This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: An Overview
of Inserting, Updating, and Deleting Data

Introduction

Over the past several tutorials we've examined how to display data in an ASP.NET page using the GridView,
DetailsView, and FormView controls. These controls simply work with data supplied to them. Commonly,
these controls access data through the use of a data source control, such as the ObjectDataSource. We've seen
how the ObjectDataSource acts as a proxy between the ASP.NET page and the underlying data. When a
GridView needs to display data, it invokes its ObjectDataSource's select () method, which in turn invokes a
method from our Business Logic Layer (BLL), which calls a method in the appropriate Data Access Layer's
(DAL) TableAdapter, which in turn sends a SELECT query to the Northwind database.

Recall that when we created the TableAdapters in the DAL in our first tutorial, Visual Studio automatically
added methods for inserting, updating, and deleting data from the underlying database table. Moreover, in
Creating a Business Logic Layer we designed methods in the BLL that called down into these data modification
DAL methods.

In addition to its select () method, the ObjectDataSource also has Tnsert (), Update (), and Delete ()
methods. Like the select () method, these three methods can be mapped to methods in an underlying object.
When configured to insert, update, or delete data, the GridView, DetailsView, and FormView controls provide a
user interface for modifying the underlying data. This user interface calls the Insert (), Update (), and Delete
() methods of the ObjectDataSource, which then invoke the underlying object's associated methods (see Figure

).

(Data Web Control) (Data Web Control)

T Selact T Insert T Updata T Delata

(ObjectDataSource

b4 b

- .
El Ve,
i
i
i

T GeiProducts

ProductsBLL

The ObjeciDataSource’s Select, insert,
Updata, and Delete mathods are associated
with some object’s mathods. In this case, the

ObjectDataSource's Salect and Inserl

mathods are associated with the

ProductsBLL class's GelProducts and

AddProduct methods, respactively.

T Select Insert T Update T Dalete

(ObjectDataSource |

! N

T GetProducts AddProduct

[ProductsBLL j

Whean the data Waeb control bound to the
ObjectDataSource invokes one of the
ObjeciDalaSource’s mathods (in Lthis case
Inser), the call is routed to the undarying
class's associated method,

Figure 1: The ObjectDataSource's Insert (), Update (), and Delete () Methods Serve as a Proxy into the

1 of 29

BLL

In this tutorial we'll see how to map the ObjectDataSource's Insert (), Update (), and Delete () methods to
methods of classes in the BLL, as well as how to configure the GridView, DetailsView, and FormView controls
to provide data modification capabilities.

Step 1: Creating the Insert, Update, and Delete
Tutorials Web Pages

Before we start exploring how to insert, update, and delete data, let's first take a moment to create the ASP.NET
pages in our website project that we'll need for this tutorial and the next several ones. Start by adding a new
folder named EditInsertDelete. Next, add the following ASP.NET pages to that folder, making sure to
associate each page with the site.master master page:

Default.aspx

Basics.aspx
DataModificationEvents.aspx
ErrorHandling.aspx
UIValidation.aspx
CustomizedUI.aspx
OptimisticConcurrency.aspx
ConfirmationOnDelete.aspx

UserLevelAccess.aspx

Salukion Explorer - Y., A Code) - 0 X

- J. '5?1 3 @

E: E App Code

- [App_Data

& = App_Themes

[+ [BasicReporking

[[CuskormFarmatking

= | EditInsertDelete

E:ﬂ Basics, aspx

.j ConfirmationOnDelete, aspx
| customizedUI, aspx

| DataModificationEvents, aspx
[Default.aspx

(| ErrorHandling. aspx

.j CptimisticConcurrency, asp:x
E:ﬂ ProgrammaticAccess, aspi
(| Utvalidation. aspx

[Filtering

[UserContraols

| Default.aspx

j Site.master

Af Styles.css

j Web. Config

ﬂ Web.sitemap

3 g T T

B-E-E-E

L‘@Sulu..._ﬁpm... Haser,, |Edas..,

20f29

Figure 2: Add the ASP.NET Pages for the Data Modification-Related Tutorials

Like in the other folders, befault.aspx in the EditInsertDelete folder will list the tutorials in its section.
Recall that the sectionLevelTutorialListing.ascx User Control provides this functionality. Therefore, add
this User Control to befault.aspx by dragging it from the Solution Explorer onto the page's Design view.

*e Code Wacrosstt Viewal Studio

B Edi View Webgln Buld (edug Feme Lo Tedh Sedew Coemrdy oels s
R L B) Fr) Pl [s .
f . = 8
s | ... < xStk -
= = i] i-.. £al 12} : :& P
= | & Porte .
+ _d Sssdspering -
A Labal § [l CustowFeatng
shi TeretBian = Lireshses
{m] Bumen - | B asigrs
(] Lirkbaean Camutamnsd - Corvieral (Custnm) . | Canlrmalinonieing s
S— # 7 Cusbomiredtl. sseo
|| bk Ed I‘HI‘IQ r | Dl attodlicgfianT =snfs 0
4 et i v | e
1 rrpomis essss INSerting, and # Sl Enaesendng o
. i | opssstcCancanarey. s
=p Lo
e Deleting Tutorials P Pu————
] Chmchon & ekt g
- * Catalmung - Oetelesend il [Fiering
D Rachin * Datsbound - Datsboend = - -
[T LR i af B SectioalevelTof oreletivg aecs
v B T
i tmace = f # | Skw master
& bragebag — - AJ Svbeian
2] Tabls - i Veeh i
iT Buletednt ¥ s Veish steven 2
IenerT O R e ey Mookl , =R e 3
) T 4 i'l i
LLA%

Figure 3: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add the pages as entries to the web. sitemap file. Specifically, add the following markup after the
Customized Formatting <siteMapNode>:

<siteMapNode title="Editing, Inserting, and Deleting"
url="~/EditInsertDelete/Default.aspx"
description="Samples of Reports that Provide Editing, Inserting,
and Deleting Capabilities">

<siteMapNode url="~/EditInsertDelete/Basics.aspx"
title="Basics"
description="Examines the basics of data modification with the
GridView, DetailsView, and FormView controls." />
<siteMapNode url="~/EditInsertDelete/DataModificationEvents.aspx"
title="Data Modification Events"
description="Explores the events raised by the ObjectDataSource
pertinent to data modification."™ />
<siteMapNode url="~/EditInsertDelete/ErrorHandling.aspx"
title="Error Handling"
description="Learn how to gracefully handle exceptions raised
during the data modification workflow." />
<siteMapNode url="~/EditInsertDelete/UIValidation.aspx"
title="Adding Data Entry Validation"
description="Help prevent data entry errors by providing validation.™ />
<siteMapNode url="~/EditInsertDelete/CustomizedUI.aspx"
title="Customize the User Interface"
description="Customize the editing and inserting user interfaces." />
<siteMapNode url="~/EditInsertDelete/OptimisticConcurrency.aspx"
title="Optimistic Concurrency"
description="Learn how to help prevent simultaneous users from
overwritting one another's changes." />
<siteMapNode url="~/EditInsertDelete/ConfirmationOnDelete.aspx"
title="Confirm On Delete"

3 0of 29

description="Prompt a user for confirmation when deleting a record." />
<siteMapNode url="~/EditInsertDelete/UserLevelAccess.aspx"
title="Limit Capabilities Based on User"
description="Learn how to limit the data modification functionality
based on the user role or permissions." />
</siteMapNode>

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on the
left now includes items for the editing, inserting, and deleting tutorials.

File Edit Wiew Fawarites Tu:u:ul

ek - © - @ B

. Address '@ http: flocalhost: 4076/ V' G0

o

FLs
ng, Inserting, and '

Bazics

Data Modification
Events

Error Handling

Adding Data Entry
walidation

Customize the User
Interface

Cptimistic
COnCLrrency

Confirm On Delete

Limit Capabilities
Baszed on Lser

&) ! L

‘L_J Local inkranet

Figure 4: The Site Map Now Includes Entries for the Editing, Inserting, and Deleting Tutorials

Step 2: Adding and Configuring the
ObjectDataSource Control

Since the GridView, DetailsView, and FormView each differ in their data modification capabilities and layout,
let's examine each one individually. Rather than have each control using its own ObjectDataSource, however,
let's just create a single ObjectDataSource that all three control examples can share.

Open the Basics.aspx page, drag an ObjectDataSource from the Toolbox onto the Designer, and click the
Configure Data Source link from its smart tag. Since the productsBLL is the only BLL class that provides

4 of 29

editing, inserting, and deleting methods, configure the ObjectDataSource to use this class.

-
Configure Data Source - ObjeciDataSourcel

j Choose a Business Object

=

Select a business abject that can be used to retrieve or update data (For example, an object defined in the Bin
of App_Code directory for this applcation),

Choose your businass object:
o | [#] Show only data componants

MorthwindT ablesdapters CategoresTableddant e
MorthwindT sbleddapters EmplonesesTablefd st e
Mortheind T sbleAdapters FroductsT shlesdapter

Figure 5: Configure the ObjectDataSource to Use the ProductsBLL Class

In the next screen we can specify what methods of the ProductsBLL class are mapped to the
ObjectDataSource's select (), Insert (), Update (), and Delete () by selecting the appropriate tab and
choosing the method from the drop-down list. Figure 6, which should look familiar by now, maps the
ObjectDataSource's select () method to the ProductsBLL class's GetProducts () method. The Insert (),
Update (), and Delete () methods can be configured by selecting the appropriate tab from the list along the top.

-
Configure Data Source - ObjeciDataSourcel

o

[EELECT UPDATE | INSERT : DELETE

{Thoose a method of the business object that reburns daka bo associate with the: SELECT operation. The
meithiod can return a DataSat, DataReader, or strongly-typed collection.

Example: GetProducts{Int32 categoryld), rebums a Dataset.

Choose & method:

GatProducts), returns ProductsDustaTable w

et ProductByProduct IDInE32 productlD'), returns ProductsDistaTshls
petProductsl). reburns ProcuctsDataTable

izt ProductsByCategory [D{Ink32 cabegorylD), reburns ProductsDataTable
‘zetProduct sy Supplies ID(1nt 32 supplierlD), returns ProductsDatalable

Figure 6: Have the ObjectDataSource Return All of the Products

50f29

Figures 7, 8, and 9 show the ObjectDataSource's UPDATE, INSERT, and DELETE tabs. Configure these tabs
so that the Insert (), Update (), and Delete () methods invoke the ProductsBLL class's UpdateProduct,
AddProduct, and DeleteProduct methods, respectively.

-
Configure Data Source - ObjeciDataSourcel

Choose a mathod of the business object to associste with the UPDATE operation. The methad should
accapt & paramater for each property of the dabs object, o 4 single parameber which is the data object
to update,

Examplas: UpdabeProduct{Product p), or UipdsteProduct(Ink32 productID, String nanme, Doubls price)

Choose a methaod:
Updaterroduct{String productiame, Nulable <Int32> sup +

Method signature:

UipdsteProduct(String productiams, Nullsbls <Int32 = suppleD, Nullsble <Ink 32> categoryID, -
Strineg quantityPerUng, Mullable <Decmal> urdPrice, Mullable <Int 16> unitsinStock, Nullable<Irg16>
unitsOnCrder, Nullable cint 16> reorderLevel, Booksan discontinued, Int32 product]D), returns b

Figure 7: Map the ObjectDataSource's update () Method to the ProductBLL Class's UpdateProduct
Method

r

Configure Data Source - ObjeciDataSource

Thoose: a method of the business object to associste with the INSERT opsration. The method should
scempt 8 parsmater for ssch property of the dats object, or & single par amster which is the data object
to insert.

Examples: InsertProduct{Product p), or InsertProduct{int32 product1D, String name, Double price)

Chooss & method:
AddProduct(String productiisms, Nullsbie <IntX2 > supplie '~

[Meithiod signature:

AddProduct{Sring productiame, Nullsble<Int32 > supplieriD, Nullable <1t 32 > categoryID, Sing
guantityPerinit, Nulable <Dedmal> unitPrice, Nullable <Int 16> un@isInStock, Nullsble<Intls s
unitsOnOrder, Nullabls <int 16> reorderLevel, Booksan discontinusd), retums Ink32

Figure 8: Map the ObjectDataSource's Insert () Method to the ProductBLL Class's AddProduct Method

6 of 29

"

Configure Dala Source - DbjeciDataSourcel

SELECT | UPDATE | INSERT || DELETE |
Thioose & method of the business object to associste with the DELETE oparstion. The method should
sccapt & paramater for sach primary key For the daba object or & single parameter which is the data
ohiject to delsts,

Exarnphes: DeleteProduct{Product p), or DeleteProduck{Int32 product 1)
Chooss & mathod:
Delatefroduct{Int 32 productD), returns Boolean

Method signature:
DeeletaProduch(Int32 productlD), returms Boalkaan

Figure 9: Map the ObjectDataSource's Delete () Method to the ProductBLL Class's DeleteProduct
Method

You may have noticed that the drop-down lists in the UPDATE, INSERT, and DELETE tabs already had these
methods selected. This is thanks to our use of the DataobjectMethodAttribute that decorates the methods of
ProducstBLL. For example, the DeleteProduct method has the following signature:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Delete, True)>
Public Function DeleteProduct (ByVal productID As Integer) As Boolean

End Function

The pata0ObjectMethodAttribute attribute indicates the purpose of each method — whether it is for selecting,
inserting, updating, or deleting — and whether or not it's the default value. If you omitted these attributes when
creating your BLL classes, you'll need to manually select the methods from the UPDATE, INSERT, and
DELETE tabs.

After ensuring that the appropriate productsBLL methods are mapped to the ObjectDataSource's Insert (),
Update (), and Delete () methods, click Finish to complete the wizard.

Examining the ObjectDataSource's Markup

After configuring the ObjectDataSource through its wizard, go to the Source view to examine the generated
declarative markup. The <asp:0bjectDataSource> tag specifies the underlying object and the methods to
invoke. Additionally, there are DeleteParameters, UpdateParameters, and InsertParameters that map to
the input parameters for the ProductsBLL class's AddProduct, UpdateProduct, and DeleteProduct methods:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
DeleteMethod="DeleteProduct" InsertMethod="AddProduct"
OldvaluesParameterFormatString="original {0}" SelectMethod="GetProducts"
TypeName="ProductsBLL" UpdateMethod="UpdateProduct">

7 of 29

<DeleteParameters>
<asp:Parameter Name="productID" Type="Int32" />

</DeleteParameters>

<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="supplierID" Type="Int32" />
<asp:Parameter Name="categoryID" Type="Int32" />
<asp:Parameter Name="quantityPerUnit" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="unitsInStock" Type="Intle6" />
<asp:Parameter Name="unitsOnOrder" Type="Intle6" />
<asp:Parameter Name="reorderLevel" Type="Intle6" />
<asp:Parameter Name="discontinued" Type="Boolean" />
<asp:Parameter Name="productID" Type="Int32" />

</UpdateParameters>

<InsertParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="supplierID" Type="Int32" />
<asp:Parameter Name="categoryID" Type="Int32" />
<asp:Parameter Name="quantityPerUnit" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="unitsInStock" Type="Intle6" />
<asp:Parameter Name="unitsOnOrder" Type="Intle6" />
<asp:Parameter Name="reorderLevel" Type="Intle6" />
<asp:Parameter Name="discontinued" Type="Boolean" />

</InsertParameters>

</asp:0bjectDataSource>

The ObjectDataSource includes a parameter for each of the input parameters for its associated methods, just like
a list of selectParameters is present when the ObjectDataSource is configured to call a select method that
expects an input parameter (such as GetProductsByCategoryID (categoryID)). As we'll see shortly, values
for these DeleteParameters, UpdateParameters, and InsertParameters are set automatically by the
GridView, DetailsView, and FormView prior to invoking the ObjectDataSource's Insert (), Update (), Or
Delete () method. These values can also be set programmatically as needed, as we'll discuss in a future tutorial.

One side effect of using the wizard to configure to ObjectDataSource is that Visual Studio sets the
OldValuesParameterFormatString property to original {0}. This property value is used to include the original
values of the data being edited and is useful in two scenarios:

o If, when editing a record, users are able to change the primary key value. In this case, both the new
primary key value and the original primary key value must be provided so that the record with the
original primary key value can be found and have its value updated accordingly.

e When using optimistic concurrency. Optimistic concurrency is a technique to ensure that two
simultaneous users don't overwrite one another's changes, and is the topic for a future tutorial.

The 01dvaluesParameterFormatString property indicates the name of the input parameters in the underlying
object's update and delete methods for the original values. We'll discuss this property and its purpose in greater
detail when we explore optimistic concurrency. I bring it up now, however, because our BLL's methods do not
expect the original values and therefore it's important that we remove this property. Leaving the
OldvaluesParameterFormatString property set to anything other than the default ({0}) will cause an error
when a data Web control attempts to invoke the ObjectDataSource's Update () or Delete () methods because
the ObjectDataSource will attempt to pass in both the UpdateParameters Or DeleteParameters specified as
well as original value parameters.

If this isn't terribly clear at this juncture, don't worry, we'll examine this property and its utility in a future

tutorial. For now, just be certain to either remove this property declaration entirely from the declarative syntax
or set the value to the default value ({0}).

8 0f 29

Note: If you simply clear out the 01dvaluesParameterFormatString property value from the Properties
window in the Design view, the property will still exist in the declarative syntax, but be set to an empty string.
This, unfortunately, will still result in the same problem discussed above. Therefore, either remove the property
altogether from the declarative syntax or, from the Properties window, set the value to the default, {0} .

Step 3: Adding a Data Web Control and
Configuring It for Data Modification

Once the ObjectDataSource has been added to the page and configured, we're ready to add data Web controls to
the page to both display the data and provide a means for the end user to modify it. We'll look at the GridView,
DetailsView, and FormView separately, as these data Web controls differ in their data modification capabilities
and configuration.

As we'll see in the remainder of this article, adding very basic editing, inserting, and deleting support through
the GridView, DetailsView, and FormView controls is really as simple as checking a couple of checkboxes.
There are many subtleties and edge cases in the real-world that make providing such functionality more
involved than just point and click. This tutorial, however, focuses solely on proving simplistic data modification
capabilities. Future tutorials will examine concerns that will undoubtedly arise in a real-world setting.

Deleting Data from the GridView

Start by dragging a GridView from the Toolbox onto the Designer. Next, bind the ObjectDataSource to the
GridView by selecting it from the drop-down list in the GridView's smart tag. At this point the GridView's
declarative markup will be:

<asp:GridView ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel">
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False"
ReadOnly="True" SortExpression="ProductID" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="SupplierID" HeaderText="SupplierID"
SortExpression="SupplierID" />
<asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
SortExpression="CategoryID" />
<asp:BoundField DataField="QuantityPerUnit"
HeaderText="QuantityPerUnit"
SortExpression="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
SortExpression="UnitPrice" />
<asp:BoundField DataField="UnitsInStock"
HeaderText="UnitsInStock" SortExpression="UnitsInStock" />
<asp:BoundField DataField="UnitsOnOrder"
HeaderText="UnitsOnOrder" SortExpression="UnitsOnOrder" />
<asp:BoundField DataField="ReorderLevel"
HeaderText="ReorderLevel" SortExpression="ReorderLevel" />
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued" />
<asp:BoundField DataField="CategoryName"
HeaderText="CategoryName" ReadOnly="True"
SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName"
HeaderText="SupplierName" ReadOnly="True"

9 of 29

SortExpression="SupplierName" />
</Columns>
</asp:GridView>

Binding the GridView to the ObjectDataSource through its smart tag has two benefits:

o BoundFields and CheckBoxFields are automatically created for each of the fields returned by the
ObjectDataSource. Moreover, the BoundField and CheckBoxField's properties are set based on the
underlying field's metadata. For example, the ProductID, CategoryName, and SupplierName fields are
marked as read-only in the ProductsDataTable and therefore shouldn't be updatable when editing. To
accommodate this, these BoundFields' ReadOnly properties are set to True.

o The DataKeyNames property is assigned to the primary key field(s) of the underlying object. This is
essential when using the GridView for editing or deleting data, as this property indicates the field (or set
of fields) that unique identifies each record. For more information on the batakeyNames property, refer
back to the Master/Detail Using a Selectable Master GridView with a Details DetailView tutorial.

While the GridView can be bound to the ObjectDataSource through the Properties window or declarative
syntax, doing so requires you to manually add the appropriate BoundField and patakeyNames markup.

The GridView control provides built-in support for row-level editing and deleting. Configuring a GridView to
support deleting adds a column of Delete buttons. When the end user clicks the Delete button for a particular
row, a postback ensues and the GridView performs the following steps:

1. The ObjectDataSource's DeleteParameters value(s) are assigned
2. The ObjectDataSource's belete () method is invoked, deleting the specified record
3. The GridView rebinds itself to the ObjectDataSource by invoking its select () method

The values assigned to the beleteParameters are the values of the patakeyNames field(s) for the row whose
Delete button was clicked. Therefore it's vital that a GridView's DataKeyNames property be correctly set. If it's
missing, the beleteParameters will be assigned a value of Nothing in Step 1, which in turn will not result in
any deleted records in Step 2.

Note: The patakeys collection is stored in the GridView’s control state, meaning that the
DataKeys values will be remembered across postback even if the GridView’s view state has been
disabled. However, it is very important that view state remains enabled for GridViews that support
editing or deleting (the default behavior). If you set the GridView’s EnableviewState property to
false, the editing and deleting behavior will work fine for a single user, but if there are concurrent
users deleting data, there exists the possibility that these concurrent users may accidentally delete
or edit records that they didn’t intend. See my blog entry, WARNING: Concurrency Issue with
ASP.NET 2.0 GridViews/DetailsView/FormViews that Support Editing and/or Deleting and
Whose View State is Disabled, for more information.

This same warning also applies to DetailsViews and FormViews.

To add deleting capabilities to a GridView, simply go to its smart tag and check the Enable Deleting checkbox.

10 of 29

Eridb‘iew Tasks

Auko Farmat. ..

Choose Daka Source: | ObjectDataSourcel »
Configure Daka Source. .

Refresh Schema

Edit Columns. ..
add Mew Colurnn, ..

[] Enable Paging
[] Enable Sorting
[] Enable Editing

[] Enable Selection

Edit Templates

Figure 10: Check the Enable Deleting Checkbox

Checking the Enable Deleting checkbox from the smart tag adds a CommandField to the GridView. The
CommandField renders a column in the GridView with buttons for performing one or more of the following
tasks: selecting a record, editing a record, and deleting a record. We previously saw the CommandField in
action with selecting records in the Master/Detail Using a Selectable Master GridView with a Details
DetailView tutorial.

The CommandField contains a number of showxButton properties that indicate what series of buttons are
displayed in the CommandField. By checking the Enable Deleting checkbox a CommandField whose
ShowDeleteButton property is True has been added to the GridView's Columns collection.

<asp:GridView ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel">
<Columns>
<asp:CommandField ShowDeleteButton="True" />
. BoundFields removed for brevity ...
</Columns>
</asp:GridView>

At this point, believe it or not, we're done with adding deleting support to the GridView! As Figure 11 shows,
when visiting this page through a browser a column of Delete buttons is present.

11 0f29

3 Uintithed Page - Microsofl Intaraai Feplaer
fla E& Yws Fgperim [ook el
3 bk - o (# | 5 earch Feevribes 5 M- (BN]

i |] hitpefloc a4 0Ty CocleEck Irmart Daiete Basicn. sapre - \&)

Wurking with Data Tutorials Heme » Bditing, inserting, snd Releting » Basics

The Basics of Editing, Inserting, and
Deleting

Editing and Deleting Data from a GridWiew

ProductID] Producthame FuppllerTDCategeny Il QuantitgPerlinitUni

110 Dn gl 2 200

Dalats 1 Cha i 1 el 184
o5
24- 1202
Cilete 2 Chandg 1 1 Bt 154
Dulats 3 Aniceed Syrp 1 3 IE-E—.:E-SH L 10
Chaf anton's =
Qalaty 4 Cajun Seascring 2 2 43 = § oF Jars 221
R Chef anten's = e
Delatas b M E] 25 boxEs 21
Grandma's
Delstsd Boyeerbery . 2 12 - B oz jars 280
|
Spraad
Uncle Bab®s
Quletn 7 Drganic Dried 3 7 12 =1 bpkgs. 300
fotdeed .
% Local ntranat

Figure 11: The CommandField Adds a Column of Delete Buttons

If you've been building this tutorial from the ground up on your own, when testing this page clicking the Delete
button will raise an exception. Continue reading to learn as to why these exceptions were raised and how to fix
them.

Note: If you're following along using the download accompanying this tutorial, these problems have already
been accounted for. However, I encourage you to read through the details listed below to help identify problems
that may arise and suitable workarounds.

If, when attempting to delete a product, you get an exception whose message is similar to "ObjectDataSource
'ObjectDataSourcel’ could not find a non-generic method 'DeleteProduct’ that has parameters: productID,
original ProductID," you likely forgot to remove the 01dvaluesParameterFormatString property from the
ObjectDataSource. With the 01dvaluesParameterFormatString property specified, the ObjectDataSource
attempts to pass in both productip and original ProductID input parameters to the DeleteProduct method.
DeleteProduct, however, only accepts a single input parameter, hence the exception. Removing the
OldvaluesParameterFormatString property (or setting it to {0}) instructs the ObjectDataSource to not
attempt to pass in the original input parameter.

12 of 29

Fil= Edt ew Fgwonkes Took Help
Qbeck = O - (8] @) kS Search ¢ Favorkes £

Sclerezs |48 Weip: e alhost: #0076 Hode /E dit bsert Dot o Miasics, asps

Server Error in '/Code' Application.

ObjectDataSource 'ObjectDataSourcel’ could not find a non-
generic method ‘DeleteProduct’ that has parameters:
productID, original_ProductID.,

Descripbion: An unhanded esoepSion cooured during the exsoulion of the cunment el reguest. Piseses reves the sheck
race for morn infoimalion sboul e sror anad where A onginated in e code

Exception Details: Syssm invaldOperstionExcapton ObiecDataSourcs ObssciDaiaSounce " could nol T 8 non.
peravic method TeseteProduct’ thal has parsmeters: productiD, orignal_Productin

Source Errar:

in upnhandled exception was gensrated during the execution of the cucrent
weh request. Information regarding the crigln and location of the exceptlon

ran he ddenrifised wainn the ervoentdinn atank trace helow.]

»
% Local Intranet

Figure 12: Ensure That the 01dvaluesParameterFormatString Property Has Been Cleared Out

Even if you had removed the 01dvaluesParameterFormatString property, you still will get an exception
when trying to delete a product with the message: "The DELETE statement conflicted with the REFERENCE
constraint 'FK_Order Details Products'" The Northwind database contains a foreign key constraint between
the order Details and Products table, meaning that a product cannot be deleted from the system if there are
one or more records for it in the order Details table. Since every product in the Northwind database has at
least one record in order Details, we cannot delete any products until we first delete the product's associated
order details records.

13 of 29

D The DELETE statemen conflicted with the REFERINCE constraint “FK_Order_Dotail |un.1.u-11[n l‘l‘_1 =13

Fie EX WVew Fpodes Jook Hep
Owed = O & @ 6 Fsewch frFeos £ -

ariess |] g hecalront | 1ERC ok [EdEIrserslel e Rascs, aspa]

Server Error in '/Code' Application.

The DELETE statement conflicted with the REFERENCE constraint
"FK_Order_Details_Products”, The conflict occurred in database
"C:\MY PROJECTS\WRITINGS\MICROSOFT\MSDN ARTICLES\MSDN
ONLINE ARTICLES\DATATUTORIALS|\VB\ 16
\CODE\APP_DATA\NORTHWND.MDF", table "dbo.Order Details",
column ‘ProductiDy.

The statement has been terminated.

Descrption: L uranded esoepbion moed duing e soeculion of e curresl wel recues]. Pesss review [he dack ace for Aore
niformation sboat the siroe aed whoes 8 orginated i the code

Euception Detaills: Syston Duin Soiliant SgEcephon: The DELETE sistemnent condlcied wih #e REFERENCE conatrant
Fi,_Crder_Derinlls_Procucts”. The conficl cocurred i datebase °C iy PROUECTSWWRTTMNGEWICROSONTWIEDS ARTICLESMSDM ObLMNE
ARTICLESDAT ATUTORIAL SWEHERDODEAPE_DWa T AMORTHIAMD MOF, Jats “dho Orde Detals”™, colsn Prodesl’

Tre staienent has Desn barmnaied

Rource Errar

Lyne BS6T:

Line 2563

Line 264 biss retwrnvalue &5 Ieteger = Me. Adapter.Del eTeomand, E=soutslonusry
Lime 25853 Eeturn returnvalue

Line 25661 Finally

&4 Local piraret

Figure 13: A Foreign Key Constraint Prohibits the Deletion of Products

For our tutorial, let's just delete all of the records from the order Details table. In a real-world application
we'd need to either:

¢ Have another screen to manage order details information

e Augment the beletepProduct method to include logic to delete the specified product's order details

e Modify the SQL query used by the TableAdapter to include deletion of the specified product's order
details

Let's just delete all of the records from the order Details table to circumvent the foreign key constraint. Go to
the Server Explorer in Visual Studio, right-click on the NorTHWND . MDF node, and choose New Query. Then, in
the query window, run the following SQL statement: DELETE FROM [Order Details]

14 of 29

=

% Code - Microsoft Visual Studio

File Edt View Projec Buld Debug Dats
ki

L i

o {2
Charge Type - @

X Query 1: Quer. R THWND MDF j*

J Ftored Procedures
3 Functions
A Symonems
3 Types
[Assembles
L] "l_ STVES

Figure 14: Delete All Records from the order Details Table

After clearing out the order Details table clicking on the Delete button will delete the product without error.
If clicking on the Delete button does not delete the product, check to ensure that the GridView's batakeyNames
property is set to the primary key field (Product1D).

Note: When clicking on the Delete button a postback ensues and the record is deleted. This can be dangerous
since it is easy to accidentally click on the wrong row's Delete button. In a future tutorial we'll see how to add a
client-side confirmation when deleting a record.

Editing Data with the GridView

Along with deleting, the GridView control also provides built-in row-level editing support. Configuring a
GridView to support editing adds a column of Edit buttons. From the end user's perspective, clicking a row's
Edit button causes that row to become editable, turning the cells into textboxes containing the existing values
and replacing the Edit button with Update and Cancel buttons. After making their desired changes, the end user
can click the Update button to commit the changes or the Cancel button to discard them. In either case, after
clicking Update or Cancel the GridView returns to its pre-editing state.

From our perspective as the page developer, when the end user clicks the Edit button for a particular row, a
postback ensues and the GridView performs the following steps:

1. The GridView's EditItemIndex property is assigned to the index of the row whose Edit button was
clicked

2. The GridView rebinds itself to the ObjectDataSource by invoking its select () method

The row index that matches the EditItemIndex is rendered in "edit mode." In this mode, the Edit button

is replaced by Update and Cancel buttons and BoundFields whose Readon1y properties are False (the

default) are rendered as TextBox Web controls whose Text properties are assigned to the data fields'

values.

(98]

At this point the markup is returned to the browser, allowing the end user to make any changes to the row's data.
When the user clicks the Update button, a postback occurs and the GridView performs the following steps:

15 of 29

1. The ObjectDataSource's UpdateParameters value(s) are assigned the values entered by the end user into
the GridView's editing interface

2. The ObjectDataSource's update () method is invoked, updating the specified record

The GridView rebinds itself to the ObjectDataSource by invoking its select () method

(98]

The primary key values assigned to the updateParameters in Step 1 come from the values specified in the
DataKeyNames property, whereas the non-primary key values come from the text in the TextBox Web controls
for the edited row. As with deleting, it is vital that a GridView's DatakKeyNames property be correctly set. If it's
missing, the updateParameters primary key value will be assigned a value of Nothing in Step 1, which in turn
will not result in any updated records in Step 2.

Editing functionality can be activated by simply checking the Enable Editing checkbox in the GridView's smart
tag.

Grid¥iew Tasks

Auko Format, ..

Choose Daka Source: | ObjectDataSourcel »
Configure Daka Source. .

Refresh Schema

Edit Columns. ..
add Mew Colurmn, ..

[] Enable Paging

[] Enable Sorting

Enable Deleting
[] Enable Selection

Edit Templates

Figure 15: Check the Enable Editing Checkbox

Checking the Enable Editing checkbox will add a CommandField (if needed) and set its showEditButton
property to True. As we saw earlier, the CommandField contains a number of showxButton properties that
indicate what series of buttons are displayed in the CommandField. Checking the Enable Editing checkbox adds
the showEditButton property to the existing CommandField:

<asp:GridView ID="GridViewl" runat="server" AutoGenerateColumns="False"

DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel">

<Columns>

<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True" />
. BoundFields removed for brevity ...

</Columns>

</asp:GridView>

That's all there is to adding rudimentary editing support. As Figurel6 shows, the editing interface is rather crude

— each BoundField whose readonly property is set to False (the default) is rendered as a TextBox. This
includes fields like categoryID and supplierID, which are keys to other tables.

16 of 29

W Lisritiad Page - Mizioasls foeiast [aphves

e, - d g e Zaact Pyvwim L TR]

i E R A TR B TP R T w u&

b Tutorials Home » Eding, inpeming, and Daleting > Basles

The Basics of Editing, Inserting, and Deleting

Editing and Delating Data from a Gridview

Eudif Cdete 2 fnsesd Eynup i 2 L& - =530 i botiles 10 D000
Ched Brbort's Cajun

el ARy = F v ders 23 N Lo

L S Lol et
-

Figure 16: Clicking Chai's Edit Button Displays the Row in "Edit Mode"

In addition to asking users to edit foreign key values directly, the editing interface's interface is lacking in the
following ways:

o If the user enters a categoryID or SupplierID that does not exist in the database, the uppATE will violate
a foreign key constraint, causing an exception to be raised.

e The editing interface doesn't include any validation. If you don't provide a required value (such as
ProductName), Or enter a string value where a numeric value is expected (such as entering "Too much!"
into the UnitPrice textbox), an exception will be thrown. A future tutorial will examine how to add
validation controls to the editing user interface.

o Currently, all product fields that are not read-only must be included in the GridView. If we were to
remove a field from the GridView, say unitPrice, when updating the data the GridView would not set
the UnitPrice UpdateParameters value, which would change the database record's unitPrice to a
NULL value. Similarly, if a required field, such as productName, is removed from the GridView, the
update will fail with the same "Column 'ProductName' does not allow nulls" exception mentioned above.

o The editing interface formatting leaves a lot to be desired. The unitPprice is shown with four decimal
points. Ideally the categoryID and supplier1D values would contain DropDownLists that list the
categories and suppliers in the system.

These are all shortcomings that we'll have to live with for now, but will be addressed in future tutorials.

Inserting, Editing, and Deleting Data with the
DetailsView

As we've seen in earlier tutorials, the DetailsView control displays one record at a time and, like the GridView,
allows for editing and deleting of the currently displayed record. Both the end user's experience with editing and
deleting items from a DetailsView and the workflow from the ASP.NET side is identical to that of the
GridView. Where the DetailsView differs from the GridView is that it also provides built-in inserting support.

To demonstrate the data modification capabilities of the GridView, start by adding a DetailsView to the
Basics.aspx page above the existing GridView and bind it to the existing ObjectDataSource through the
DetailsView's smart tag. Next, clear out the DetailsView's Height and width properties, and check the Enable
Paging option from the smart tag. To enable editing, inserting, and deleting support, simply check the Enable
Editing, Enable Inserting, and Enable Deleting checkboxes in the smart tag.

17 of 29

DetailsHiew Tasks

Auko Format, ..
Choose Daka Source: | ObjectDataSourcel »

Configure Daka Source. .
Refresh Schema

Edit Fields. ..

Add Mew Field. ..

Enable Paging
Enable Inserting
Enable Editing

Edit Templates

Figure 17: Configure the DetailsView to Support Editing, Inserting, and Deleting

As with the GridView, adding editing, inserting, or deleting support adds a CommandField to the DetailsView,
as the following declarative syntax shows:

<asp:DetailsView ID="DetailsViewl" runat="server" AutoGenerateRows="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel" AllowPaging="True">
<Fields>
<asp:BoundField DataField="ProductID"
HeaderText="ProductID" InsertVisible="False"
ReadOnly="True" SortExpression="ProductID" />
<asp:BoundField DataField="ProductName"
HeaderText="ProductName" SortExpression="ProductName" />
<asp:BoundField DataField="SupplierID" HeaderText="SupplierID"
SortExpression="SupplierID" />
<asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
SortExpression="CategoryID" />
<asp:BoundField DataField="QuantityPerUnit"
HeaderText="QuantityPerUnit"
SortExpression="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice"
HeaderText="UnitPrice" SortExpression="UnitPrice" />
<asp:BoundField DataField="UnitsInStock"
HeaderText="UnitsInStock" SortExpression="UnitsInStock" />
<asp:BoundField DataField="UnitsOnOrder"
HeaderText="UnitsOnOrder" SortExpression="UnitsOnOrder" />
<asp:BoundField DataField="ReorderLevel"
HeaderText="ReorderLevel" SortExpression="ReorderLevel" />
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued" />
<asp:BoundField DataField="CategoryName"
HeaderText="CategoryName" ReadOnly="True"
SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName"
HeaderText="SupplierName" ReadOnly="True"
SortExpression="SupplierName" />
<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True" ShowInsertButton="True" />
</Fields>
</asp:DetailsView>

Note that for the DetailsView the CommandField appears at the end of the Columns collection by default. Since
the DetailsView's fields are rendered as rows, the CommandField appears as a row with Insert, Edit, and Delete

18 of 29

buttons at the bottom of the DetailsView.

B Untitied Page - Microsoll Internet [xplores

Gl Ed Yew Fgvortes JTook Help
O Back - Bl @ 8 S Search 7 Favortes 9

#_1 ket [Noc st (4076 Code JEE IrseriDelele/Bascs. aspn
< = — —

Editing, Inserting, and Deleting
Data from a DetailsView

39
0
Reorderl evel 10

Hscontinued

egorysame [T b

S ioca mtranet

Figure 18: Configure the DetailsView to Support Editing, Inserting, and Deleting

Clicking on the Delete button starts the same sequence of events as with the GridView: a postback; followed by
the DetailsView populating its ObjectDataSource's DeleteParameters based on the DatakeyNames values; and
completed with a call its ObjectDataSource's bDelete () method, which actually removes the product from the
database. Editing in the DetailsView also works in a fashion identical to that of the GridView.

For inserting, the end user is presented with a New button that, when clicked, renders the DetailsView in "insert
mode." With "insert mode" the New button is replaced by Insert and Cancel buttons and only those
BoundFields whose Insertvisible property is set to True (the default) are displayed. Those data fields
identified as auto-increment fields, such as Product 1D, have their InsertVisible property set to False when
binding the DetailsView to the data source through the smart tag.

When binding a data source to a DetailsView through the smart tag, Visual Studio sets the Tnsertvisible
property to False only for auto-increment fields. Read-only fields, like categoryName and SsupplierName, will
be displayed in the "insert mode" user interface unless their Insertvisible property is explicitly set to False.
Take a moment to set these two fields' 1nsertvisible properties to False, either through the DetailsView's
declarative syntax or through the Edit Fields link in the smart tag. Figure 19 shows setting the Insertvisible
properties to False by clicking on the Edit Fields link.

19 of 29

=

Fields

BoundField properties:

El

= £l BoundField

] ProductlD Hieader Text .E-ntngurrﬁame

=] Producthame E Behavior
=] Supplierin ApplyFormatInEdity False

=] categorylD CanvertEmply String True

T] CruankkyPerlink ~ pode Trie
TRl Wh S re—————=== InsartWisible False
e

ReadOrhy True
ShowHeader True
SortExpression CategoryName
Wisile True

HeaderText
The ket within the header of this field,

Refresh Schema

Figure 19: Northwind Traders Now Offers Acme Tea

After setting the Insertvisible properties, view the Basics.aspx page in a browser and click the New
button. Figure 20 shows the DetailsView when adding a new beverage, Acme Tea, to our product line.

=

3 Untitied Page - Micrasall Internel Fxplorer

Gle Edt Yew Fgworkes Tools Helo

Qs ») - (6] @ #a S Search 7 Favontes & (3 . D2 RiB
s | 48] hitpe localhiost 4076 Code [EdR TnsartDelete Buaskes, ssps v B

Declarative Editing, Inserting, and Deleting
it Data from a DetailsView

UnitPrice

UnitsInStock

UnitsOnOrder

ReorderLevel

Discontinued

nsert Cancet

Figure 20: Northwind Traders Now Offers Acme Tea

After entering the details for Acme Tea and clicking the Insert button, a postback ensues and the new record is
added to the products database table. Since this DetailsView lists the products in order with which they exist in

20 of 29

Bla Et Vew

) Gadk = @ 6

Favorkes Tools

the database table, we must page to the last product in order to see the new product.

3 Untitied Pape - Microsall Internel Explorer

Favaribes & - i (] " o B

] bty focallvest 4076 Code Eck rsar helstaBaskcs, s v Eds

Dedarabive
Parameters

-Setting Parameter
Walues

Filter by Drop-Dawn
List

Master-Details-
DCretails

Master/Dietal Aoross
Two Pages

Details of Selectad
Row

Editing, Inserting, and Deleting
Data from a DetailsView

3 ons per box
15.9500

15

[4]

5

Beverages

Exotic Liquids
Edit Delete Mew

L. 60697071727374757677

N Local nbranet

Figure 21: Details for Acme Tea

Note: The DetailsView's CurrentMode property indicates the interface being displayed and can be one of the
following values: Edit, Insert, or Readonly. The DefaultMode property indicates the mode the DetailsView
returns to after an edit or insert has been completed and is useful for displaying a DetailsView that is
permanently in edit or insert mode.

The point and click inserting and editing capabilities of the DetailsView suffer from the same limitations as the
GridView: the user must enter existing CategoryID and supplierID values through a textbox; the interface
lacks any validation logic; all product fields that do not allow nuLL values or don't have a default value
specified at the database level must be included in the inserting interface, and so on.

The techniques we will examine for extending and enhancing the GridView's editing interface in future articles
can be applied to the DetailsView control's editing and inserting interfaces as well.

Using the FormView for a More Flexible Data
Modification User Interface

The FormView offers built-in support for inserting, editing, and deleting data, but because it uses templates
instead of fields there's no place to add the BoundFields or the CommandField used by the GridView and
DetailsView controls to provide the data modification interface. Instead, this interface — the Web controls for
collecting user input when adding a new item or editing an existing one along with the New, Edit, Delete,
Insert, Update, and Cancel buttons — must be added manually to the appropriate templates. Fortunately, Visual
Studio will automatically create the needed interface when binding the FormView to a data source through the
drop-down list in its smart tag.

21 of 29

To illustrate these techniques, start by adding a FormView to the Basics.aspx page and, from the FormView's
smart tag, bind it to the ObjectDataSource already created. This will generate an EditItemTemplate,
InsertItemTemplate, and ItemTemplate for the FormView with TextBox Web controls for collecting the
user's input and Button Web controls for the New, Edit, Delete, Insert, Update, and Cancel buttons.
Additionally, the FormView's DatakeyNames property is set to the primary key field (Product1D) of the object
returned by the ObjectDataSource. Lastly, check the Enable Paging option in the FormView's smart tag.

The following shows the declarative markup for the FormView's ItemTemplate after the FormView has been
bound to the ObjectDataSource. By default, each non-Boolean value product field is bound to the Text property
of'a Label Web control while each Boolean value field (Discontinued) is bound to the checked property of a
disabled CheckBox Web control. In order for the New, Edit, and Delete buttons to trigger certain FormView
behavior when clicked, it is imperative that their CommandName values be set to New, Edit, and Delete,
respectively.

<asp:FormView ID="FormViewl" runat="server" DataKeyNames="ProductID"
DataSourceID="0ObjectDataSourcel" AllowPaging="True">
<EditItemTemplate>

</EditItemTemplate>
<InsertItemTemplate>

</InsertItemTemplate>
<ItemTemplate>

ProductID:

<asp:Label ID="ProductIDLabel" runat="server"
Text='<%# Eval ("ProductID") %>'></asp:Label>

ProductName:

<asp:Label ID="ProductNameLabel" runat="server"
Text='<%# Bind("ProductName") %$>'>

</asp:Label>

SupplierID:

<asp:Label ID="SupplierIDLabel" runat="server"
Text='<%# Bind ("SupplierID") %$>'>

</asp:Label>

CategoryID:

<asp:Label ID="CategoryIDLabel" runat="server"
Text='<%# Bind("CategoryID") %>'>

</asp:Label>

QuantityPerUnit:

<asp:Label ID="QuantityPerUnitLabel" runat="server"
Text='<%# Bind("QuantityPerUnit") %>'>

</asp:Label>

UnitPrice:

<asp:Label ID="UnitPriceLabel" runat="server"
Text='<%# Bind ("UnitPrice") %>'></asp:Label>

UnitsInStock:

<asp:Label ID="UnitsInStockLabel" runat="server"
Text='<%# Bind ("UnitsInStock") %>'>

</asp:Label>

UnitsOnOrder:

<asp:Label ID="UnitsOnOrderLabel" runat="server"
Text='<%# Bind ("UnitsOnOrder") %>'>

</asp:Label>

ReorderLevel:

<asp:Label ID="ReorderLevellabel" runat="server"
Text='<%# Bind("ReorderLevel") %>'>

</asp:Label>

Discontinued:

<asp:CheckBox ID="DiscontinuedCheckBox" runat="server"
Checked="<%# Bind("Discontinued") $%>'
Enabled="false" />

22 of 29

CategoryName:

<asp:Label ID="CategoryNameLabel" runat="server"
Text='<%# Bind("CategoryName") %>'>

</asp:Label>

SupplierName:

<asp:Label ID="SupplierNameLabel" runat="server"
Text='<%# Bind("SupplierName") %$>'>

</asp:Label>

<asp:LinkButton ID="EditButton" runat="server"
CausesValidation="False" CommandName="Edit"
Text="Edit">

</asp:LinkButton>

<asp:LinkButton ID="DeleteButton" runat="server"
CausesValidation="False" CommandName="Delete"
Text="Delete">

</asp:LinkButton>

<asp:LinkButton ID="NewButton" runat="server"
CausesValidation="False" CommandName="New"
Text="New">

</asp:LinkButton>

</ItemTemplate>
</asp:FormView>

Figure 22 shows the FormView's TtemTemplate when viewed through a browser. Each product field is listed
with the New, Edit, and Delete buttons at the bottom.

D Untitled Pape - Microsall Interne! Teplares
Ble Edt Mew Fperles Tools Helb

Ok ~ £] & e | > Seanch Favorbes £ _r,;'.-j' ol ua
Sddress |] et o bt 4078 Code Edt frees tDelete Basics. asps « BJ e

D"F d“ﬁ‘; Editing, Inserting, and Deleting o

‘Sething Parameter
Wialues

Data from a FormView

ProductiD: 1

ProductName: Chai

SuppberlD; 1

CategorylD: 1

QuantityPerUnit: 10 boxes x 20 bags
UnitPrce: 19,0000

UnitsinStock: 39

unitsOnOrdar: 0

PeorderLaval: 10
Discontnued:
CategoryName: Beverages
Supphertiama: Exotic Liguids
Edit Delete Naw

% Locs inkranet

Figure 22: The Defaut FormView ItemTemplate Lists Each Product Field Along with New, Edit, and
Delete Buttons

Like with the GridView and DetailsView, clicking the Delete button — or any Button, LinkButton, or
ImageButton whose commandName property is set to Delete — causes a postback, populates the
ObjectDataSource's DeleteParameters based on the FormView's DatakeyNames value, and invokes the

ObjectDataSource's belete () method.

When the Edit button is clicked a postback ensues and the data is rebound to the EditTtemTemplate, which is

23 of 29

responsible for rendering the editing interface. This interface includes the Web controls for editing data along
with the Update and Cancel buttons. The default EditItemTemplate generated by Visual Studio contains a
Label for any auto-increment fields (product1D), a TextBox for each non-Boolean value field, and a CheckBox
for each Boolean value field. This behavior is very similar to the auto-generated BoundFields in the GridView
and DetailsView controls.

Note: One small issue with the FormView's auto-generation of the EditItemTemplate is that it renders
TextBox Web controls for those fields that are read-only, such as categoryName and supplierName. We'll see
how to account for this shortly.

The TextBox controls in the EditItemTemplate have their Text property bound to the value of their
corresponding data field using two-way databinding. Two-way databinding, denoted by <¢# Bind
("dataField") $>,performs databinding both when binding data to the template and when populating the
ObjectDataSource's parameters for inserting or editing records. That is, when the user clicks the Edit button
from the TtemTemplate, the Bind () method returns the specified data field value. After the user makes their
changes and clicks Update, the values posted back that correspond to the data fields specified using Bind () are
applied to the ObjectDataSource's UpdateParameters. Alternatively, one-way databinding, denoted by <%#
Eval ("dataField") $>,only retrieves the data field values when binding data to the template and does not
return the user-entered values to the data source's parameters on postback.

The following declarative markup shows the FormView's EditItemTemplate. Note that the Bind () method is
used in the databinding syntax here and that the Update and Cancel Button Web controls have their
CommandName properties set accordingly.

<asp:FormView ID="FormViewl" runat="server" DataKeyNames="ProductID"
DataSourceID="0ObjectDataSourcel" AllowPaging="True">
<EditItemTemplate>

ProductID:

<asp:Label ID="ProductIDLabell" runat="server"
Text="<%# Eval ("ProductID") %>"></asp:Label>

ProductName:

<asp:TextBox ID="ProductNameTextBox" runat="server"
Text="<%# Bind ("ProductName") $%>">

</asp:TextBox>

SupplierID:

<asp:TextBox ID="SupplierIDTextBox" runat="server"
Text="<%# Bind("SupplierID") %>">

</asp:TextBox>

CategoryID:

<asp:TextBox ID="CategoryIDTextBox" runat="server"
Text="<%# Bind("CategoryID") %>">

</asp:TextBox>

QuantityPerUnit:

<asp:TextBox ID="QuantityPerUnitTextBox" runat="server"
Text="<%# Bind("QuantityPerUnit") %>">

</asp:TextBox>

UnitPrice:

<asp:TextBox ID="UnitPriceTextBox" runat="server"
Text="<%# Bind ("UnitPrice") %>">

</asp:TextBox>

UnitsInStock:

<asp:TextBox ID="UnitsInStockTextBox" runat="server"
Text="<%# Bind ("UnitsInStock") %>">

</asp:TextBox>

UnitsOnOrder:

<asp:TextBox ID="UnitsOnOrderTextBox" runat="server"
Text="<%# Bind ("UnitsOnOrder") $%$>">

</asp:TextBox>

ReorderLevel:

24 of 29

<asp:TextBox ID="ReorderLevelTextBox" runat="server"
Text="<%# Bind("ReorderLevel") %>">
</asp:TextBox>

Discontinued:
<asp:CheckBox ID="DiscontinuedCheckBox" runat="server"
Checked="<%# Bind("Discontinued") %>" />

CategoryName:
<asp:TextBox ID="CategoryNameTextBox" runat="server"
Text="<%# Bind("CategoryName") %>">
</asp:TextBox>

SupplierName:
<asp:TextBox ID="SupplierNameTextBox" runat="server"
Text="<%# Bind("SupplierName") $>">
</asp:TextBox>

<asp:LinkButton ID="UpdateButton" runat="server"
CausesValidation="True" CommandName="Update"
Text="Update">
</asp:LinkButton>
<asp:LinkButton ID="UpdateCancelButton" runat="server"
CausesValidation="False" CommandName="Cancel"
Text="Cancel">
</asp:LinkButton>

</EditItemTemplate>
<InsertItemTemplate>

</InsertItemTemplate>
<ItemTemplate>

</ItemTemplate>
</asp:FormView>

Our EditItemTemplate, at this point, will cause an exception to be thrown if we attempt to use it. The problem
is that the categoryName and supplierName fields are rendered as TextBox Web controls in the
EditItemTemplate. We either need to change these TextBoxes to Labels or remove them altogether. Let's

simply delete them entirely from the EditItemTemplate.

Figure 23 shows the FormView in a browser after the Edit button has been clicked for Chai. Note that the
SupplierName and categoryName fields shown in the TtemTemplate are no longer present, as we just removed
them from the EditItemTemplate. When the Update button is clicked the FormView proceeds through the

same sequence of steps as the GridView and DetailsView controls.

25 of 29

B Untitled Pape - Micresall Internel [xplores
Gls Edt Yew Faperkes Joos Hebp
Ok ~ O ~ n] & 8 - Searxch Favorkes &0 b= A .-'rj -

e] bt Mok et AT oo JEE s i be Baics. aspe:

Lrecierative Editing, Inserting, and Deleting

E - Data from a FormView
Sethng Farameter
Nalues

Productil: 1
ProductName: Chai

Fitar by Drop-Down SupplieriD: |1
List

CategorylD: |1

Master-Detals- QuantityPerunit: 10 boxes » 20 bags
Petails UnitPrice: [19.0000

Master/Detal Acoss SISOk 1
Two Pages UnitsOnOrder: O

Peorderlevel 10
Detalls of Selected =
Row Discantnued: |

Update Cancesl

Figure 23: By Default the EditItemTemplate Shows Each Editable Product Field as a TextBox or
CheckBox

When the Insert button is clicked the FormView's 1temTemplate a postback ensues. However, no data is bound
to the FormView because a new record is being added. The InsertItemTemplate interface includes the Web
controls for adding a new record along with the Insert and Cancel buttons. The default TnsertItemTemplate
generated by Visual Studio contains a TextBox for each non-Boolean value field and a CheckBox for each
Boolean value field, similar to the auto-generated EditItemTemplate's interface. The TextBox controls have
their Text property bound to the value of their corresponding data field using two-way databinding.

The following declarative markup shows the FormView's InsertItemTemplate. Note that the Bind () method
is used in the databinding syntax here and that the Insert and Cancel Button Web controls have their
CommandName properties set accordingly.

<asp:FormView ID="FormViewl" runat="server" DataKeyNames="ProductID"
DataSourceID="ObjectDataSourcel" AllowPaging="True">
<EditItemTemplate>

</EditItemTemplate>
<InsertItemTemplate>
ProductName:
<asp:TextBox ID="ProductNameTextBox" runat="server"
Text="<%# Bind ("ProductName") %>">
</asp:TextBox>

SupplierID:
<asp:TextBox ID="SupplierIDTextBox" runat="server"
Text="<%# Bind ("SupplierID") $>">
</asp:TextBox>

CategoryID:
<asp:TextBox ID="CategoryIDTextBox" runat="server"
Text="<%# Bind("CategoryID") %>">
</asp:TextBox>

QuantityPerUnit:
<asp:TextBox ID="QuantityPerUnitTextBox" runat="server"
Text="<%# Bind("QuantityPerUnit") %>">

26 of 29

</asp:TextBox>

UnitPrice:
<asp:TextBox ID="UnitPriceTextBox" runat="server"
Text="<%# Bind ("UnitPrice") %>">
</asp:TextBox>

UnitsInStock:
<asp:TextBox ID="UnitsInStockTextBox" runat="server"
Text="<%# Bind ("UnitsInStock") %>">
</asp:TextBox>

UnitsOnOrder:
<asp:TextBox ID="UnitsOnOrderTextBox" runat="server"
Text="<%# Bind ("UnitsOnOrder") $%>">
</asp:TextBox>

ReorderLevel:
<asp:TextBox ID="ReorderLevelTextBox" runat="server"
Text="<%# Bind("ReorderLevel") %>">
</asp:TextBox>

Discontinued:
<asp:CheckBox ID="DiscontinuedCheckBox" runat="server"
Checked="<%# Bind("Discontinued") %>" />

CategoryName:
<asp:TextBox ID="CategoryNameTextBox" runat="server"
Text="<%# Bind("CategoryName") %$>">
</asp:TextBox>

SupplierName:
<asp:TextBox ID="SupplierNameTextBox" runat="server"
Text="<%# Bind("SupplierName") $>">
</asp:TextBox>

<asp:LinkButton ID="InsertButton" runat="server"
CausesValidation="True" CommandName="Insert"
Text="Insert">
</asp:LinkButton>
<asp:LinkButton ID="InsertCancelButton" runat="server"
CausesValidation="False" CommandName="Cancel"
Text="Cancel">
</asp:LinkButton>

</InsertItemTemplate>
<ItemTemplate>

</ItemTemplate>

</asp:FormView>

There's a subtlety with the FormView's auto-generation of the InsertItemTemplate. Specifically, the TextBox
Web controls are created even for those fields that are read-only, such as categoryName and supplierName.
Like with the EditItemTemplate, we need to remove these TextBoxes from the InsertItemTemplate.

Figure 24 shows the FormView in a browser when adding a new product, Acme Coffee. Note that the
SupplierName and categoryName fields shown in the TtemTemplate are no longer present, as we just removed
them. When the Insert button is clicked the FormView proceeds through the same sequence of steps as the
DetailsView control, adding a new record to the products table. Figure 25 shows Acme Coffee product's

details in the FormView after it has been inserted.

27 of 29

r D Untitled Page - Microsall Internel Fxplares
Gle Edt Yew Favorles Tools Heb
QD tack ~) | @ 0| Serch fiPevokes @ (3= 5 W] - & 05
Buhoss |9 hetp: o shost 407 CodeEdtinsesthslebe/Basics. asps v B

Drecla : Editing, Inserting, and Deleting
WF*.MW

Data from a FormView

ProductMama: Aome Coffee
SuppliertD: (1

CategorylD: 1
QuantityPaerint: % cans per box
UnitPrce:; [24.95

uUnitsinstock: (43
UnitsdnCrder: |0

ReorderLevel: .15

Discontinued: [

Insert Cancel

] Untitied Mape - Microsofl Infernet Explorer

Pz Edt Yew Fgoies Jook el

Qe « O (1 @ 0 P sean L Fwore & = & 0

Agdress @ b floc ot 4076 Code B it breert Daiebe B, s v | & Go
Working with Data Tutorials Home > Editing. Ins

and Deleting > Basics

n

The Basics of Editing,
Inserting, and Deleting

Editing, Inserting, and Deleting
Data from a FormView

ProductiD: 87
ProductNama: Acma Coffes
SuppliariD: 1

CategorylD: 1
QuantityPerlmt: 5 cans per box
UnitPace: 242500
UntsinStock: 45
UnitsOnCrder: 0
ReorderLevel: 15
Discontirued:
CategoryMame! Beverages
Supplieriame: Exobe Liquids
Edit Dalate Now

w B FOFIFZ2TITS IS 70 77 78

-‘:il.utdﬂ.rnlt
Figure 25: The Details for New Product, Acme Coffee, are Displayed in the FormView

By separating out the read-only, editing, and inserting interfaces into three separate templates, the FormView
allows for a finer degree of control over these interfaces than the DetailsView and GridView.

28 0of 29

Note: Like the DetailsView, the FormView's currentMode property indicates the interface being displayed and
its DefaultMode property indicates the mode the FormView returns to after an edit or insert has been
completed.

Summary

In this tutorial we examined the basics of inserting, editing, and deleting data using the GridView, DetailsView,
and FormView. All three of these controls provide some level of built-in data modification capabilities that can
be utilized without writing a single line of code in the ASP.NET page thanks to the data Web controls and the
ObjectDataSource. However, the simple point and click techniques render a fairly frail and naive data
modification user interface. To provide validation, inject programmatic values, gracefully handle exceptions,
customize the user interface, and so on, we'll need to rely on a bevy of techniques that will be discussed over the
next several tutorials.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

29 of 29

