Scrittura di un effetto (Direct3D 9)

Per scrivere un effetto è necessario comprendere la sintassi degli effetti e generare le informazioni di stato necessarie. È possibile aggiungere lo stato dello shader, la trama e lo stato del campionatore e tutti gli Stati della pipeline necessari per l'applicazione.

La sintassi degli effetti è descritta in dettaglio nel formato degli effetti (Direct3D 9). Un effetto viene in genere incapsulato in un file di effetti (. FX), ma può anche essere scritto come stringa di testo in un'applicazione.

Esempio di effetto

Gli effetti contengono tre tipi di stato: lo stato dello shader, lo stato della trama e del campionatore e lo stato della pipeline. Di seguito è riportato un esempio di effetto dell' esempio BasicHLSL:

// Global variables
float4 g_MaterialAmbientColor;      // Material's ambient color
float4 g_MaterialDiffuseColor;      // Material's diffuse color
int g_nNumLights;

float3 g_LightDir[3];               // Light's direction in world space
float4 g_LightDiffuse[3];           // Light's diffuse color
float4 g_LightAmbient;              // Light's ambient color

texture g_MeshTexture;              // Color texture for mesh

float    g_fTime;                   // App's time in seconds
float4x4 g_mWorld;                  // World matrix for object
float4x4 g_mWorldViewProjection;    // World * View * Projection matrix
// Texture samplers
sampler MeshTextureSampler = 
sampler_state
{
    Texture = <g_MeshTexture>;
    MipFilter = LINEAR;
    MinFilter = LINEAR;
    MagFilter = LINEAR;
};
struct VS_OUTPUT
{
    float4 Position   : POSITION;   // vertex position 
    float2 TextureUV  : TEXCOORD0;  // vertex texture coords 
    float4 Diffuse    : COLOR0;     // vertex diffuse color
};
VS_OUTPUT RenderSceneVS( float4 vPos : POSITION, 
                         float3 vNormal : NORMAL,
                         float2 vTexCoord0 : TEXCOORD0,
                         uniform int nNumLights,
                         uniform bool bTexture,
                         uniform bool bAnimate )
{
    VS_OUTPUT Output;
    float3 vNormalWorldSpace;
  
    float4 vAnimatedPos = vPos;
    
    // Animation the vertex based on time and the vertex's object space position
    if( bAnimate )
        vAnimatedPos += float4(vNormal, 0) * (sin(g_fTime+5.5)+0.5)*5;
    
    // Transform the position from object space to homogeneous projection space
    Output.Position = mul(vAnimatedPos, g_mWorldViewProjection);
    
    // Transform the normal from object space to world space    
    vNormalWorldSpace = normalize(mul(vNormal, (float3x3)g_mWorld));
    
    // Compute simple directional lighting equation
    float3 vTotalLightDiffuse = float3(0,0,0);
    for(int i=0; i < nNumLights; i++ )
        vTotalLightDiffuse += g_LightDiffuse[i] * max(0,dot(vNormalWorldSpace, g_LightDir[i]));
        
    Output.Diffuse.rgb = g_MaterialDiffuseColor * vTotalLightDiffuse + 
                         g_MaterialAmbientColor * g_LightAmbient;   
    Output.Diffuse.a = 1.0f; 
    
    // Just copy the texture coordinate through
    if( bTexture ) 
        Output.TextureUV = vTexCoord0; 
    else
        Output.TextureUV = 0; 
    
    return Output;    
}
struct PS_OUTPUT
{
    float4 RGBColor : COLOR0;  // Pixel color    
};
PS_OUTPUT RenderScenePS( VS_OUTPUT In,
                         uniform bool bTexture ) 
{ 
    PS_OUTPUT Output;

    // Lookup mesh texture and modulate it with diffuse
    if( bTexture )
        Output.RGBColor = tex2D(MeshTextureSampler, In.TextureUV) * In.Diffuse;
    else
        Output.RGBColor = In.Diffuse;

    return Output;
}
technique RenderSceneWithTexture1Light
{
    pass P0
    {          
        VertexShader = compile vs_1_1 RenderSceneVS( 1, true, true );
        PixelShader  = compile ps_1_1 RenderScenePS( true ); 
    }
}

Questo effetto contiene:

  • Stato dello shader, che corrisponde a tutti gli Stati associati al vertex shader e pixel shader. Questo è definito dalle funzioni Vertex e pixel shader, da tutte le variabili globali richieste e dalle relative strutture di dati di input e output, elencate di seguito:

    struct VS_OUTPUT
    {  ...  };
    VS_OUTPUT RenderSceneVS( float4 vPos : POSITION, 
                             ...
    {  ...  }
    
    struct PS_OUTPUT
    {  ...  };
    PS_OUTPUT RenderScenePS( VS_OUTPUT In,
                             uniform bool bTexture ) 
    {  ...  }
    
  • Stato della trama e del campionatore, ovvero le variabili globali per l'oggetto trama e l'oggetto campionatore:

    texture g_MeshTexture;              // Color texture for mesh
    
    sampler MeshTextureSampler = 
    sampler_state
    {
       ...
    };
    
  • Stato dell'altro effetto. In questo esempio non viene usato in modo esplicito alcuno stato di effetto. In caso contrario, sarebbe la tecnica all'interno del passaggio a cui è stata applicata:

    technique RenderSceneWithTexture1Light
    {
        pass P0
        {          
            // Any other effect state can be set here.
    
            VertexShader = compile vs_1_1 RenderSceneVS( 1, true, true );
            PixelShader  = compile ps_1_1 RenderScenePS( true ); 
        }
    }
    
    

Gli effetti contengono uno o più tecniche e sessioni

Le opzioni di rendering degli effetti vengono controllate aggiungendo tecniche e sessioni.

Gli effetti possono essere creati con ulteriori passaggi per facilitare gli effetti di rendering più complessi. Una tecnica supporta un numero arbitrario di passaggi:

technique T0
{
    pass P0
    { ... }

    pass P1
    { ... }

    ...

    pass Pn
    { ... }
}

Gli effetti possono anche essere creati con un numero arbitrario di tecniche.

technique T0
{
    pass P0
    { ... }
}

technique T1
{
    pass P0
    { ... }

    pass P1
    { ... }
}

...

technique Tn
{
    pass P0
    { ... }
}

technique TVertexShaderOnly
{
    pass P0
    {
        VertexShader =
        asm
        {
         // assembly-language shader code goes here
         ...
        };
    }
}

È possibile assegnare nomi arbitrari alle tecniche e ai passaggi.

Effetti