This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Efficiently
Paging Through Large Amounts of Data

Introduction

As we discussed in the preceding tutorial, paging can be implemented in one of two ways:

o Default Paging — can be implemented by simply checking the Enable Paging option in the data Web
control’s smart tag; however, whenever viewing a page of data, the ObjectDataSource retrieves a// of the
records, even though only a subset of them are displayed in the page

e Custom Paging — improves the performance of default paging by retrieving only those records from the
database that need to be displayed for the particular page of data requested by the user; however, custom
paging involves a bit more effort to implement than default paging

Due to the ease of implementation — just check a checkbox and you’re done! — default paging is an attractive
option. Its naive approach in retrieving all of the records, though, makes it an implausible choice when paging
through sufficiently large amounts of data or for sites with many concurrent users. In such circumstances, we
must turn to custom paging in order to provide a responsive system.

The challenge of custom paging is being able to write a query that returns the precise set of records needed for a
particular page of data. Fortunately, Microsoft SQL Server 2005 provides a new keyword for ranking results,
which enables us to write a query that can efficiently retrieve the proper subset of records. In this tutorial we’ll
see how to use this new SQL Server 2005 keyword to implement custom paging in a GridView control. While
the user interface for custom paging is identical to that for default paging, stepping from one page to the next
using custom paging can be several orders of magnitude faster than default paging.

Note: The exact performance gain exhibited by custom paging depends on the total number of records being
paged through and the load being placed on the database server. At the end of this tutorial we’ll look at some
rough metrics that showcase the benefits in performance obtained through custom paging.

Step 1: Understanding the Custom Paging Process

When paging through data, the precise records displayed in a page depend upon the page of data being
requested and the number of records displayed per page. For example, imagine that we wanted to page through
the 81 products, displaying 10 products per page. When viewing the first page, we’d want products 1 through
10; when viewing the second page we’d be interested in products 11 through 20, and so on.

There are three variables that dictate what records need to be retrieved and how the paging interface should be
rendered:

o Start Row Index — the index of the first row in the page of data to display; this index can be calculated
by multiplying the page index by the records to display per page and adding one. For example, when
paging through records 10 at a time, for the first page (whose page index is 0), the Start Row Index is
0 * 10 + 1, or 1; for the second page (whose page index is 1), the Start Row Index is 1 * 10+ 1, or 11.

¢ Maximum Rows — the maximum number of records to display per page. This variable is referred to as

1 of 25

“maximum” rows since for the last page there may be fewer records returned than the page size. For
example, when paging through the 81 products 10 records per page, the ninth and final page will have
just one record. No page, though, will show more records than the Maximum Rows value.

¢ Total Record Count — the total number of records being paged through. While this variable isn’t needed
to determine what records to retrieve for a given page, it does dictate the paging interface. For example, if
there are 81 products being paged through, the paging interface knows to display nine page numbers in
the paging UL

With default paging, the Start Row Index is computed as the product of the page index and the page size plus
one, whereas the Maximum Rows is simply the page size. Since default paging retrieves all of the records from
the database when rendering any page of data, the index for each row is known, thereby making moving to Start
Row Index row a trivial task. Moreover, the Total Record Count is readily available, as it’s simply the number
of records in the DataTable (or whatever object is being used to hold the database results).

Given the Start Row Index and Maximum Rows variables, a custom paging implementation must only return
the precise subset of records starting at the Start Row Index and up to Maximum Rows number of records after
that. Custom paging provides two challenges:

o We must be able to efficiently associate a row index with each row in the entire data being paged through
so that we can start returning records at the specified Start Row Index
e We need to provide the total number of records being paged through

In the next two steps we’ll examine the SQL script needed to respond to these two challenges. In addition to the
SQL script, we’ll also need to implement methods in the DAL and BLL.

Step 2: Returning the Total Number of Records
Being Paged Through

Before we examine how to retrieve the precise subset of records for the page being displayed, let’s first look at
how to return the total number of records being paged through. This information is needed in order to properly
configure the paging user interface. The total number of records returned by a particular SQL query can be
obtained by using the counT aggregate function. For example, to determine the total number of records in the
Products table, we can use the following query:

SELECT COUNT (*)
FROM Products

Let’s add a method to our DAL that returns this information. In particular, we’ll create a DAL method called
TotalNumberOfProducts () that executes the SELECT statement shown above.

Start by opening the Northwind.xsd Typed DataSet file in the app Code/DAL folder. Next, right-click on the
ProductsTableAdapter in the Designer and choose Add Query. As we’ve seen in previous tutorials, this will
allow us to add a new method to the DAL that, when invoked, will execute a particular SQL statement or stored
procedure. As with our TableAdapter methods in previous tutorials, for this one opt to use an ad-hoc SQL
statement.

2 of 25

TableAdapter Query Configuration Wizard

Choose a Command Type : =
TableAdapter query uses S0L statements or a stored procedure, i iy

How should the TablefAdapter query access the database?
(+)iUse SOL statements
Specky a SELECT statement ko load data,

() Create new stored procedure
Speciy a SELECT statement, and the wizard will generate a new stored procedure to select records.

() Use existing stored procedure
Choose an existing stored procedure,

Figure 1: Use an Ad-Hoc SQL Statement

On the next screen we can specify what type of query to create. Since this query will return a single, scalar
value — the total number of records in the Products table — choose the “serLEcT which returns a singe value”

option.

3 0of 25

TableAdapter Query Configuration Wizard

Choose a Query Type A |
Choose the bype of query to be generated |‘ . ;‘1

What type of SOL query would you like to use?
() SELECT which returns rows

Feturns one oF many rows of ColJmns.

Returns a single value (for examgple, Sum, Cournt, or any other aggregate Function),
) UPDATE

Changes existing data in a table.
) DELETE

Removes rows From a table,

() INSERT
Adds a new row bo a table.

[< Previous |L_ﬂ_ext:=-] Cancel

Figure 2: Configure the Query to Use a SELECT Statement that Returns a Single Value

After indicating the type of query to use, we must next specify the query.

4 of 25

TableAdapter Query Configuration Wizard E||E| |EHE|

Specify a S0L SELECT statement e
The SELECT statement will b= used by the query, |i . —i

Type vour S0L statement or use the Query Builder ko construct it. What data should be loaded inbo the table?
What data should the table load?

SELECT COUNT(*)
FROM Products

| <previous || mest> || @nish || cCancel |

Figure 3: Use the SELECT COUNT(*) FROM Products Query

Finally, specify the name for the method. As aforementioned, let’s use TotalNumberOfProducts.

50f 25

TableAdapter Query Configuration Wizard

Choose Function Name .
Chonse the name of the Function to be generated ' ‘,

withat would you ke to name the new Function?
TotalMumberOfProducts

[< Previous jL_jEn} J[Finish I [Cancel

Figure 4: Name the DAL Method TotalNumberOfProducts

After clicking Finish, the wizard will add the TotalNumberofProducts method to the DAL. The scalar
returning methods in the DAL return nullable types, in case the result from the SQL query is NULL. Our COUNT
query, however, will always return a non-nuLL value; regardless, the DAL method returns a nullable integer.

In addition to the DAL method, we also need a method in the BLL. Open the productsBLL class file and add a
TotalNumberOfProducts method that simply calls down to the DAL’s TotalNumberOfProducts method:

public int TotalNumberOfProducts ()

{
return Adapter.TotalNumberOfProducts () .GetValueOrDefault ();

}

The DAL’s TotalNumberOfProducts method returns a nullable integer; however, we’ve created the
ProductsBLL class’s TotalNumberOfProducts method so that it returns a standard integer. Therefore, we need
to have the ProductsBLL class’s TotalNumberofProducts method return the value portion of the nullable
integer returned by the DAL’s TotalNumberofProducts method. The call to GetvalueorDefault () returns
the value of the nullable integer, if it exists; if the nullable integer is nul1, however, it returns the default integer
value, 0.

Step 3: Returning the Precise Subset of Records

Our next task is to create methods in the DAL and BLL that accept the Start Row Index and Maximum Rows
variables discussed earlier and return the appropriate records. Before we do that, let’s first look at the needed
SQL script. The challenge facing us is that we must be able to efficiently assign an index to each row in the
entire results being paged through so that we can return just those records starting at the Start Row Index (and

6 of 25

up to the Maximum Records number of records).

This is not a challenge if there is already a column in the database table that serves as a row index. At first
glance we might think that the products table’s product1D field would suffice, as the first product has
productID of 1, the second a 2, and so on. However, deleting a product leaves a gap in the sequence, nullifying
this approach.

There are two general techniques used to efficiently associate a row index with the data to page through,
thereby enabling the precise subset of records to be retrieved:

e Using SQL Server 2005’s row_NUMBER () Keyword —new to SQL Server 2005, the Row_NUMBER ()
keyword associates a ranking with each returned record based on some ordering. This ranking can be
used as a row index for each row.

o Using a Table Variable and seT rRowcouNT — SQL Server’s SET ROWCOUNT statement can be used to
specify how many total records a query should process before terminating; table variables are local T-
SQL variables that can hold tabular data, akin to temporary tables. This approach works equally well with
both Microsoft SQL Server 2005 and SQL Server 2000 (whereas the Row_NUMBER () approach only works
with SQL Server 2005).

The idea here is to create a table variable that has an 1pENTITY column and columns for the primary keys
of the table whose data is being paged through. Next, the contents of the table whose data is being paged
through is dumped into the table variable, thereby associating a sequential row index (via the IDENTITY
column) for each record in the table. Once the table variable has been populated, a SELECT statement on
the table variable, joined with the underlying table, can be executed to pull out the particular records. The
SET ROWCOUNT statement is used to intelligently limit the number of records that need to be dumped into
the table variable.

This approach’s efficiency is based on the page number being requested, as the SseT rowcounT value is
assigned the value of Start Row Index plus the Maximum Rows. When paging through low-numbered
pages — such as the first few pages of data — this approach is very efficient. However, it exhibits default
paging-like performance when retrieving a page near the end.

This tutorial implements custom paging using the Row NUMBER () keyword. For more information on using the
table variable and seT rowcoUNT technique, see A More Efficient Method for Paging Through Large Result
Sets.

The row NUMBER () keyword associated a ranking with each record returned over a particular ordering using the
following syntax:

SELECT columnList,
ROW_NUMBER() OVER (orderByClause)
FROM TableName

ROW_NUMBER () returns a numerical value that specifies the rank for each record with regards to the indicated
ordering. For example, to see the rank for each product, ordered from the most expensive to the least, we could
use the following query:

SELECT ProductName, UnitPrice,
ROW_NUMBER() OVER (ORDER BY UnitPrice DESC) AS PriceRank
FROM Products

Figure 5 shows this query’s results when run through the query window in Visual Studio. Note that the products

7 of 25

are ordered by price, along with a price rank for each row.

2% Code - Microsoft Visual Studio

File Edit Miew Project Build Debug Data Query Designer Tools
wWindow Community Help Addins
- AR [j ;:'; ﬂ - I | -l‘n 7 M '—_'l P _: L
=] 2 ey |2 || change Type - ¥ F_Q‘ﬂ— = &= él =
}ﬁE | Query0: Quer...RTHWND.MDF)* | F X | JEI
= ' ELECT ProductMame, UnitPrice, L
=4 RO MUMBER() OWER (CORDER BY UnitPrice DESC) AS PriceRank =
2 |FROM Products =
o =
T { m
5=
| o
: ProductMarme nitPrice | PriceR.ank, L%
|» | Cte de Blaye 263.5000 1 =
| | 3
Thidringer Rosthrabworst 123.7900 2 I
Mishi Kabe Niku 97,0000 3 o
Sir Riodney's Marmalade g1.0000 4 Iallll
Carnarwon Tigers 62,5000 5 T8 %__E
Raclette Courdavault 55.0000 & I
Manjimup Dried Apples 530000 7 'E—
| Tarke au sucre 49,3000 & E
Ipch Coffes 46,0000 9 @EE]
| Riissle Sauerkraut 45,6000 10 e
schoggi Schokolade 43,9000 11 |=
| | =
Marthwonds Cranberry Sauce 40,0000 12 S
Alice Mutkon 39,0000 13
Cueso Manchego La Pastora 38.0000 14
Gnocchi di nonna Alice 330000 1S
Gudbrandsdalsost 36,0000 16
Mozzarella di Giovanni 348000 17
Camembert Pierrok 34.0000 15
Wimnmers gute Semmelknidel 33,2500 19 _
i: LnAvkk Narkia- ° onnn f‘i i
4 4 |1 ofs1 | B B B 1| Cellis Read Cnly, o
__'-,a. Error LlstEI Ol;ll.:putﬁ%“ﬁnd Resulks 1
Ready

Figure 5: The Price Rank is Included for Each Returned Record

Note: ROW_NUMBER () is just one of the many new ranking functions available in SQL Server 2005. For a more
thorough discussion of Row NUMBER (), along with the other ranking functions, read Returning Ranked Results
with Microsoft SQL Server 2005.

When ranking the results by the specified orRDER BY column in the ovER clause (UnitPrice, in the above
example), SQL Server must sort the results. This is a quick operation if there is a clustered index over the

8 of 25

column(s) the results are being ordered by, or if there is a covering index, but can be more costly otherwise. To
help improve performance for sufficiently large queries, consider adding a non-clustered index for the column
by which the results are ordered by. See Ranking Functions and Performance in SQL Server 2005 for a more
detailed look at the performance considerations.

The ranking information returned by rRow NUMBER () cannot directly be used in the wseRE clause. However, a
derived table can be used to return the Row NUMBER () result, which can then appear in the wHERE clause. For
example, the following query uses a derived table to return the ProductName and UnitPrice columns, along with
the rRow NUMBER () result, and then uses a wHERE clause to only return those products whose price rank is
between 11 and 20:

SELECT PriceRank, ProductName, UnitPrice
FROM
(SELECT ProductName, UnitPrice,
ROW_NUMBER() OVER (ORDER BY UnitPrice DESC) AS PriceRank
FROM Products
) AS ProductsWithRowNumber
WHERE PriceRank BETWEEN 11 AND 20

Extending this concept a bit further, we can utilize this approach to retrieve a specific page of data given the
desired Start Row Index and Maximum Rows values:

SELECT PriceRank, ProductName, UnitPrice
FROM
(SELECT ProductName, UnitPrice,
ROW_NUMBER() OVER (ORDER BY UnitPrice DESC) AS PriceRank
FROM Products
) AS ProductsWithRowNumber
WHERE PriceRank > <i>StartRowIndex</i> AND
PriceRank <= (<i>StartRowIndex</i> + <i>MaximumRows</1i>)

Note: As we will see later on in this tutorial, the startRowIndex supplied by the ObjectDataSource is indexed
starting at zero, whereas the rRow NUMBER () value returned by SQL Server 2005 is indexed starting at 1.
Therefore, the wHERE clause returns those records where PriceRank is strictly greater than StartRowIndex and
less than or equal to StartRowIndex + MaximumRows.

Now that we’ve discussed how Row NUMBER () can be used to retrieve a particular page of data given the Start
Row Index and Maximum Rows values, we now need to implement this logic as methods in the DAL and BLL.

When creating this query we must decide the ordering by which the results will be ranked; let’s sort the
products by their name in alphabetical order. This means that with the custom paging implementation in this
tutorial we will not be able to create a custom paged report than can also be sorted. In the next tutorial, though,
we’ll see how such functionality can be provided.

In the previous section we created the DAL method as an ad-hoc SQL statement. Unfortunately, the T-SQL
parser in Visual Studio used by the TableAdapter wizard doesn’t like the over syntax used by the Row NUMBER
() function. Therefore, we must create this DAL method as a stored procedure. Select the Server Explorer from
the View menu (or hit Ctrl+Alt+S) and expand the NorTHWND . MDF node. To add a new stored procedure, right-
click on the Stored Procedures node and choose Add a New Stored Procedure (see Figure 6).

9 of 25

'.ruerEﬁmmEr
@] [<]| &5, .
. [= |_'j] Data Connections

= [NORTHWND.MDF
- [Database Diagrams

[Tables

[Yiews

B Bctored Procedures

[Functions Add Mew Stored Procedure

[d synonyms|—
R Tvpes [#] Refresh

L Assemblies f 2 propertiss
Ervers

L

- .

_ &Eﬁulutinn Expl... |*#iProperties :_-:-"gﬁerver Explorer (55 Class View

Figure 6: Add a New Stored Procedure for Paging Through the Products

This stored procedure should accept two integer input parameters - @startRowIndex and @maximumRows — and
use the row NUMBER () function ordered by the ProductName field, returning only those rows greater than the
specified @startRowIndex and less than or equal to @startRowIndex + @maximumRows. Enter the following
script into the new stored procedure and then click the Save icon to add the stored procedure to the database.

CREATE PROCEDURE dbo.GetProductsPaged
(

@startRowIndex int,
@maximumRows int

AS
SELECT ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, ReorderlLevel, Discontinued,
CategoryName, SupplierName
FROM

SELECT ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued,
(SELECT CategoryName
FROM Categories
WHERE Categories.CategoryID = Products.CategoryID) AS CategoryName,
(SELECT CompanyName
FROM Suppliers
WHERE Suppliers.SupplierID = Products.SupplierID) AS SupplierName,
ROW_NUMBER () OVER (ORDER BY ProductName) AS RowRank
FROM Products
) AS ProductsWithRowNumbers
WHERE RowRank > (@startRowIndex AND RowRank <= (@startRowIndex + (@maximumRows)

After creating the stored procedure, take a moment to test it out. Right-click on the GetProductsPaged stored
procedure name in the Server Explorer and choose the Execute option. Visual Studio will then prompt you for
the input parameters, @startRowIndex and @maximumRows (see Figure 7). Try different values and examine the
results.

10 of 25

Run Stored Procedure

The stored procedure «<[dbo].[GetProductsPaged]= requires the Following

parameters:
Twpe Direction Mame Yalue
ink In @starkRowIndex 10
ink In Draximumiows 10 W

[8] 4 J [Cancel

Figure 7: Enter a Value for the @startRowIndex and @maximumRows Parameters

After choosing these input parameters’ values, the Output window will show the results. Figure 8 shows the
results when passing in 10 for both the @startRowIndex and @maximumRows parameters.

Show oukpt Frone - Databace Cubput AT MR SN

ku.rm:.ru; jdba] . |Fasbzoductakagad] | BatartPowlndex = 1O, I]-l: SmumBows = 10 . L
FrodagcID ProdueotRass FapplisrIl Cacegoryil fuanticyPerinit TritFrioe Uit aTnd
1 Chai i 1 10 boxes & 20 bags 15 8% 3z

- Chang [i #d - 1¥ oz bektlas i 1T

=) Chartrsuzs varts Lo 1 TEQD cc per bhototls 1w [+)

+ Chetf Anton's Cajun Seasoming Fi E 48 - § oF jars FE] 53

E Chat Anuon's Cusbo Nix Z 2 36 BONES 1. 3% i

a8 Chocelada [a 10 plegs. 12_7& 15

£ Césm < Bluys LA 1 12 = 3K el beetlwn 855 17

£n Ercargotr de fourgogns 7 [] 24 piscan 13.28 a2

ET Filo Mix 24 H 16 - 2 kg bomes 7 as

71 FLOT Wy S o8t LE L] 10 - EOD g phys. EL.B 2

Bo rovd affaccad.

410 rowi{z| retuarcad]

BRITURE _VALUE = O

Finished rarmang 1dbe] ., [SetProdaotcsFaged] i
&l - = ¥
,'-.,r.| or List | (5] Cadpiat ir:.j?e—.:.‘-.s 1

Figure 8: The Records That Would Appear in the Second Page of Data are Returned
With this stored procedure created, we’re ready to create the ProductsTableAdapter method. Open the

Northwind.xsd Typed DataSet, right-click in the productsTableadapter, and choose the Add Query option.
Instead of creating the query using an ad-hoc SQL statement, create it using an existing stored procedure.

11 0f 25

ER]X

TableAdapter Query Configuration Wizard

Choose a Command Type
Tabledapt S0L statements or a stored dure, e
ablefdapter query uses SQL statements or a stored procedure L g <=

How should the TableAdapter query access the database?

{} Use S0L statements
Speciy a SELECT statement to load data,

) Create new stored procedure
Specfy a SELECT statement, and the wizard will generate a new stored procedure to select records.

Choose an existing stored procedure,

Figure 9: Create the DAL Method Using an Existing Stored Procedure

Next, we are prompted to select the stored procedure to invoke. Pick the GetProductsPaged stored procedure

from the drop-down list.

12 of 25

lableAdapter Query Configuration Wizard |1__P||E| |E”E|

Choose an existing stored procedure i s
Chonse which stored procedure the DataSource Function is supposed bo cal, -‘ - —Il

Select the stored procedure ko call, Parameters and resulks for the selected stored procedure are shown below,

cetProduct sPaged

Parameters; Resulks:

Result Columns L
ProductID
Productiarme
SupplieriD
CategoryID
CoankityPerUnit
UritPrice
IritsIrStack
LnitsOndirder
Reorderlevel
Disconkinued ~
< |

| <previous || mext> || Fnish || Concel |

Figure 10: Choose the GetProductsPaged Stored Procedure from the Drop-Down List

The next screen then asks you what kind of data is returned by the stored procedure: tabular data, a single value,
or no value. Since the GetProductsPaged stored procedure can return multiple records, indicate that it returns
tabular data.

13 of 25

TableAdapter Query Configuration Wizard

Choose the shape of data returned by the stored procedure B s
Choose if the stored procedure retums rows, a singke value, or nothing, . 1

Wthat should the typed method For this stored procedure return?

{7} A single value - A byped Function will be generated which retums a single vakue from the stored procedure,

{7 Mg value - & typed method will be generated to execute a stored procedure which doesr't return data,

| <Previous || mext> || Fnish | [Concel

Figure 11: Indicate that the Stored Procedure Returns Tabular Data

Finally, indicate the names of the methods you want to have created. As with our previous tutorials, go ahead
and create methods using both the Fill a DataTable and Return a DataTable. Name the first method Fil11paged

and the second GetProductsPaged.

14 of 25

TableAdapter Query Configuration Wizard

Choose Methods to Generate %

The TableAdapter methods kad and save data bebween yvour application and the i m—_ll|
database,

¥hich methods do you want to add to the TableAdapter?
Fill a DataTable

Creates a method that takes a DataTable or DataSet as a parameter and executes the S0L statement or
SELECT stored procedurs enterad on the previous pans.

Method name: FIIIF'SgE::I

Return a DataTable

Creates a method that reburns a new DataTsble Filled wikh the results of the SOL statement or SELECT skored
procedure entered on the previous page.

Method name: GetProductsPaged

[{Erevim.ls “ Mext = JI Finish |[Cancel

Figure 12: Name the Methods FillPaged and GetProductsPaged

In addition to created a DAL method to return a particular page of products, we also need to provide such
functionality in the BLL. Like the DAL method, the BLL’s GetProductsPaged method must accept two integer
inputs for specifying the Start Row Index and Maximum Rows, and must return just those records that fall
within the specified range. Create such a BLL method in the ProductsBLL class that merely calls down into the
DAL’s GetProductsPaged method, like so:

[System.ComponentModel.DataObjectMethodAttribute (
System.ComponentModel.DataObjectMethodType.Select, false)]
public Northwind.ProductsDataTable GetProductsPaged(int startRowIndex, int maximumRows)

{

return Adapter.GetProductsPaged (startRowIndex, maximumRows) ;

}
You can use any name for the BLL method’s input parameters, but, as we will see shortly, choosing to use

startRowIndex and maximumRows saves us from an extra bit of work when configuring an ObjectDataSource to
use this method.

Step 4: Configuring the ObjectDataSource to Use
Custom Paging

With the BLL and DAL methods for accessing a particular subset of records complete, we’re ready to create a
GridView control that pages through its underlying records using custom paging. Start by opening the
EfficientPaging.aspx page in the PagingAndsSorting folder, add a GridView to the page, and configure it to
use a new ObjectDataSource control. In our past tutorials, we often had the ObjectDataSource configured to use

15 of 25

the ProductsBLL class’s GetProducts method. This time, however, we want to use the Get ProductsPaged
method instead, since the GetProducts method returns all of the products in the database whereas
GetProductsPaged returns just a particular subset of records.

Configure Data Source - ObjectDataSource1 |E|@| EFE|

"‘J: Define Data Methods

SELECT | UPDATE | INSERT | DELETE|

Chonse a method of the business object that retums daka bo associate with the SELECT operation. The
method can return a DataSst, DataReader, or strongly-typed collection,

Example; GetProducts(Int3Z2 categoryld), retums a Dataset,

Choose & method:

EG&PrﬁduusPngcd{InLJZ s.mrl:R|:n.-'4-inn:‘n=><J Ink32 maxlrm.n'nF ¥ |

GetProductByProductIDIne3Z productID), returns Fru:d_u:rsDauTahle

GetProducts(), returns ProductsDataTable

GetF‘roduu:tsB'fCategwIDl‘,IntBE cakegoryID), retuns ProductsDataTable
npli

[= Previous J Mext = I F Cancel

Figure 13: Configure the ObjectDataSource to Use the ProductsBLL Class’s GetProductsPaged Method

Since we’re creating a read-only GridView, take a moment to set the method drop-down list in the INSERT,
UPDATE, and DELETE tabs to (None).

Next, the ObjectDataSource wizard prompts us for the sources of the Get ProductsPaged method’s
startRowIndex and maximumRows input parameters’ values. These input parameters will actually be set by the
GridView automatically, so simply leave the source set to None and click Finish.

16 of 25

Configure Data Source - ObjectDataSource1

J Define Parameters
-

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
method, choose a source for the parameter's value,

Parameters: Parameter source:
Namme Value | Marie |
StartRowindes Defaultvalue:
MaxEnUME. WS -
I
Shiow advanced properkies
[ekhod sigrature:

| GetProductsPagedi(Int32 startRomIndex, INt32 maximumRows), returs ProductsDataT able

I)

Figure 14: Leave the Input Parameter Sources as None

After completing the ObjectDataSource wizard, the GridView will contain a BoundField or CheckBoxField for

each of the product data fields. Feel free to tailor the GridView’s appearance as you see fit. I’ve opted to display
(HﬂytheProductName,CategoryName,SupplierName,QuantityPerUnit,and[kntPrice:BoundFKﬂd&z%BO,

configure the GridView to support paging by checking the Enable Paging checkbox in its smart tag. After these

changes, the GridView and ObjectDataSource declarative markup should look similar to the following:

<asp:GridView ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel”" AllowPaging="True">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
SortExpression="SupplierName" />
<asp:BoundField DataField="QuantityPerUnit" HeaderText="Qty/Unit"
SortExpression="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price" HtmlEncode="False" SortExpression="UnitPrice" />
</Columns>
</asp:GridvView>

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}" SelectMethod="GetProductsPaged"
TypeName="ProductsBLL">
<SelectParameters>
<asp:Parameter Name="startRowIndex" Type="Int32" />
<asp:Parameter Name="maximumRows" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

17 of 25

If you visit the page through a browser, however, the GridView is no where to be found.

2 Untitled Page - Microsoft Internet Explorer
| File Edt

i (BBak -~ &3 - [5] @ #a| F Seach 35 Favortes £ «da Wz & ™ BB
Ackiress | @] hitpsfflocalbast1 222/ Code Pagnghndsarting EfficentPagng. aspx v B
G"}'glf' Wl search = @F) bj?f ?E.}'-Pupupitlkag.r AN Check - »

Working with Data Tutorials

Help

ieww

Faworitas Tools

Home > Paging and Sorting >
Efficiently Paging Through

Home

Efficiently Paging Through
Large Amounts of Data

Baslc Reportng

Simple Display

Declarative
Parameters

Setting Parameter
Walues

Filtering Reports

Fliter by Drop-Down
List

Master-Detals-
Detalls

%d Local intranat

Figure 15: The GridView is Not Displayed

The GridView is missing because the ObjectDataSource is currently using 0 as the values for both of the
GetProductsPaged startRowIndex and maximumRows input parameters. Hence, the resulting SQL query is
returning no records and therefore the GridView is not displayed.

To remedy this, we need to configure the ObjectDataSource to use custom paging. This can be accomplished in
the following steps:

1.

Set the ObjectDataSource’s EnablePaging property to true — this indicates to the ObjectDataSource
that it must pass to the selectMethod two additional parameters: one to specify the Start Row Index
(startRowIndexParameterName), and one to specify the Maximum Rows
(MaximumRowsParameterName).

Set the ObjectDataSource’s SstartRowIndexParameterName and MaximumRowsParameterName
Properties Accordingly — the startRowIndexParameterName and MaximumRowsParameterName
properties indicate the names of the input parameters passed into the selectMethod for custom paging
purposes. By default, these parameter names are startIndexRow and maximumRows, which is why, when
creating the Get ProductsPaged method in the BLL, I used these values for the input parameters. If you
chose to use different parameter names for the BLL’S GetProductspPaged method — such as startIndex
and maxRows, for example — you would need to set the ObjectDataSource’s
StartRowIndexParameterName and MaximumRowsParameterName properties accordingly (such as
startIndex for startRowIndexParameterName and maxRows for MaximumRowsParameterName).

Set the ObjectDataSource’s selectCountMethod Property to the Name of the Method that Returns
the Total Number of Records Being Paged Through (TotalNumberOfProducts) — recall that the
ProductsBLL class’s TotalNumberOfProducts method returns the total number of records being paged

18 of 25

through using a DAL method that executes a SELECT COUNT (*) FROM Products query. This information
is needed by the ObjectDataSource in order to correctly render the paging interface.

4. Remove the startRowIndex and maximumRows <asp:Parameter> Elements from the
ObjectDataSource’s Declarative Markup — when configuring the ObjectDataSource through the
wizard, Visual Studio automatically added two <asp:Parameter> elements for the Get ProductsPaged
method’s input parameters. By setting EnablePaging to true, these parameters will be passed
automatically; if they also appear in the declarative syntax, the ObjectDataSource will attempt to pass
four parameters to the Get ProductsPaged method and two parameters to the TotalNumberOfProducts
method. If you forget to remove these <asp:Parameter> elements, when visiting the page through a
browser you’ll get an error message like: “ObjectDataSource 'ObjectDataSourcel’ could not find a non-
generic method 'TotalNumberOfProducts’ that has parameters: startRowIndex, maximumRows.”

After making these changes, the ObjectDataSource’s declarative syntax should look like the following:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}" TypeName="ProductsBLL"
SelectMethod="GetProductsPaged" EnablePaging="True"
SelectCountMethod="TotalNumberOfProducts">

</asp:0bjectDataSource>

Note that the EnablePaging and selectCountMethod properties have been set and the <asp:Parameter>

elements have been removed. Figure 16 shows a screen shot of the Properties window after these changes have
been made.

19 of 25

. ﬁr‘n:npertie::

ObjectDataSourcel Syskem.wWeb,ULWebControls, ObjectDataSource -
{Expressu:uns}

ObjectDataSourcel
CacheDuratlnn Infinite
CacheExpirationPalicy Absolute
CachekeyDependency
ConflickDetection CrverwriteChanges
Corverthull ToDBRull False
Dakabject TyvpeMame
DeleteMethod
DeleteParameters (Colleckion)
EnableCaching False

fEnaI:uIeF‘aging True]
EnableYiewstate True
FilkerExpression
FilterParameters (Zollection)
InsertiMethod
InsertParameters fZollection)

ﬁ“laximumRDwsParameterName maximumRDws]

QldvaluesPar amekerFormat Skring uriginal {0}

EelectCDuntMethDd TotalMumberOfProducks]
SelectMethod GetProductsPaged
SelectParameters (Colleckion)
SartPararmetetManme
Sqi_acheDependency

{_StartRDwIndexF'arameterName startRDwIndex]
Typehame ProductsBLL
IJpdatemMethod
IpdateParameters (Colleckion)

{ID}
Programmatic name of the control.
L'."_._l‘:-JSDlLItiDI'I Explorer | ¥ Properties |5 Server Explorer _Egclass Yigt

Figure 16: To Use Custom Paging, Configure the ObjectDataSource Control

After making these changes, visit this page through a browser. You should see 10 products listed, ordered
alphabetically. Take a moment to step through the data one page at a time. While there is no visual difference
from the end user’s perspective between default paging and custom paging, custom paging more efficiently
pages through large amounts of data as it only retrieves those records that need to be displayed for a given page.

20 of 25

3U|11'illln-d|-"‘ag|: Microsoft Internet Fxplorer b_(l
Bl Edt Wew Favonbes Took Help i

OQndk - Q- H @G P Srrmors @ (3~ 5 W - LR
fres l_'lI'th:u:.'lhc.rﬂnst:lz:h‘cadanagthmdi:tanEfﬁcumg.w " '313
Govgle - | v G sewch - & D | B[S Poous ckay | U check + K ok = @ -
Working with Data Tutorials Home > Paging and Sorting > Eficiently Paging
i G i Through Large Rasult Sets _

Efficiently Paging Through Large
Amounts of Data

Simple Display
Declaratie . Category Supplier : Ciby Uit Ii'ri|:-
Paramieters Acme Coffee Bewerages Exotic Liquids E cans per box $24.95
: _._ Aome Soda Bewarages Ewotic Liquids §1.45
Emg Parameter Acme Syrup Bewverages Exotic Liquids $149.50
Acme Tea Bewerages Exotic Liquids 2 tins per box $19.95
rli'{r_'l'll'l-:'_.l Repoets Arme Water $1.59
Filker by Grop-Down Alice Mutton Meat/Foultry Paviova, Lid. 20-1kgtins $33.00
List Aniseed Syrup Condiments Exotic Liquids A2 =St sroi09
Master-Detals- "
Detalls Eﬂg:;on Crab ceafood g::rgm@cﬁmdnew 24 4oz tine 418,40
Mastar/Dwtall Across Camembert gy 15 - 300 g 24T
Twe Pagas Pierrot Products O pAtUrage rounds ihloien
Biatails of Selscted %%r‘el‘:%ﬁﬂﬂ Seafoad Pavlava, Ltd, 16 kgpka, $62.50
Row
12345...2>
Customized
Formatbng ~
&l S Local intranet

Figure 17: The Data, Ordered by the Product’s Name, is Paged Using Custom Paging

Note: With custom paging, the page count value returned by the ObjectDataSource’s selectCountMethod i
stored in the GridView’s view state. Other GridView variables — the PageIndex, EditIndex, SelectedIndex,
DataKeys collection, and so on — are stored in control state, which is persisted regardless of the value of the
GridView’s EnableviewState property. Since the PageCount value is persisted across postbacks using view
state, when using a paging interface that includes a link to take you to the last page, it is imperative that the
GridView’s view state be enabled. (If your paging interface does not include a direct link to the last page, then
you may disable view state.)

Clicking the last page link causes a postback and instructs the GridView to update its PageIndex property. If
the last page link is clicked, the GridView assigns its PageIndex property to a value one less than its
PageCount property. With view state disabled, the pagecount value is lost across postbacks and the pageIndex
is assigned the maximum integer value instead. Next, the GridView attempts to determine the starting row
index by multiplying the Pagesize and PageCount properties. This results in an overflowException since the
product exceeds the maximum allowed integer size.

Implement Custom Paging and Sorting

Our current custom paging implementation requires that the order by which the data is paged through be
specified statically when creating the Get ProductsPaged stored procedure. However, you may have noted that
the GridView’s smart tag contains an Enable Sorting checkbox in addition to the Enable Paging option.
Unfortunately, adding sorting support to the GridView with our current custom paging implementation will
only sort the records on the currently viewed page of data. For example, if you configure the GridView to also
support paging and then, when viewing the first page of data, sort by product name in descending order, it will
reverse the order of the products on page 1. As Figure 18 shows, such shows Carnarvon Tigers as the first

21 of 25

product when sorting in reverse alphabetical order, which ignores the 71 other products that come after
Carnarvon Tigers, alphabetically; only those records on the first page are considered in the sorting.

] Lintitled Pape - Microsoft Inlernet Explorer m"ﬁl r._lrﬁlﬁl
Bl Edt Wew Faonbes Took Help i

{Jm:h .) = |3 W - Seanch Favorites 4 = i W - B = r'na
!_'II'trn:.'lhca‘mst:l2‘::|'CLdtrF\aghgﬁnd5nrtﬂq|'Efﬁ:H'tPa;nq.m " -} (=]
Google - w 0 osearch = @) B S Poous chey | Y check - S murolink < W -
]
i i i Hame > Paging and Sarting > Efficiently Paging
Working with Data Tutorials A O ot _

Efficiently Paging Through Large
Amounts of Data

Simipie Display
Cedarative Category Supplier Oy A Uit
Parameters ;Zr:;r\'-:nn Zeafood Favlova, Ltd. 16 kg pkg $62.50
Setting Pararster Camembert . Daary : 15- 300 g
itles Plarrot Products Gal paturage it $34.00
Fllterna Raports Boston Crab ; Wew England ST
Werng Rep Meat seafood - ot 24 - 4oz tins $18.40
Fileer by Crop-Down =
List k Anisesd Syrup. Condiments Exofic Liquids égtu;‘ifu il $10,00
Master-Datals- alice Mutton Meat/Poultry Paviava, Ltd 20- 1 kg tns $33.00
Detalls Acme Waber $1.9%
Master/Detail Across aome Tea Beversges Exotic Liquids 3 tns per box $19.95
Two Fages Acme Syrup Beverages Exofic Ligquids $13,50
seme Soda Beverages Exafic Liquids 41.45
E:;Hra of Selertad Acme Coffee Beverages Exotic Liguids G cans per box $24.95
12345 ...2>
Customized
Formatbng i
&l %o Local inkrarmt

Figure 18: Only the Data Shown on the Current Page is Sorted

The sorting only applies to the current page of data because the sorting is occurring after the data has been
retrieved from the BLL’s GetProductsPaged method, and this method only returns those records for the
specific page. To implement sorting correctly, we need to pass the sort expression to the Get ProductsPaged
method so that the data can be ranked appropriately before returning the specific page of data. We’ll see how to
accomplish this in our next tutorial.

Implementing Custom Paging and Deleting

If you enabling deleting functionality in a GridView whose data is paged using custom paging techniques you
will find that when deleting the last record from the last page, the GridView disappears rather than appropriately
decrementing the GridView’s pageIndex. To reproduce this bug, enable deleting for the tutorial just we just
created. Go to the last page (page 9), where you should see a single product since we are paging through 81
products, 10 products at a time. Delete this product.

Upon deleting the last product, the GridView should automatically go to the eighth page, and such functionality
is exhibited with default paging. With custom paging, however, after deleting that last product on the last page,
the GridView simply disappears from the screen altogether. The precise reason why this happens is a bit beyond
the scope of this tutorial; see Deleting the Last Record on the Last Page from a GridView with Custom Paging
for the low-level details as to the source of this problem. In summary it’s due to the following sequence of steps
that are performed by the GridView when the Delete button is clicked:

22 of 25

1. Delete the record
2. Get the appropriate records to display for the specified PageIndex and pPagesize
3. Check to ensure that the PageIndex does not exceed the number of pages of data in the data source; if it

does, automatically decrement the GridView’s pageIndex property
4. Bind the appropriate page of data to the GridView using the records obtained in Step 2

The problem stems from the fact that in Step 2 the PageIndex used when grabbing the records to display is still
the PageIndex of the last page whose sole record was just deleted. Therefore, in Step 2, no records are returned
since that last page of data no longer contains any records. Then, in Step 3, the GridView realizes that its
PageIndex property is greater than the total number of pages in the data source (since we’ve deleted the last
record in the last page) and therefore decrements its PageIndex property. In Step 4 the GridView attempts to
bind itself to the data retrieved in Step 2; however, in Step 2 no records were returned, therefore resulting in an
empty GridView. With default paging, this problem doesn’t surface because in Step 2 all records are retrieved
from the data source.

To fix this we have two options. The first is to create an event handler for the GridView’s RowDeleted event
handler that determines how many records were displayed in the page that was just deleted. If there was only
one record, then the record just deleted must have been the last one and we need to decrement the GridView’s
pageIndex. Of course, we only want to update the pageIndex if the delete operation was actually successful,
which can be determined by ensuring that the e .Exception property is null.

This approach works because it updates the PageIndex after Step 1 but before Step 2. Therefore, in Step 2, the
appropriate set of records is returned. To accomplish this, use code like the following:

protected void GridViewl RowDeleted(object sender, GridViewDeletedEventArgs e)
{
// If we just deleted the last row in the GridView, decrement the Pagelndex
if (e.Exception == null && GridViewl.Rows.Count == 1)
// we just deleted the last row
Gridviewl.PageIndex = Math.Max (0, GridvViewl.PageIndex - 1);
}

An alternative workaround is to create an event handler for the ObjectDataSource’s RowDeleted event and to
set the Af fectedRows property to a value of 1. After deleting the record in Step 1 (but before re-retrieving the
data in Step 2), the GridView updates its PageIndex property if one or more rows were affected by the
operation. However, the affectedrRows property is not set by the ObjectDataSource and therefore this step is
omitted. One way to have this step executed is to manually set the Af fectedrows property if the delete
operation completes successfully. This can be accomplished using code like the following:

protected void ObjectDataSourcel Deleted (
object sender, ObjectDataSourceStatusEventArgs e)

{
// 1f we get back a Boolean value from the DeleteProduct method and it's true,

// then we successfully deleted the product. Set AffectedRows to 1
if (e.ReturnValue is bool && ((bool)e.ReturnValue) == true)
e.AffectedRows = 1;
}

The code for both of these events handlers can be found in code-behind class of the EfficientPaging.aspx
example.

Comparing the Performance of Default and Custom
Paging

23 of 25

Since custom paging only retrieves the needed records, whereas default paging returns all of the records for
each page being viewed, it’s clear that custom paging is more efficient than default paging. But just how much
more efficient is custom paging? What sort of performance gains can be seen by moving from default paging to
custom paging?

Unfortunately, there’s no “one size fits all” answer here. The performance gain depends on a number of factors,
the most prominent two being the number of records being paged through and the load placed on the database
server and communication channels between the web server and database server. For small tables with just a
few dozen records, the performance difference may be negligible. For large tables, with thousands to hundreds
of thousands of rows, though, the performance difference is acute.

An article of mine, Custom Paging in ASP.NET 2.0 with SQL Server 2005, contains some performance tests I
ran to exhibit the differences in performance between these two paging techniques when paging through a
database table with 50,000 records. In these tests I examined both the time to execute the query at the SQL
Server level (using SQL Profiler) and at the ASP.NET page using ASP.NET’s tracing features. Keep in mind
that these tests were run on my development box with a single active user, and therefore are unscientific and do
not mimic typical website load patterns. Regardless, the results illustrate the relative differences in execution
time for default and custom paging when working with sufficiently large amounts of data.

Avg. Duration (sec) Reads
Default Paging — SQL Profiler 1.411 383
Custom Paging — SQL Profiler 0.002 29
Default Paging — ASP.NET Trace 2.379 N/A
Custom Paging — ASP.NET Trace 0.029 N/A

As you can see, retrieving a particular page of data required 354 less reads on average and completed in a

fraction of the time. At the ASP.NET page, custom the page was able to render in close to 1/ 100" of the time it
took when using default paging. See my article for more information on these results along with code and a
database you can download to reproduce these tests in your own environment.

Summary

Default paging is a cinch to implement — just check the Enable Paging checkbox in the data Web control’s
smart tag — but such simplicity comes at the cost of performance. With default paging, when a user requests any
page of data all records are returned, even though only a tiny fraction of them may be shown. To combat this
performance overhead, the ObjectDataSource offers an alternative paging option — custom paging.

While custom paging improves upon default paging’s performance issues by retrieving only those records that
need to be displayed, it’s more involved to implement custom paging. First, a query must be written that
correctly (and efficiently) accesses the specific subset of records requested. This can be accomplished in a
number of ways; the one we examined in this tutorial is to use SQL Server 2005’s new Row NUMBER () function
to rank results, and then to return just those results whose ranking falls within a specified range. Furthermore,
we need to add a means to determine the total number of records being paged through. After creating these
DAL and BLL methods, we also need to configure the ObjectDataSource so that it can determine how many
total records are being paged through and can correctly pass the Start Row Index and Maximum Rows values to
the BLL.

While implementing custom paging does require a number of steps and is not nearly as simple as default
paging, custom paging is a necessity when paging through sufficiently large amounts of data. As the results

24 of 25

examined showed, custom paging can shed seconds off of the ASP.NET page render time and can lighten the
load on the database server by one ore more orders of magnitude.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

25 of 25

