FastTreeTweedieTrainer クラス

定義

IEstimator<TTransformer>Tweedie 負け function を使用してデシジョンツリー回帰モデルをトレーニングするための。 このトレーナーは、ポワソン、複合ポワソン、およびガンマ回帰の汎化です。

public sealed class FastTreeTweedieTrainer : Microsoft.ML.Trainers.FastTree.BoostingFastTreeTrainerBase<Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>,Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>
type FastTreeTweedieTrainer = class
    inherit BoostingFastTreeTrainerBase<FastTreeTweedieTrainer.Options, RegressionPredictionTransformer<FastTreeTweedieModelParameters>, FastTreeTweedieModelParameters>
Public NotInheritable Class FastTreeTweedieTrainer
Inherits BoostingFastTreeTrainerBase(Of FastTreeTweedieTrainer.Options, RegressionPredictionTransformer(Of FastTreeTweedieModelParameters), FastTreeTweedieModelParameters)
継承

注釈

To create this trainer, use FastTreeTweedie or FastTreeTweedie(Options).

Input and Output Columns

The input label column data must be Single. The input features column data must be a known-sized vector of Single.

This trainer outputs the following columns:

Output Column Name Column Type Description
Score Single The unbounded score that was predicted by the model.

Trainer Characteristics

機械学習タスク 回帰
正規化が必要ですか? いいえ
キャッシュは必要ですか? いいえ
Microsoft に加えて、必要な NuGet。ML エクスプローラー.ML。FastTree
ONNX にエクスポート可能 はい

Training Algorithm Details

The Tweedie boosting model follows the mathematics established in Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models from Yang, Quan, and Zou. For an introduction to Gradient Boosting, and more information, see: Wikipedia: Gradient boosting(Gradient tree boosting) or Greedy function approximation: A gradient boosting machine.

Check the See Also section for links to usage examples.

フィールド

FeatureColumn

トレーナーが期待する機能列。

(継承元 TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

順位付けトレーナーが想定している省略可能な groupID 列。

(継承元 TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

トレーナーが想定するラベル列。 Nullにすることができます。これは、ラベルがトレーニングに使用されないことを示します。

(継承元 TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

トレーナーが想定する重み列。 Nullにすることができます。これは、重みがトレーニングに使用されないことを示します。

(継承元 TrainerEstimatorBase<TTransformer,TModel>)

プロパティ

Info (継承元 FastTreeTrainerBase<TOptions,TTransformer,TModel>)

メソッド

Fit(IDataView)

をトレーニングし、を返し ITransformer ます。

(継承元 TrainerEstimatorBase<TTransformer,TModel>)
Fit(IDataView, IDataView)

FastTreeTweedieTrainerトレーニングと検証の両方のデータを使用してをトレーニングすると、を返し RegressionPredictionTransformer<TModel> ます。

GetOutputSchema(SchemaShape) (継承元 TrainerEstimatorBase<TTransformer,TModel>)

拡張メソッド

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

"キャッシュチェックポイント" を推定チェーンに追加します。 これにより、ダウンストリームの estimators がキャッシュされたデータに対してトレーニングされます。 複数のデータパスを使用する場合は、トレーナーの前にキャッシュチェックポイントを用意することをお勧めします。

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

推定値を指定した場合は、が呼び出された後にデリゲートを呼び出すラップオブジェクトを返し Fit(IDataView) ます。 多くの場合、推定によってどのような情報が返されるかについての情報を返すことが重要です。これは、メソッドが、 Fit(IDataView) 単純なだけではなく、明示的に型指定されたオブジェクトを返すためです ITransformer 。 同時に、多くのオブジェクトを IEstimator<TTransformer> 含むパイプラインには、多くの場合、estimators のチェーンを構築することが必要になる場合があり EstimatorChain<TLastTransformer> ます。この場合、トランスフォーマーを取得する対象の推定は、このチェーンのどこかに埋もれています。 このシナリオでは、このメソッドを使用して、fit が呼び出されたときに呼び出されるデリゲートをアタッチできます。

適用対象

こちらもご覧ください