0 to the number returned by the NextDouble method. Nell'esempio seguente esegue questa opzione per generare 10 numeri casuale compreso tra -1 e 0.The following example does this to generate 10 random numbers between -1 and 0.

using namespace System;

void main()
{
   Random^ rnd = gcnew Random();
   for (int ctr = 1; ctr <= 10; ctr++)
      Console::WriteLine(rnd->NextDouble() - 1);
}
// The example displays output like the following:
//       -0.930412760437658
//       -0.164699016215605
//       -0.9851692803135
//       -0.43468508843085
//       -0.177202483255976
//       -0.776813320245972
//       -0.0713201854710096
//       -0.0912875561468711
//       -0.540621722368813
//       -0.232211863730201
using System;

public class Example
{
   public static void Main()
   {
      Random rnd = new Random();
      for (int ctr = 1; ctr <= 10; ctr++)
         Console.WriteLine(rnd.NextDouble() - 1);
   }
}
// The example displays output like the following:
//       -0.930412760437658
//       -0.164699016215605
//       -0.9851692803135
//       -0.43468508843085
//       -0.177202483255976
//       -0.776813320245972
//       -0.0713201854710096
//       -0.0912875561468711
//       -0.540621722368813
//       -0.232211863730201
Module Example
   Public Sub Main()
      Dim rnd As New Random()
      For ctr As Integer = 1 To 10
         Console.WriteLine(rnd.NextDouble() - 1)
      Next
   End Sub
End Module
' The example displays output like the following:
'       -0.930412760437658
'       -0.164699016215605
'       -0.9851692803135
'       -0.43468508843085
'       -0.177202483255976
'       -0.776813320245972
'       -0.0713201854710096
'       -0.0912875561468711
'       -0.540621722368813
'       -0.232211863730201

Per generare numeri a virgola mobile casuale con limite inferiore è 0 ma limite superiore è maggiore di 1 (o, nel caso i numeri negativi, il cui limite inferiore è minore di -1 e il limite superiore è 0), moltiplicare il numero casuale per il limite diverso da zero.To generate random floating-point numbers whose lower bound is 0 but upper bound is greater than 1 (or, in the case of negative numbers, whose lower bound is less than -1 and upper bound is 0), multiply the random number by the non-zero bound. Nell'esempio seguente esegue questa generazione di numeri a virgola mobile casuale 20 milioni di quell'intervallo compreso tra 0 e Int64.MaxValue.The following example does this to generate 20 million random floating-point numbers that range from 0 to Int64.MaxValue. In Visualizza anche la distribuzione dei valori casuali generati dal metodo.In also displays the distribution of the random values generated by the method.

using namespace System;

void main()
{
   const Int64 ONE_TENTH = 922337203685477581;
   Random^ rnd = gcnew Random();
   double number;
   array<int>^ count = gcnew array<int>(10);
   
   // Generate 20 million integer values between.
   for (int ctr = 1; ctr <= 20000000; ctr++) {
      number = rnd->NextDouble() * Int64::MaxValue;
      // Categorize random numbers into 10 groups.
      int value = (int) (number / ONE_TENTH);
      count[value]++;
   }

   // Display breakdown by range.
   Console::WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
   for (int ctr = 0; ctr <= 9; ctr++)
      Console::WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                         ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64::MaxValue,
                         count[ctr], count[ctr]/20000000.0);
}
// The example displays output like the following:
//                           Range                            Count      Pct.
//    
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
using System;

public class Example
{
   public static void Main()
   {
      const long ONE_TENTH = 922337203685477581;

      Random rnd = new Random();
      double number;
      int[] count = new int[10];
      
      // Generate 20 million integer values between.
      for (int ctr = 1; ctr <= 20000000; ctr++) {
         number = rnd.NextDouble() * Int64.MaxValue;
         // Categorize random numbers into 10 groups.
         count[(int) (number / ONE_TENTH)]++;
      }
      // Display breakdown by range.
      Console.WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
      for (int ctr = 0; ctr <= 9; ctr++)
         Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue, 
                            count[ctr], count[ctr]/20000000.0);
   }
}
// The example displays output like the following:
//                           Range                            Count      Pct.
//    
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
Module Example
   Public Sub Main()
      Const ONE_TENTH As Long = 922337203685477581

      Dim rnd As New Random()
      Dim number As Long
      Dim count(9) As Integer
      
      ' Generate 20 million integer values.
      For ctr As Integer = 1 To 20000000
         number = CLng(rnd.NextDouble() * Int64.MaxValue)
         ' Categorize random numbers.
         count(CInt(number \ ONE_TENTH)) += 1
      Next
      ' Display breakdown by range.
      Console.WriteLine("{0,28} {1,32}   {2,7}", "Range", "Count", "Pct.")
      Console.WriteLine()
      For ctr As Integer = 0 To 9
         Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue), 
                            count(ctr), count(ctr)/20000000)
      Next
   End Sub
End Module
' The example displays output like the following:
'                           Range                            Count      Pct.
'    
'                            0-  922,337,203,685,477,580  1,996,148    9.98 %
'      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
'    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
'    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
'    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
'    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
'    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
'    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
'    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
'    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %

Per generare numeri a virgola mobile casuale compreso tra due valori arbitrari, ad esempio il Next(Int32, Int32) metodo per i numeri interi, utilizzare la formula seguente:To generate random floating-point numbers between two arbitrary values, like the Next(Int32, Int32) method does for integers, use the following formula:

Random.NextDouble() * (maxValue - minValue) + minValue  

Nell'esempio seguente genera numeri casuali di 1 milione che vanno da 10.0 a 11.0 e Visualizza la loro distribuzione.The following example generates 1 million random numbers that range from 10.0 to 11.0, and displays their distribution.

using namespace System;

void main()
{
   Random^ rnd = gcnew Random();
   int lowerBound = 10;
   int upperBound = 11;
   array<int>^ range = gcnew array<int>(10);
   for (int ctr = 1; ctr <= 1000000; ctr++) {
      Double value = rnd->NextDouble() * (upperBound - lowerBound) + lowerBound;
      range[(int) Math::Truncate((value - lowerBound) * 10)]++;
   }
   
   for (int ctr = 0; ctr <= 9; ctr++) {
      Double lowerRange = 10 + ctr * .1;
      Console::WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})",
                         lowerRange, lowerRange + .1, range[ctr],
                         range[ctr] / 1000000.0);
   } 
}
// The example displays output like the following:
//       10.0 to 10.1:   99,929  ( 9.99 %)
//       10.1 to 10.2:  100,189  (10.02 %)
//       10.2 to 10.3:   99,384  ( 9.94 %)
//       10.3 to 10.4:  100,240  (10.02 %)
//       10.4 to 10.5:   99,397  ( 9.94 %)
//       10.5 to 10.6:  100,580  (10.06 %)
//       10.6 to 10.7:  100,293  (10.03 %)
//       10.7 to 10.8:  100,135  (10.01 %)
//       10.8 to 10.9:   99,905  ( 9.99 %)
//       10.9 to 11.0:   99,948  ( 9.99 %)
using System;

public class Example
{
   public static void Main()
   {
      Random rnd = new Random();
      int lowerBound = 10;
      int upperBound = 11;
      int[] range = new int[10];
      for (int ctr = 1; ctr <= 1000000; ctr++) {
         Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
         range[(int) Math.Truncate((value - lowerBound) * 10)]++; 
      }
      
      for (int ctr = 0; ctr <= 9; ctr++) {
         Double lowerRange = 10 + ctr * .1;
         Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})", 
                           lowerRange, lowerRange + .1, range[ctr], 
                           range[ctr] / 1000000.0);
      } 
   }
}
// The example displays output like the following:
//       10.0 to 10.1:   99,929  ( 9.99 %)
//       10.1 to 10.2:  100,189  (10.02 %)
//       10.2 to 10.3:   99,384  ( 9.94 %)
//       10.3 to 10.4:  100,240  (10.02 %)
//       10.4 to 10.5:   99,397  ( 9.94 %)
//       10.5 to 10.6:  100,580  (10.06 %)
//       10.6 to 10.7:  100,293  (10.03 %)
//       10.7 to 10.8:  100,135  (10.01 %)
//       10.8 to 10.9:   99,905  ( 9.99 %)
//       10.9 to 11.0:   99,948  ( 9.99 %)
Module Example
   Public Sub Main()
      Dim rnd As New Random()
      Dim lowerBound As Integer = 10
      Dim upperBound As Integer = 11
      Dim range(9) As Integer
      For ctr As Integer = 1 To 1000000
         Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
         range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1 
      Next
      
      For ctr As Integer = 0 To 9
         Dim lowerRange As Double = 10 + ctr * .1
         Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})", 
                           lowerRange, lowerRange + .1, range(ctr), 
                           range(ctr) / 1000000.0)
      Next 
   End Sub
End Module
' The example displays output like the following:
'       10.0 to 10.1:   99,929  ( 9.99 %)
'       10.1 to 10.2:  100,189  (10.02 %)
'       10.2 to 10.3:   99,384  ( 9.94 %)
'       10.3 to 10.4:  100,240  (10.02 %)
'       10.4 to 10.5:   99,397  ( 9.94 %)
'       10.5 to 10.6:  100,580  (10.06 %)
'       10.6 to 10.7:  100,293  (10.03 %)
'       10.7 to 10.8:  100,135  (10.01 %)
'       10.8 to 10.9:   99,905  ( 9.99 %)
'       10.9 to 11.0:   99,948  ( 9.99 %)

Generare i valori booleani casualeGenerate random Boolean values

Il Random classe non fornisce metodi che generano Boolean valori.The Random class doesn't provide methods that generate Boolean values. Tuttavia, è possibile definire il proprio classe o un metodo per eseguire questa operazione.However, you can define your own class or method to do that. L'esempio seguente definisce una classe BooleanGenerator, con un solo metodo, NextBoolean.The following example defines a class, BooleanGenerator, with a single method, NextBoolean. Il BooleanGenerator classe archivia un Random oggetto come una variabile privata.The BooleanGenerator class stores a Random object as a private variable. Il NextBoolean chiamate al metodo il Random.Next(Int32, Int32) metodo e passa il risultato per il Convert.ToBoolean(Int32) (metodo).The NextBoolean method calls the Random.Next(Int32, Int32) method and passes the result to the Convert.ToBoolean(Int32) method. Si noti che 2 viene utilizzata come argomento per specificare il limite superiore del numero casuale.Note that 2 is used as the argument to specify the upper bound of the random number. Poiché si tratta di un valore esclusivo, la chiamata al metodo restituisce 0 o 1.Since this is an exclusive value, the method call returns either 0 or 1.

using namespace System;

public ref class BooleanGenerator
{
   private:
      Random^ rnd;

   public:
      BooleanGenerator()
      {
         rnd = gcnew Random();
      }

      bool NextBoolean()
      {
         return Convert::ToBoolean(rnd->Next(0, 2));
      }
};

void main()
{
   // Instantiate the Boolean generator.
   BooleanGenerator^ boolGen = gcnew BooleanGenerator();
   int totalTrue = 0, totalFalse = 0;
   
   // Generate 1,0000 random Booleans, and keep a running total.
   for (int ctr = 0; ctr < 1000000; ctr++) {
       bool value = boolGen->NextBoolean();
       if (value)
          totalTrue++;
       else
          totalFalse++;
   }
   Console::WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                      totalTrue,
                      ((double) totalTrue)/(totalTrue + totalFalse));
   Console::WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                     totalFalse, 
                     ((double) totalFalse)/(totalTrue + totalFalse));
}

// The example displays output like the following:
//       Number of true values:  500,004 (50.000 %)
//       Number of false values: 499,996 (50.000 %)
using System;

public class Example
{
   public static void Main()
   {
      // Instantiate the Boolean generator.
      BooleanGenerator boolGen = new BooleanGenerator();
      int totalTrue = 0, totalFalse = 0;
      
      // Generate 1,0000 random Booleans, and keep a running total.
      for (int ctr = 0; ctr < 1000000; ctr++) {
          bool value = boolGen.NextBoolean();
          if (value)
             totalTrue++;
          else
             totalFalse++;
      }
      Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})", 
                        totalTrue, 
                        ((double) totalTrue)/(totalTrue + totalFalse));
      Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})", 
                        totalFalse, 
                        ((double) totalFalse)/(totalTrue + totalFalse));
   }
}

public class BooleanGenerator
{
   Random rnd;
   
   public BooleanGenerator()
   {
      rnd = new Random();
   }

   public bool NextBoolean()
   {
      return Convert.ToBoolean(rnd.Next(0, 2));
   }
}
// The example displays output like the following:
//       Number of true values:  500,004 (50.000 %)
//       Number of false values: 499,996 (50.000 %)
Module Example
   Public Sub Main()
      ' Instantiate the Boolean generator.
      Dim boolGen As New BooleanGenerator()
      Dim totalTrue, totalFalse As Integer 
      
      ' Generate 1,0000 random Booleans, and keep a running total.
      For ctr As Integer = 0 To 9999999
          Dim value As Boolean = boolGen.NextBoolean()
          If value Then
             totalTrue += 1
          Else
             totalFalse += 1
          End If
      Next
      Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})", 
                        totalTrue, 
                        totalTrue/(totalTrue + totalFalse))
      Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})", 
                        totalFalse, 
                        totalFalse/(totalTrue + totalFalse))
   End Sub                     
End Module

Public Class BooleanGenerator
   Dim rnd As Random
   
   Public Sub New()
      rnd = New Random()
   End Sub

   Public Function NextBoolean() As Boolean
      Return Convert.ToBoolean(rnd.Next(0, 2))
   End Function
End Class
' The example displays the following output:
'       Number of true values:  500,004 (50.000 %)
'       Number of false values: 499,996 (50.000 %)

Anziché creare una classe separata per generare casuale Boolean valori, nell'esempio viene semplicemente potrebbe essere stata definita un singolo metodo.Instead of creating a separate class to generate random Boolean values, the example could simply have defined a single method. In tal caso, tuttavia, il Random deve avere l'oggetto sia stato definito come una variabile a livello di classe per evitare un'istanza di un nuovo Random istanza in ogni chiamata al metodo.In that case, however, the Random object should have been defined as a class-level variable to avoid instantiating a new Random instance in each method call. In Visual Basic, l'istanza di Random può essere definita come una statici di una variabile nel NextBoolean (metodo).In Visual Basic, the Random instance can be defined as a Static variable in the NextBoolean method. Nell'esempio seguente fornisce un'implementazione.The following example provides an implementation.

using namespace System;

ref class Example
{
private:
   static Random^ rnd = gcnew Random();

public:
   static void Execute()
   {
      int totalTrue = 0, totalFalse = 0;
      
      // Generate 1,0000 random Booleans, and keep a running total.
      for (int ctr = 0; ctr < 1000000; ctr++) {
          bool value = NextBoolean();
          if (value)
             totalTrue++;
          else
             totalFalse++;
      }
      Console::WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                        totalTrue, 
                        ((double) totalTrue)/(totalTrue + totalFalse));
      Console::WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                        totalFalse, 
                        ((double) totalFalse)/(totalTrue + totalFalse));
   }

   static bool NextBoolean()
   {
      return Convert::ToBoolean(rnd->Next(0, 2));
   }
};

void main()
{
   Example::Execute();
}
// The example displays output like the following:
//       Number of true values:  499,777 (49.978 %)
//       Number of false values: 500,223 (50.022 %)
using System;

public class Example
{
   private static Random rnd = new Random();

   public static void Main()
   {
      int totalTrue = 0, totalFalse = 0;
      
      // Generate 1,0000 random Booleans, and keep a running total.
      for (int ctr = 0; ctr < 1000000; ctr++) {
          bool value = NextBoolean();
          if (value)
             totalTrue++;
          else
             totalFalse++;
      }
      Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})", 
                        totalTrue, 
                        ((double) totalTrue)/(totalTrue + totalFalse));
      Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})", 
                        totalFalse, 
                        ((double) totalFalse)/(totalTrue + totalFalse));
   }

   public static bool NextBoolean()
   {
      return Convert.ToBoolean(rnd.Next(0, 2));
   }
}
// The example displays output like the following:
//       Number of true values:  499,777 (49.978 %)
//       Number of false values: 500,223 (50.022 %)
Module Example
   Public Sub Main()
      Dim totalTrue, totalFalse As Integer 
      
      ' Generate 1,0000 random Booleans, and keep a running total.
      For ctr As Integer = 0 To 9999999
          Dim value As Boolean = NextBoolean()
          If value Then
             totalTrue += 1
          Else
             totalFalse += 1
          End If
      Next
      Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})", 
                        totalTrue, 
                        totalTrue/(totalTrue + totalFalse))
      Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})", 
                        totalFalse, 
                        totalFalse/(totalTrue + totalFalse))
   End Sub 
                       
   Public Function NextBoolean() As Boolean
      Static rnd As New Random()
      Return Convert.ToBoolean(rnd.Next(0, 2))
   End Function
End Module
' The example displays the following output:
'       Number of true values:  499,777 (49.978 %)
'       Number of false values: 500,223 (50.022 %)

Generare numeri interi a 64 bit casualiGenerate random 64-bit integers

Gli overload del Next metodo restituiscono valori integer a 32 bit.The overloads of the Next method return 32-bit integers. Tuttavia, in alcuni casi, potrebbe voler usare con numeri interi a 64 bit.However, in some cases, you might want to work with 64-bit integers. Procedere come segue:You can do this as follows:

  1. Chiamare il NextDouble valore del punto per recuperare un mobile e precisione doppia.Call the NextDouble method to retrieve a double-precision floating point value.

  2. Tale valore da moltiplicare Int64.MaxValue.Multiply that value by Int64.MaxValue.

Nell'esempio seguente usa questa tecnica per generare valori long integer 20 milioni casuali e li classifica in 10 gruppi di uguali.The following example uses this technique to generate 20 million random long integers and categorizes them in 10 equal groups. Viene quindi valutato la distribuzione di numeri casuali contando il numero in ogni gruppo compreso tra 0 e Int64.MaxValue.It then evaluates the distribution of the random numbers by counting the number in each group from 0 to Int64.MaxValue. Come illustrato nell'output dell'esempio, i numeri vengono distribuiti più o meno in modo uniforme tramite l'intervallo di un long integer.As the output from the example shows, the numbers are distributed more or less equally through the range of a long integer.

using namespace System;

void main()
{
   const Int64 ONE_TENTH = 922337203685477581;

   Random^ rnd = gcnew Random();
   Int64 number;
   array<int>^ count = gcnew array<int>(10);
   
   // Generate 20 million long integers.
   for (int ctr = 1; ctr <= 20000000; ctr++) {
      number = (Int64) (rnd->NextDouble() * Int64::MaxValue);
      // Categorize random numbers.
      count[(int) (number / ONE_TENTH)]++;
   }
   // Display breakdown by range.
   Console::WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
   for (int ctr = 0; ctr <= 9; ctr++)
      Console::WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                         ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64::MaxValue,
                         count[ctr], count[ctr]/20000000.0);
}
// The example displays output like the following:
//                           Range                            Count      Pct.
//    
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
using System;

public class Example
{
   public static void Main()
   {
      const long ONE_TENTH = 922337203685477581;

      Random rnd = new Random();
      long number;
      int[] count = new int[10];
      
      // Generate 20 million long integers.
      for (int ctr = 1; ctr <= 20000000; ctr++) {
         number = (long) (rnd.NextDouble() * Int64.MaxValue);
         // Categorize random numbers.
         count[(int) (number / ONE_TENTH)]++;
      }
      // Display breakdown by range.
      Console.WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
      for (int ctr = 0; ctr <= 9; ctr++)
         Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue, 
                            count[ctr], count[ctr]/20000000.0);
   }
}
// The example displays output like the following:
//                           Range                            Count      Pct.
//    
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
Module Example
   Public Sub Main()
      Const ONE_TENTH As Long = 922337203685477581

      Dim rnd As New Random()
      Dim number As Long
      Dim count(9) As Integer
      
      ' Generate 20 million long integers.
      For ctr As Integer = 1 To 20000000
         number = CLng(rnd.NextDouble() * Int64.MaxValue)
         ' Categorize random numbers.
         count(CInt(number \ ONE_TENTH)) += 1
      Next
      ' Display breakdown by range.
      Console.WriteLine("{0,28} {1,32}   {2,7}", "Range", "Count", "Pct.")
      Console.WriteLine()
      For ctr As Integer = 0 To 9
         Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue), 
                            count(ctr), count(ctr)/20000000)
      Next
   End Sub
End Module
' The example displays output like the following:
'                           Range                            Count      Pct.
'    
'                            0-  922,337,203,685,477,580  1,996,148    9.98 %
'      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
'    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
'    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
'    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
'    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
'    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
'    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
'    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
'    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %

Una tecnica alternativa che viene utilizzato bit manipolazione non genera numeri casuali realmente.An alternative technique that uses bit manipulation does not generate truly random numbers. Questa tecnica chiama Next() per generare due numeri interi, sposta verso sinistra uno da 32 bit e sono uno a altro.This technique calls Next() to generate two integers, left-shifts one by 32 bits, and ORs them together. Questa tecnica presenta due limitazioni:This technique has two limitations:

  1. Poiché il bit 31 bit di segno, il valore in bit 31 long integer risultante è sempre 0.Because bit 31 is the sign bit, the value in bit 31 of the resulting long integer is always 0. Questo problema può essere risolto tramite la generazione casuale 0 o 1, spostamento a sinistra 31 bit e ORing con long integer casuale originale.This can be addressed by generating a random 0 or 1, left-shifting it 31 bits, and ORing it with the original random long integer.

  2. Attenzione, perché la probabilità che il valore restituito da Next() sarà pari a 0, vi saranno alcuni eventuali numeri casuali nell'intervallo 0x0 0x00000000FFFFFFFF.More seriously, because the probability that the value returned by Next() will be 0, there will be few if any random numbers in the range 0x0-0x00000000FFFFFFFF.

Recuperare byte in un intervallo specificatoRetrieve bytes in a specified range

Gli overload del Next metodo consentono di specificare l'intervallo di numeri casuali, ma il NextBytes non dal metodo.The overloads of the Next method allow you to specify the range of random numbers, but the NextBytes method does not. L'esempio seguente implementa un NextBytes metodo che consente di specificare l'intervallo di byte restituiti.The following example implements a NextBytes method that lets you specify the range of the returned bytes. Definisce un Random2 classe che deriva da Random ed esegue l'overload relativi NextBytes (metodo).It defines a Random2 class that derives from Random and overloads its NextBytes method.

using namespace System;

ref class Random2 : Random
{
public:
   Random2()
   {}

   Random2(int seed) : Random(seed)
   {}

   void NextBytes(array<Byte>^ bytes, Byte minValue, Byte maxValue)
   {
      for (int ctr = bytes->GetLowerBound(0); ctr <= bytes->GetUpperBound(0); ctr++)
         bytes[ctr] = (Byte) Next(minValue, maxValue);
   }
};

void main()
{
    Random2^ rnd = gcnew Random2();
    array<Byte>^ bytes = gcnew array<Byte>(10000);
    array<int>^ total = gcnew array<int>(101);
    rnd->NextBytes(bytes, 0, 101);

    // Calculate how many of each value we have.
    for each (Byte value in bytes)
       total[value]++;

    // Display the results.
    for (int ctr = 0; ctr < total->Length; ctr++) {
        Console::Write("{0,3}: {1,-3}   ", ctr, total[ctr]);
        if ((ctr + 1) % 5 == 0) Console::WriteLine();
    }
}
// The example displays output like the following:
//         0: 115     1: 119     2: 92      3: 98      4: 92
//         5: 102     6: 103     7: 84      8: 93      9: 116
//        10: 91     11: 98     12: 106    13: 91     14: 92
//        15: 101    16: 100    17: 96     18: 97     19: 100
//        20: 101    21: 106    22: 112    23: 82     24: 85
//        25: 102    26: 107    27: 98     28: 106    29: 102
//        30: 109    31: 108    32: 94     33: 101    34: 107
//        35: 101    36: 86     37: 100    38: 101    39: 102
//        40: 113    41: 95     42: 96     43: 89     44: 99
//        45: 81     46: 89     47: 105    48: 100    49: 85
//        50: 103    51: 103    52: 93     53: 89     54: 91
//        55: 97     56: 105    57: 97     58: 110    59: 86
//        60: 116    61: 94     62: 117    63: 98     64: 110
//        65: 93     66: 102    67: 100    68: 105    69: 83
//        70: 81     71: 97     72: 85     73: 70     74: 98
//        75: 100    76: 110    77: 114    78: 83     79: 90
//        80: 96     81: 112    82: 102    83: 102    84: 99
//        85: 81     86: 100    87: 93     88: 99     89: 118
//        90: 95     91: 124    92: 108    93: 96     94: 104
//        95: 106    96: 99     97: 99     98: 92     99: 99
//       100: 108
using System;

public class Example
{
   public static void Main()
   {
       Random2 rnd = new Random2();
       Byte[] bytes = new Byte[10000];
       int[] total = new int[101];
       rnd.NextBytes(bytes, 0, 101);
       
       // Calculate how many of each value we have.
       foreach (var value in bytes)
          total[value]++;
       
       // Display the results.
       for (int ctr = 0; ctr < total.Length; ctr++) {
           Console.Write("{0,3}: {1,-3}   ", ctr, total[ctr]);
           if ((ctr + 1) % 5 == 0) Console.WriteLine();
       }   
   }
}

public class Random2 : Random
{
   public Random2() : base()
   {}

   public Random2(int seed) : base(seed)
   {}

   public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
   {
      for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
         bytes[ctr] = (byte) Next(minValue, maxValue);
   }
}
// The example displays output like the following:
//         0: 115     1: 119     2: 92      3: 98      4: 92
//         5: 102     6: 103     7: 84      8: 93      9: 116
//        10: 91     11: 98     12: 106    13: 91     14: 92
//        15: 101    16: 100    17: 96     18: 97     19: 100
//        20: 101    21: 106    22: 112    23: 82     24: 85
//        25: 102    26: 107    27: 98     28: 106    29: 102
//        30: 109    31: 108    32: 94     33: 101    34: 107
//        35: 101    36: 86     37: 100    38: 101    39: 102
//        40: 113    41: 95     42: 96     43: 89     44: 99
//        45: 81     46: 89     47: 105    48: 100    49: 85
//        50: 103    51: 103    52: 93     53: 89     54: 91
//        55: 97     56: 105    57: 97     58: 110    59: 86
//        60: 116    61: 94     62: 117    63: 98     64: 110
//        65: 93     66: 102    67: 100    68: 105    69: 83
//        70: 81     71: 97     72: 85     73: 70     74: 98
//        75: 100    76: 110    77: 114    78: 83     79: 90
//        80: 96     81: 112    82: 102    83: 102    84: 99
//        85: 81     86: 100    87: 93     88: 99     89: 118
//        90: 95     91: 124    92: 108    93: 96     94: 104
//        95: 106    96: 99     97: 99     98: 92     99: 99
//       100: 108
Module Example
   Public Sub Main()
       Dim rnd As New Random2()
       Dim bytes(9999) As Byte
       Dim total(100) As Integer
       rnd.NextBytes(bytes, 0, 101)
       
       ' Calculate how many of each value we have.
       For Each value In bytes
          total(value) += 1
       Next
       
       ' Display the results.
       For ctr As Integer = 0 To total.Length - 1
           Console.Write("{0,3}: {1,-3}   ", ctr, total(ctr))
           If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
       Next   
   End Sub
End Module

Public Class Random2 : Inherits Random
   Public Sub New()
      MyBase.New()
   End Sub   

   Public Sub New(seed As Integer)
      MyBase.New(seed)
   End Sub

   Public Overloads Sub NextBytes(bytes() As Byte, 
                                  minValue As Byte, maxValue As Byte)
      For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
         bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
      Next
   End Sub
End Class 
' The example displays output like the following:
'         0: 115     1: 119     2: 92      3: 98      4: 92
'         5: 102     6: 103     7: 84      8: 93      9: 116
'        10: 91     11: 98     12: 106    13: 91     14: 92
'        15: 101    16: 100    17: 96     18: 97     19: 100
'        20: 101    21: 106    22: 112    23: 82     24: 85
'        25: 102    26: 107    27: 98     28: 106    29: 102
'        30: 109    31: 108    32: 94     33: 101    34: 107
'        35: 101    36: 86     37: 100    38: 101    39: 102
'        40: 113    41: 95     42: 96     43: 89     44: 99
'        45: 81     46: 89     47: 105    48: 100    49: 85
'        50: 103    51: 103    52: 93     53: 89     54: 91
'        55: 97     56: 105    57: 97     58: 110    59: 86
'        60: 116    61: 94     62: 117    63: 98     64: 110
'        65: 93     66: 102    67: 100    68: 105    69: 83
'        70: 81     71: 97     72: 85     73: 70     74: 98
'        75: 100    76: 110    77: 114    78: 83     79: 90
'        80: 96     81: 112    82: 102    83: 102    84: 99
'        85: 81     86: 100    87: 93     88: 99     89: 118
'        90: 95     91: 124    92: 108    93: 96     94: 104
'        95: 106    96: 99     97: 99     98: 92     99: 99
'       100: 108

Il NextBytes(Byte[], Byte, Byte) metodo esegue il wrapping di una chiamata al Next(Int32, Int32) (metodo) e specifica il valore minimo e una maggiore rispetto al valore massimo (in questo caso, 0 e 101) che si desidera vengano restituite nella matrice di byte.The NextBytes(Byte[], Byte, Byte) method wraps a call to the Next(Int32, Int32) method and specifies the minimum value and one greater than the maximum value (in this case, 0 and 101) that we want returned in the byte array. Poiché si è certi che i valori interi restituita dal Next metodo siano compresi nell'intervallo del Byte tipo di dati, è possibile in modo sicuro eseguirne il cast (in C#) o convertire (in Visual Basic) da numeri interi in byte.Because we are sure that the integer values returned by the Next method are within the range of the Byte data type, we can safely cast them (in C#) or convert them (in Visual Basic) from integers to bytes.

Recuperare un elemento da una matrice o raccolta in modo casualeRetrieve an element from an array or collection at random

Numeri casuali vengono spesso usati come gli indici per recuperare valori da matrici o raccolte.Random numbers often serve as indexes to retrieve values from arrays or collections. Per recuperare un valore di indice casuale, è possibile chiamare il Next(Int32, Int32) metodo e usare il limite inferiore della matrice come valore di relativi minValue argomento e una maggiore del limite superiore della matrice come valore del relativo maxValue argomento.To retrieve a random index value, you can call the Next(Int32, Int32) method, and use the lower bound of the array as the value of its minValue argument and one greater than the upper bound of the array as the value of its maxValue argument. Per una matrice in base zero, questo è equivalente al relativo Length proprietà o una maggiore del valore restituito dal Array.GetUpperBound (metodo).For a zero-based array, this is equivalent to its Length property, or one greater than the value returned by the Array.GetUpperBound method. Nell'esempio seguente recupera in modo casuale il nome di una città negli Stati Uniti da una matrice di città.The following example randomly retrieves the name of a city in the United States from an array of cities.

using namespace System;

void main()
{
   array<String^>^ cities = { "Atlanta", "Boston", "Chicago", "Detroit",
                              "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
                              "Jersey City", "Kansas City", "Los Angeles",
                              "Milwaukee", "New York", "Omaha", "Philadelphia",
                              "Raleigh", "San Francisco", "Tulsa", "Washington" };
   Random^ rnd = gcnew Random();
   int index = rnd->Next(0, cities->Length);
   Console::WriteLine("Today's city of the day: {0}",
                      cities[index]);
}
// The example displays output like the following:
//   Today's city of the day: Honolulu
using System;

public class Example
{
   public static void Main()
   {
      String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit", 
                          "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis", 
                          "Jersey City", "Kansas City", "Los Angeles", 
                          "Milwaukee", "New York", "Omaha", "Philadelphia", 
                          "Raleigh", "San Francisco", "Tulsa", "Washington" };
      Random rnd = new Random();
      int index = rnd.Next(0, cities.Length);
      Console.WriteLine("Today's city of the day: {0}",
                        cities[index]);                           
   }
}
// The example displays output like the following:
//   Today's city of the day: Honolulu
Module Example
   Public Sub Main()
      Dim cities() As String = { "Atlanta", "Boston", "Chicago", "Detroit", 
                                 "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis", 
                                 "Jersey City", "Kansas City", "Los Angeles", 
                                 "Milwaukee", "New York", "Omaha", "Philadelphia", 
                                 "Raleigh", "San Francisco", "Tulsa", "Washington" }
      Dim rnd As New Random()
      Dim index As Integer = rnd.Next(0, cities.Length)
      Console.WriteLine("Today's city of the day: {0}",
                        cities(index))                           
   End Sub
End Module
' The example displays output like the following:
'   Today's city of the day: Honolulu

Recuperare un elemento univoco da una matrice o raccoltaRetrieve a unique element from an array or collection

Un generatore di numeri casuali può restituire sempre valori duplicati.A random number generator can always return duplicate values. Quando l'intervallo di numeri diventa più piccolo o il numero di valori generati diventa più grande, aumenta la probabilità di duplicati.As the range of numbers becomes smaller or the number of values generated becomes larger, the probability of duplicates grows. Se i valori casuali devono essere univoci, più numeri vengono generati per compensare la presenza di duplicati, causando sempre più spesso una riduzione delle prestazioni.If random values must be unique, more numbers are generated to compensate for duplicates, resulting in increasingly poor performance.

Esistono diverse tecniche per gestire questo scenario.There are a number of techniques to handle this scenario. Una soluzione comune consiste nel creare una matrice o raccolta che contiene i valori da recuperare e una matrice parallela che contiene numeri a virgola mobile casuale.One common solution is to create an array or collection that contains the values to be retrieved, and a parallel array that contains random floating-point numbers. Nella seconda matrice viene popolata con i numeri casuali al momento della creazione, la prima matrice e Array.Sort(Array, Array) metodo viene utilizzato per ordinare la prima matrice utilizzando i valori nella matrice parallela.The second array is populated with random numbers at the time the first array is created, and the Array.Sort(Array, Array) method is used to sort the first array by using the values in the parallel array.

Ad esempio, se si sta sviluppando un gioco di Solitario, si desidera assicurarsi che ogni scheda venga utilizzata una sola volta.For example, if you're developing a Solitaire game, you want to ensure that each card is used only once. Invece di generare numeri casuali per recuperare una scheda e verificando se tale scheda ha già coinvolti, è possibile creare una matrice parallela di numeri casuali che possono essere usati per ordinare il mazzo di carte.Instead of generating random numbers to retrieve a card and tracking whether that card has already been dealt, you can create a parallel array of random numbers that can be used to sort the deck. Una volta il mazzo di carte è ordinato, l'app può mantenere un puntatore per indicare l'indice della scheda successiva di mettersi all'opera.Once the deck is sorted, your app can maintain a pointer to indicate the index of the next card on the deck.

Questo approccio viene illustrato nell'esempio seguente:The following example illustrates this approach. Definisce un Card classe che rappresenta una carta da gioco e un Dealer classe che gestisce un mazzo di carte riprodurre con sequenza casuale.It defines a Card class that represents a playing card and a Dealer class that deals a deck of shuffled cards. Il Dealer costruttore di classe popola due matrici: una deck array con ambito di classe e che rappresenta tutte le schede in una variabile locale e il mazzo; order array con lo stesso numero di elementi come il deck matrice e come viene popolato con generato casualmente Double valori.The Dealer class constructor populates two arrays: a deck array that has class scope and that represents all the cards in the deck; and a local order array that has the same number of elements as the deck array and is populated with randomly generated Double values. Il Array.Sort(Array, Array) viene quindi chiamato il metodo per ordinare le deck matrice in base ai valori nel order matrice.The Array.Sort(Array, Array) method is then called to sort the deck array based on the values in the order array.

using namespace System;

public enum class Suit { Hearts, Diamonds, Spades, Clubs };

public enum class FaceValue  { Ace = 1, Two, Three, Four, Five, Six,
                               Seven, Eight, Nine, Ten, Jack, Queen,
                               King };

// A class that represents an individual card in a playing deck.
ref class Card
{
public:
   Suit Suit;
   FaceValue FaceValue;
   
   String^ ToString() override
   {
      return String::Format("{0:F} of {1:F}", this->FaceValue, this->Suit);
   }
};

ref class Dealer
{
private:
   Random^ rnd;
   // A deck of cards, without Jokers.
   array<Card^>^ deck = gcnew array<Card^>(52);
   // Parallel array for sorting cards.
   array<Double>^ order = gcnew array<Double>(52);
   // A pointer to the next card to deal.
   int ptr = 0;
   // A flag to indicate the deck is used.
   bool mustReshuffle = false;
   
public:
   Dealer()
   {
      rnd = gcnew Random();
      // Initialize the deck.
      int deckCtr = 0;
      for each (auto suit in Enum::GetValues(Suit::typeid)) {
         for each (FaceValue faceValue in Enum::GetValues(FaceValue::typeid)) {
            Card^ card = gcnew Card();
            card->Suit = (Suit) suit;
            card->FaceValue = (FaceValue) faceValue;
            deck[deckCtr] = card;  
            deckCtr++;
         }
      }
      
      for (int ctr = 0; ctr < order->Length; ctr++)
         order[ctr] = rnd->NextDouble();

      Array::Sort(order, deck);
   }

   array<Card^>^ Deal(int numberToDeal)
   {
      if (mustReshuffle) {
         Console::WriteLine("There are no cards left in the deck");
         return nullptr;
      }
      
      array<Card^>^ cardsDealt = gcnew array<Card^>(numberToDeal);
      for (int ctr = 0; ctr < numberToDeal; ctr++) {
         cardsDealt[ctr] = deck[ptr];
         ptr++;
         if (ptr == deck->Length)
            mustReshuffle = true;

         if (mustReshuffle & ctr < numberToDeal - 1) {
            Console::WriteLine("Can only deal the {0} cards remaining on the deck.",
                               ctr + 1);
            return cardsDealt;
         }
      }
      return cardsDealt;
   }
};

void ShowCards(array<Card^>^ cards)
{
   for each (Card^ card in cards)
      if (card != nullptr)
         Console::WriteLine("{0} of {1}", card->FaceValue, card->Suit);
};

void main()
{
   Dealer^ dealer = gcnew Dealer();
   ShowCards(dealer->Deal(20));
}

// The example displays output like the following:
//       Six of Diamonds
//       King of Clubs
//       Eight of Clubs
//       Seven of Clubs
//       Queen of Clubs
//       King of Hearts
//       Three of Spades
//       Ace of Clubs
//       Four of Hearts
//       Three of Diamonds
//       Nine of Diamonds
//       Two of Hearts
//       Ace of Hearts
//       Three of Hearts
//       Four of Spades
//       Eight of Hearts
//       Queen of Diamonds
//       Two of Clubs
//       Four of Diamonds
//       Jack of Hearts
using System;

// A class that represents an individual card in a playing deck.
public class Card
{
   public Suit Suit; 
   public FaceValue FaceValue;
   
   public override String ToString() 
   {
      return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
   }
}

public enum Suit { Hearts, Diamonds, Spades, Clubs };

public enum FaceValue  { Ace = 1, Two, Three, Four, Five, Six,
                         Seven, Eight, Nine, Ten, Jack, Queen,
                         King };

public class Dealer
{
   Random rnd;
   // A deck of cards, without Jokers.
   Card[] deck = new Card[52];
   // Parallel array for sorting cards.
   Double[] order = new Double[52];
   // A pointer to the next card to deal.
   int ptr = 0;
   // A flag to indicate the deck is used.
   bool mustReshuffle = false;
   
   public Dealer()
   {
      rnd = new Random();
      // Initialize the deck.
      int deckCtr = 0;
      foreach (var suit in Enum.GetValues(typeof(Suit))) {
         foreach (var faceValue in Enum.GetValues(typeof(FaceValue))) { 
            Card card = new Card();
            card.Suit = (Suit) suit;
            card.FaceValue = (FaceValue) faceValue;
            deck[deckCtr] = card;  
            deckCtr++;
         }
      }
      
      for (int ctr = 0; ctr < order.Length; ctr++)
         order[ctr] = rnd.NextDouble();   

      Array.Sort(order, deck);
   }

   public Card[] Deal(int numberToDeal)
   {
      if (mustReshuffle) {
         Console.WriteLine("There are no cards left in the deck");
         return null;
      }
      
      Card[] cardsDealt = new Card[numberToDeal];
      for (int ctr = 0; ctr < numberToDeal; ctr++) {
         cardsDealt[ctr] = deck[ptr];
         ptr++;
         if (ptr == deck.Length) 
            mustReshuffle = true;

         if (mustReshuffle & ctr < numberToDeal - 1) {
            Console.WriteLine("Can only deal the {0} cards remaining on the deck.", 
                              ctr + 1);
            return cardsDealt;
         }
      }
      return cardsDealt;
   }
}


public class Example
{
   public static void Main()
   {
      Dealer dealer = new Dealer();
      ShowCards(dealer.Deal(20));
   }
   
   private static void ShowCards(Card[] cards)
   {
      foreach (var card in cards)
         if (card != null)
            Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit);
   }
}
// The example displays output like the following:
//       Six of Diamonds
//       King of Clubs
//       Eight of Clubs
//       Seven of Clubs
//       Queen of Clubs
//       King of Hearts
//       Three of Spades
//       Ace of Clubs
//       Four of Hearts
//       Three of Diamonds
//       Nine of Diamonds
//       Two of Hearts
//       Ace of Hearts
//       Three of Hearts
//       Four of Spades
//       Eight of Hearts
//       Queen of Diamonds
//       Two of Clubs
//       Four of Diamonds
//       Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
   Public Suit As Suit
   Public FaceValue As FaceValue
   
   Public Overrides Function ToString() As String
      Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
   End Function
End Class

Public Enum Suit As Integer
   Hearts = 0
   Diamonds = 1
   Spades = 2
   Clubs = 3
End Enum

Public Enum FaceValue As Integer
   Ace = 1
   Two = 2
   Three = 3
   Four = 4
   Five = 5
   Six = 6
   Seven = 7
   Eight = 8
   Nine = 9
   Ten = 10
   Jack = 11
   Queen = 12
   King = 13
End Enum

Public Class Dealer
   Dim rnd As Random
   ' A deck of cards, without Jokers.
   Dim deck(51) As Card
   ' Parallel array for sorting cards.
   Dim order(51) As Double
   ' A pointer to the next card to deal.
   Dim ptr As Integer = 0
   ' A flag to indicate the deck is used.
   Dim mustReshuffle As Boolean
   
   Public Sub New()
      rnd = New Random()
      ' Initialize the deck.
      Dim deckCtr As Integer = 0
      For Each Suit In [Enum].GetValues(GetType(Suit))
         For Each faceValue In [Enum].GetValues(GetType(FaceValue))
            Dim card As New Card()
            card.Suit = CType(Suit, Suit)
            card.FaceValue = CType(faceValue, FaceValue)
            deck(deckCtr) = card  
            deckCtr += 1
         Next
      Next
      For ctr As Integer = 0 To order.Length - 1
         order(ctr) = rnd.NextDouble()   
      Next   
      Array.Sort(order, deck)
   End Sub

   Public Function Deal(numberToDeal As Integer) As Card()
      If mustReshuffle Then
         Console.WriteLine("There are no cards left in the deck")
         Return Nothing
      End If
      
      Dim cardsDealt(numberToDeal - 1) As Card
      For ctr As Integer = 0 To numberToDeal - 1
         cardsDealt(ctr) = deck(ptr)
         ptr += 1
         If ptr = deck.Length Then 
            mustReshuffle = True
         End If
         If mustReshuffle And ctr < numberToDeal - 1
            Console.WriteLine("Can only deal the {0} cards remaining on the deck.", 
                              ctr + 1)
            Return cardsDealt
         End If
      Next
      Return cardsDealt
   End Function
End Class

Public Module Example
   Public Sub Main()
      Dim dealer As New Dealer()
      ShowCards(dealer.Deal(20))
   End Sub
   
   Private Sub ShowCards(cards() As Card)
      For Each card In cards
         If card IsNot Nothing Then _
            Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
      Next
   End Sub
End Module
' The example displays output like the following:
'       Six of Diamonds
'       King of Clubs
'       Eight of Clubs
'       Seven of Clubs
'       Queen of Clubs
'       King of Hearts
'       Three of Spades
'       Ace of Clubs
'       Four of Hearts
'       Three of Diamonds
'       Nine of Diamonds
'       Two of Hearts
'       Ace of Hearts
'       Three of Hearts
'       Four of Spades
'       Eight of Hearts
'       Queen of Diamonds
'       Two of Clubs
'       Four of Diamonds
'       Jack of Hearts

Note per gli eredi

In .NET Framework 1.0 e 1.1, un'implementazione minima di una classe derivata da Random richiedeva l'override di Sample() metodo per definire un algoritmo di nuovo o modificato per la generazione di numeri casuali.In the .NET Framework 1.0 and 1.1, a minimum implementation of a class derived from Random required overriding the Sample() method to define a new or modified algorithm for generating random numbers. La classe derivata può quindi si basano sull'implementazione della classe di base del Next(), Next(Int32), Next(Int32, Int32), NextBytes(Byte[]), e NextDouble() metodi per chiamare l'implementazione della classe derivata di Sample() (metodo).The derived class could then rely on the base class implementation of the Next(), Next(Int32), Next(Int32, Int32), NextBytes(Byte[]), and NextDouble() methods to call the derived class implementation of the Sample() method.

In .NET Framework 2.0 e versioni successive, il comportamento dei Next(), Next(Int32, Int32), e NextBytes(Byte[]) metodi sono stati modificati in modo che questi metodi non necessariamente chiamano l'implementazione della classe derivata di Sample() (metodo).In the .NET Framework 2.0 and later, the behavior of the Next(), Next(Int32, Int32), and NextBytes(Byte[]) methods have changed so that these methods do not necessarily call the derived class implementation of the Sample() method. Di conseguenza, le classi derivate da Random che destinate a .NET Framework 2.0 e in un secondo momento eseguire l'override di questi tre metodi.As a result, classes derived from Random that target the .NET Framework 2.0 and later should also override these three methods.

Note per i chiamanti

L'implementazione del generatore di numeri casuali nel Random classe non è garantito che deve rimanere uguale in tutte le versioni principali di .NET Framework.The implementation of the random number generator in the Random class isn't guaranteed to remain the same across major versions of the .NET Framework. Di conseguenza, si dovrebbero evitare supposizioni che il valore di inizializzazione stessa avrà come risultato nella stessa sequenza pseudocasuale nelle diverse versioni di .NET Framework.As a result, you shouldn't assume that the same seed will result in the same pseudo-random sequence in different versions of the .NET Framework.

Costruttori

Random() Random() Random() Random()

Inizializza una nuova istanza della classe Random utilizzando un valore di inizializzazione predefinito dipendente da un fattore temporale.Initializes a new instance of the Random class, using a time-dependent default seed value.

Random(Int32) Random(Int32) Random(Int32) Random(Int32)

Inizializza una nuova istanza della classe Random usando il valore di inizializzazione specificato.Initializes a new instance of the Random class, using the specified seed value.

Metodi

Equals(Object) Equals(Object) Equals(Object) Equals(Object)

Determina se l'oggetto specificato è uguale all'oggetto corrente.Determines whether the specified object is equal to the current object.

(Inherited from Object)
GetHashCode() GetHashCode() GetHashCode() GetHashCode()

Funge da funzione hash predefinita.Serves as the default hash function.

(Inherited from Object)
GetType() GetType() GetType() GetType()

Ottiene l'oggetto Type dell'istanza corrente.Gets the Type of the current instance.

(Inherited from Object)
MemberwiseClone() MemberwiseClone() MemberwiseClone() MemberwiseClone()

Crea una copia superficiale dell'oggetto Object corrente.Creates a shallow copy of the current Object.

(Inherited from Object)
Next() Next() Next() Next()

Restituisce un intero casuale non negativo.Returns a non-negative random integer.

Next(Int32) Next(Int32) Next(Int32) Next(Int32)

Restituisce un intero casuale non negativo inferiore al massimo specificato.Returns a non-negative random integer that is less than the specified maximum.

Next(Int32, Int32) Next(Int32, Int32) Next(Int32, Int32) Next(Int32, Int32)

Restituisce un numero intero casuale all'interno di un intervallo specificato.Returns a random integer that is within a specified range.

NextBytes(Byte[]) NextBytes(Byte[]) NextBytes(Byte[]) NextBytes(Byte[])

Consente di inserire numeri casuali negli elementi di una matrice di byte specificata.Fills the elements of a specified array of bytes with random numbers.

NextBytes(Span<Byte>) NextBytes(Span<Byte>) NextBytes(Span<Byte>) NextBytes(Span<Byte>)
NextDouble() NextDouble() NextDouble() NextDouble()

Restituisce un numero casuale a virgola mobile e precisione doppia maggiore o uguale a 0,0 e minore di 1,0.Returns a random floating-point number that is greater than or equal to 0.0, and less than 1.0.

Sample() Sample() Sample() Sample()

Restituisce un numero a virgola mobile casuale compreso tra 0,0 e 1,0.Returns a random floating-point number between 0.0 and 1.0.

ToString() ToString() ToString() ToString()

Restituisce una stringa che rappresenta l'oggetto corrente.Returns a string that represents the current object.

(Inherited from Object)

Si applica a