RijndaelManaged RijndaelManaged RijndaelManaged RijndaelManaged Class

定義

Rijndael アルゴリズムのマネージド バージョンにアクセスします。Accesses the managed version of the Rijndael algorithm. このクラスは継承できません。This class cannot be inherited.

public ref class RijndaelManaged sealed : System::Security::Cryptography::Rijndael
[System.Runtime.InteropServices.ComVisible(true)]
public sealed class RijndaelManaged : System.Security.Cryptography.Rijndael
type RijndaelManaged = class
    inherit Rijndael
Public NotInheritable Class RijndaelManaged
Inherits Rijndael
継承
属性

RijndaelManagedクラスを使用してサンプルデータを暗号化および復号化する方法を次の例に示します。The following example demonstrates how to encrypt and decrypt sample data using the RijndaelManaged class.

#using <System.dll>

using namespace System;
using namespace System::IO;
using namespace System::Security::Cryptography;


class RijndaelMemoryExample
{
public:
    static array<Byte>^ encryptStringToBytes_AES(String^ plainText, array<Byte>^ Key, array<Byte>^ IV)
    {
        // Check arguments.
        if (!plainText || plainText->Length <= 0)
            throw gcnew ArgumentNullException("plainText");
        if (!Key || Key->Length <= 0)
            throw gcnew ArgumentNullException("Key");
        if (!IV  || IV->Length <= 0)
            throw gcnew ArgumentNullException("IV");

        // Declare the streams used
        // to encrypt to an in memory
        // array of bytes.
        MemoryStream^   msEncrypt;
        CryptoStream^   csEncrypt;
        StreamWriter^   swEncrypt;

        // Declare the RijndaelManaged object
        // used to encrypt the data.
        RijndaelManaged^ aesAlg;

        try
        {
            // Create a RijndaelManaged object
            // with the specified key and IV.
            aesAlg = gcnew RijndaelManaged();
            aesAlg->Padding = PaddingMode::PKCS7;
            aesAlg->Key = Key;
            aesAlg->IV = IV;

            // Create an encryptor to perform the stream transform.
            ICryptoTransform^ encryptor = aesAlg->CreateEncryptor(aesAlg->Key, aesAlg->IV);

            // Create the streams used for encryption.
            msEncrypt = gcnew MemoryStream();
            csEncrypt = gcnew CryptoStream(msEncrypt, encryptor, CryptoStreamMode::Write);
            swEncrypt = gcnew StreamWriter(csEncrypt);

            //Write all data to the stream.
            swEncrypt->Write(plainText);
            swEncrypt->Flush();
            csEncrypt->FlushFinalBlock();
            msEncrypt->Flush();
        }
        finally
        {
            // Clean things up.

            // Close the streams.
            if(swEncrypt)
                swEncrypt->Close();
            if (csEncrypt)
                csEncrypt->Close();


            // Clear the RijndaelManaged object.
            if (aesAlg)
                aesAlg->Clear();
        }

        // Return the encrypted bytes from the memory stream.
        return msEncrypt->ToArray();
    }

    static String^ decryptStringFromBytes_AES(array<Byte>^ cipherText, array<Byte>^ Key, array<Byte>^ IV)
    {
        // Check arguments.
        if (!cipherText || cipherText->Length <= 0)
            throw gcnew ArgumentNullException("cipherText");
        if (!Key || Key->Length <= 0)
            throw gcnew ArgumentNullException("Key");
        if (!IV || IV->Length <= 0)
            throw gcnew ArgumentNullException("IV");

        // TDeclare the streams used
        // to decrypt to an in memory
        // array of bytes.
        MemoryStream^ msDecrypt;
        CryptoStream^ csDecrypt;
        StreamReader^ srDecrypt;

        // Declare the RijndaelManaged object
        // used to decrypt the data.
        RijndaelManaged^ aesAlg;

        // Declare the string used to hold
        // the decrypted text.
        String^ plaintext;

        try
        {
            // Create a RijndaelManaged object
            // with the specified key and IV.
            aesAlg = gcnew RijndaelManaged();
            aesAlg->Padding = PaddingMode::PKCS7;
            aesAlg->Key = Key;
            aesAlg->IV = IV;

            // Create a decryptor to perform the stream transform.
            ICryptoTransform^ decryptor = aesAlg->CreateDecryptor(aesAlg->Key, aesAlg->IV);

            // Create the streams used for decryption.
            msDecrypt = gcnew MemoryStream(cipherText);
            csDecrypt = gcnew CryptoStream(msDecrypt, decryptor, CryptoStreamMode::Read);
            srDecrypt = gcnew StreamReader(csDecrypt);

            // Read the decrypted bytes from the decrypting stream
            // and place them in a string.
            plaintext = srDecrypt->ReadToEnd();
        }
        finally
        {
            // Clean things up.

            // Close the streams.
            if (srDecrypt)
                srDecrypt->Close();
            if (csDecrypt)
                csDecrypt->Close();
            if (msDecrypt)
                msDecrypt->Close();

            // Clear the RijndaelManaged object.
            if (aesAlg)
                aesAlg->Clear();
        }

        return plaintext;
    }
};

int main()
{
    try
    {
        String^ original = "Here is some data to encrypt!";

        // Create a new instance of the RijndaelManaged
        // class.  This generates a new key and initialization
        // vector (IV).
        RijndaelManaged^ myRijndael = gcnew RijndaelManaged();

        // Encrypt the string to an array of bytes.
        array<Byte>^ encrypted = RijndaelMemoryExample::encryptStringToBytes_AES(original, myRijndael->Key, myRijndael->IV);

        // Decrypt the bytes to a string.
        String^ roundtrip = RijndaelMemoryExample::decryptStringFromBytes_AES(encrypted, myRijndael->Key, myRijndael->IV);

        //Display the original data and the decrypted data.
        Console::WriteLine("Original:   {0}", original);
        Console::WriteLine("Round Trip: {0}", roundtrip);
    }
    catch (Exception^ e)
    {
        Console::WriteLine("Error: {0}", e->Message);
    }

    return 0;
}
using System;
using System.IO;
using System.Security.Cryptography;

namespace RijndaelManaged_Example
{
    class RijndaelExample
    {
        public static void Main()
        {
            try
            {

                string original = "Here is some data to encrypt!";

                // Create a new instance of the RijndaelManaged
                // class.  This generates a new key and initialization 
                // vector (IV).
                using (RijndaelManaged myRijndael = new RijndaelManaged())
                {

                    myRijndael.GenerateKey();
                    myRijndael.GenerateIV();
                    // Encrypt the string to an array of bytes.
                    byte[] encrypted = EncryptStringToBytes(original, myRijndael.Key, myRijndael.IV);

                    // Decrypt the bytes to a string.
                    string roundtrip = DecryptStringFromBytes(encrypted, myRijndael.Key, myRijndael.IV);

                    //Display the original data and the decrypted data.
                    Console.WriteLine("Original:   {0}", original);
                    Console.WriteLine("Round Trip: {0}", roundtrip);
                }

            }
            catch (Exception e)
            {
                Console.WriteLine("Error: {0}", e.Message);
            }
        }
        static byte[] EncryptStringToBytes(string plainText, byte[] Key, byte[] IV)
        {
            // Check arguments.
            if (plainText == null || plainText.Length <= 0)
                throw new ArgumentNullException("plainText");
            if (Key == null || Key.Length <= 0)
                throw new ArgumentNullException("Key");
            if (IV == null || IV.Length <= 0)
                throw new ArgumentNullException("IV");
            byte[] encrypted;
            // Create an RijndaelManaged object
            // with the specified key and IV.
            using (RijndaelManaged rijAlg = new RijndaelManaged())
            {
                rijAlg.Key = Key;
                rijAlg.IV = IV;

                // Create an encryptor to perform the stream transform.
                ICryptoTransform encryptor = rijAlg.CreateEncryptor(rijAlg.Key, rijAlg.IV);

                // Create the streams used for encryption.
                using (MemoryStream msEncrypt = new MemoryStream())
                {
                    using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
                    {
                        using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
                        {

                            //Write all data to the stream.
                            swEncrypt.Write(plainText);
                        }
                        encrypted = msEncrypt.ToArray();
                    }
                }
            }


            // Return the encrypted bytes from the memory stream.
            return encrypted;

        }

        static string DecryptStringFromBytes(byte[] cipherText, byte[] Key, byte[] IV)
        {
            // Check arguments.
            if (cipherText == null || cipherText.Length <= 0)
                throw new ArgumentNullException("cipherText");
            if (Key == null || Key.Length <= 0)
                throw new ArgumentNullException("Key");
            if (IV == null || IV.Length <= 0)
                throw new ArgumentNullException("IV");

            // Declare the string used to hold
            // the decrypted text.
            string plaintext = null;

            // Create an RijndaelManaged object
            // with the specified key and IV.
            using (RijndaelManaged rijAlg = new RijndaelManaged())
            {
                rijAlg.Key = Key;
                rijAlg.IV = IV;

                // Create a decryptor to perform the stream transform.
                ICryptoTransform decryptor = rijAlg.CreateDecryptor(rijAlg.Key, rijAlg.IV);

                // Create the streams used for decryption.
                using (MemoryStream msDecrypt = new MemoryStream(cipherText))
                {
                    using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
                    {
                        using (StreamReader srDecrypt = new StreamReader(csDecrypt))
                        {
                            // Read the decrypted bytes from the decrypting stream
                            // and place them in a string.
                            plaintext = srDecrypt.ReadToEnd();
                        }
                    }
                }

            }

            return plaintext;

        }
    }
}
Imports System.IO
Imports System.Security.Cryptography



Class RijndaelExample

    Public Shared Sub Main()
        Try

            Dim original As String = "Here is some data to encrypt!"

            ' Create a new instance of the RijndaelManaged
            ' class.  This generates a new key and initialization 
            ' vector (IV).
            Using myRijndael As New RijndaelManaged()
            
                myRijndael.GenerateKey()
                myRijndael.GenerateIV()

                ' Encrypt the string to an array of bytes.
                Dim encrypted As Byte() = EncryptStringToBytes(original, myRijndael.Key, myRijndael.IV)

                ' Decrypt the bytes to a string.
                Dim roundtrip As String = DecryptStringFromBytes(encrypted, myRijndael.Key, myRijndael.IV)

                'Display the original data and the decrypted data.
                Console.WriteLine("Original:   {0}", original)
                Console.WriteLine("Round Trip: {0}", roundtrip)
            End Using
        Catch e As Exception
            Console.WriteLine("Error: {0}", e.Message)
        End Try

    End Sub

    Shared Function EncryptStringToBytes(ByVal plainText As String, ByVal Key() As Byte, ByVal IV() As Byte) As Byte()
        ' Check arguments.
        If plainText Is Nothing OrElse plainText.Length <= 0 Then
            Throw New ArgumentNullException("plainText")
        End If
        If Key Is Nothing OrElse Key.Length <= 0 Then
            Throw New ArgumentNullException("Key")
        End If
        If IV Is Nothing OrElse IV.Length <= 0 Then
            Throw New ArgumentNullException("IV")
        End If
        Dim encrypted() As Byte
        
        ' Create an RijndaelManaged object
        ' with the specified key and IV.
        Using rijAlg As New RijndaelManaged()

            rijAlg.Key = Key
            rijAlg.IV = IV

            ' Create an encryptor to perform the stream transform.
            Dim encryptor As ICryptoTransform = rijAlg.CreateEncryptor(rijAlg.Key, rijAlg.IV)
            ' Create the streams used for encryption.
            Using msEncrypt As New MemoryStream()
                Using csEncrypt As New CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write)
                    Using swEncrypt As New StreamWriter(csEncrypt)
                        'Write all data to the stream.
                        swEncrypt.Write(plainText)
                    End Using
                    encrypted = msEncrypt.ToArray()
                End Using
            End Using
        End Using

        ' Return the encrypted bytes from the memory stream.
        Return encrypted

    End Function 'EncryptStringToBytes

    Shared Function DecryptStringFromBytes(ByVal cipherText() As Byte, ByVal Key() As Byte, ByVal IV() As Byte) As String
        ' Check arguments.
        If cipherText Is Nothing OrElse cipherText.Length <= 0 Then
            Throw New ArgumentNullException("cipherText")
        End If
        If Key Is Nothing OrElse Key.Length <= 0 Then
            Throw New ArgumentNullException("Key")
        End If
        If IV Is Nothing OrElse IV.Length <= 0 Then
            Throw New ArgumentNullException("IV")
        End If
        ' Declare the string used to hold
        ' the decrypted text.
        Dim plaintext As String = Nothing

        ' Create an RijndaelManaged object
        ' with the specified key and IV.
        Using rijAlg As New RijndaelManaged
            rijAlg.Key = Key
            rijAlg.IV = IV

            ' Create a decryptor to perform the stream transform.
            Dim decryptor As ICryptoTransform = rijAlg.CreateDecryptor(rijAlg.Key, rijAlg.IV)

            ' Create the streams used for decryption.
            Using msDecrypt As New MemoryStream(cipherText)

                Using csDecrypt As New CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read)

                    Using srDecrypt As New StreamReader(csDecrypt)


                        ' Read the decrypted bytes from the decrypting stream
                        ' and place them in a string.
                        plaintext = srDecrypt.ReadToEnd()
                    End Using
                End Using
            End Using
        End Using

        Return plaintext

    End Function 'DecryptStringFromBytes 
End Class

注釈

このアルゴリズムでは、キーの長さが128、192、または256ビットであることがサポートされています。既定では256ビットです。This algorithm supports key lengths of 128, 192, or 256 bits; defaulting to 256 bits. .NET Framework では、このアルゴリズムは128、192、または256ビットのブロックサイズをサポートしています。既定では128ビットAes(-互換) になります。In .NET Framework, this algorithm supports block sizes of 128, 192, or 256 bits; defaulting to 128 bits (Aes-compatible). .NET Core では、これは AES と同じであり、128ビットのブロックサイズのみをサポートします。In .NET Core, it is the same as AES and supports only a 128-bit block size.

アルゴリズムは、のAes先行するアルゴリズムです。 RijndaelThe Rijndael algorithm is the predecessor of Aes. ではAes RijndaelManagedなく、クラスを使用する必要があります。You should use the Aes class instead of RijndaelManaged. 詳細については、.NET セキュリティブログの「 Rijndael と AES の相違点」を参照してください。For more information, see the entry The Differences Between Rijndael and AES in the .NET Security blog.

コンストラクター

RijndaelManaged() RijndaelManaged() RijndaelManaged() RijndaelManaged()

RijndaelManaged クラスの新しいインスタンスを初期化します。Initializes a new instance of the RijndaelManaged class.

プロパティ

BlockSize BlockSize BlockSize BlockSize

暗号操作のブロック サイズをビット単位で取得または設定します。Gets or sets the block size, in bits, of the cryptographic operation.

FeedbackSize FeedbackSize FeedbackSize FeedbackSize

暗号操作のフィードバック サイズをビット単位で取得または設定します。Gets or sets the feedback size, in bits, of the cryptographic operation.

(Inherited from SymmetricAlgorithm)
IV IV IV IV

対称アルゴリズムで使用する初期化ベクター (IV: Initialization Vector) を取得または設定します。Gets or sets the initialization vector (IV) to use for the symmetric algorithm.

Key Key Key Key

対称アルゴリズムで使用する共有キーを取得または設定します。Gets or sets the secret key used for the symmetric algorithm.

KeySize KeySize KeySize KeySize

対称アルゴリズムで使用する共有キーのサイズ (ビット単位) を取得または設定します。Gets or sets the size, in bits, of the secret key used for the symmetric algorithm.

LegalBlockSizes LegalBlockSizes LegalBlockSizes LegalBlockSizes

対称アルゴリズムでサポートされているブロック サイズをビット単位で取得します。Gets the block sizes, in bits, that are supported by the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
LegalKeySizes LegalKeySizes LegalKeySizes LegalKeySizes

対称アルゴリズムでサポートされているキー サイズをビット単位で取得します。Gets the key sizes, in bits, that are supported by the symmetric algorithm.

Mode Mode Mode Mode

対称アルゴリズムの操作モードを取得または設定します。Gets or sets the mode for operation of the symmetric algorithm.

Padding Padding Padding Padding

対称アルゴリズムで使用する埋め込みモードを取得または設定します。Gets or sets the padding mode used in the symmetric algorithm.

メソッド

Clear() Clear() Clear() Clear()

SymmetricAlgorithm クラスによって使用されているすべてのリソースを解放します。Releases all resources used by the SymmetricAlgorithm class.

(Inherited from SymmetricAlgorithm)
CreateDecryptor() CreateDecryptor() CreateDecryptor() CreateDecryptor()
CreateDecryptor(Byte[], Byte[]) CreateDecryptor(Byte[], Byte[]) CreateDecryptor(Byte[], Byte[]) CreateDecryptor(Byte[], Byte[])

指定した Rijndael および初期化ベクター (Key) を使用して、対称 IV 復号化オブジェクトを作成します。Creates a symmetric Rijndael decryptor object with the specified Key and initialization vector (IV).

CreateEncryptor() CreateEncryptor() CreateEncryptor() CreateEncryptor()
CreateEncryptor(Byte[], Byte[]) CreateEncryptor(Byte[], Byte[]) CreateEncryptor(Byte[], Byte[]) CreateEncryptor(Byte[], Byte[])

指定した Rijndael および初期化ベクター (Key) を使用して、対称 IV 暗号化オブジェクトを作成します。Creates a symmetric Rijndael encryptor object with the specified Key and initialization vector (IV).

Dispose() Dispose() Dispose() Dispose()

SymmetricAlgorithm クラスの現在のインスタンスによって使用されているすべてのリソースを解放します。Releases all resources used by the current instance of the SymmetricAlgorithm class.

(Inherited from SymmetricAlgorithm)
Dispose(Boolean) Dispose(Boolean) Dispose(Boolean) Dispose(Boolean)

SymmetricAlgorithm によって使用されているアンマネージド リソースを解放し、オプションでマネージド リソースも解放します。Releases the unmanaged resources used by the SymmetricAlgorithm and optionally releases the managed resources.

(Inherited from SymmetricAlgorithm)
Equals(Object) Equals(Object) Equals(Object) Equals(Object)

指定したオブジェクトが、現在のオブジェクトと等しいかどうかを判断します。Determines whether the specified object is equal to the current object.

(Inherited from Object)
GenerateIV() GenerateIV() GenerateIV() GenerateIV()

アルゴリズムで使用するランダムな初期化ベクター (IV) を生成します。Generates a random initialization vector (IV) to be used for the algorithm.

GenerateKey() GenerateKey() GenerateKey() GenerateKey()

アルゴリズムで使用するランダムな Key を生成します。Generates a random Key to be used for the algorithm.

GetHashCode() GetHashCode() GetHashCode() GetHashCode()

既定のハッシュ関数として機能します。Serves as the default hash function.

(Inherited from Object)
GetType() GetType() GetType() GetType()

現在のインスタンスの Type を取得します。Gets the Type of the current instance.

(Inherited from Object)
MemberwiseClone() MemberwiseClone() MemberwiseClone() MemberwiseClone()

現在の Object の簡易コピーを作成します。Creates a shallow copy of the current Object.

(Inherited from Object)
ToString() ToString() ToString() ToString()

現在のオブジェクトを表す文字列を返します。Returns a string that represents the current object.

(Inherited from Object)
ValidKeySize(Int32) ValidKeySize(Int32) ValidKeySize(Int32) ValidKeySize(Int32)

指定されたキー サイズが、現在のアルゴリズムに対して有効かどうかを判断します。Determines whether the specified key size is valid for the current algorithm.

(Inherited from SymmetricAlgorithm)

フィールド

BlockSizeValue BlockSizeValue BlockSizeValue BlockSizeValue

暗号操作のブロック サイズをビット単位で表します。Represents the block size, in bits, of the cryptographic operation.

(Inherited from SymmetricAlgorithm)
FeedbackSizeValue FeedbackSizeValue FeedbackSizeValue FeedbackSizeValue

暗号操作のフィードバック サイズをビット単位で表します。Represents the feedback size, in bits, of the cryptographic operation.

(Inherited from SymmetricAlgorithm)
IVValue IVValue IVValue IVValue

対称アルゴリズムで使用する初期化ベクター (IV) を表します。Represents the initialization vector (IV) for the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
KeySizeValue KeySizeValue KeySizeValue KeySizeValue

対称アルゴリズムで使用する共有キーのサイズをビット単位で表します。Represents the size, in bits, of the secret key used by the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
KeyValue KeyValue KeyValue KeyValue

対称アルゴリズムの共有キーを表します。Represents the secret key for the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
LegalBlockSizesValue LegalBlockSizesValue LegalBlockSizesValue LegalBlockSizesValue

対称アルゴリズムでサポートされているブロック サイズをビット単位で指定します。Specifies the block sizes, in bits, that are supported by the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
LegalKeySizesValue LegalKeySizesValue LegalKeySizesValue LegalKeySizesValue

対称アルゴリズムでサポートされているキー サイズをビット単位で指定します。Specifies the key sizes, in bits, that are supported by the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
ModeValue ModeValue ModeValue ModeValue

対称アルゴリズムで使用する暗号モードを表します。Represents the cipher mode used in the symmetric algorithm.

(Inherited from SymmetricAlgorithm)
PaddingValue PaddingValue PaddingValue PaddingValue

対称アルゴリズムで使用する埋め込みモードを表します。Represents the padding mode used in the symmetric algorithm.

(Inherited from SymmetricAlgorithm)

明示的なインターフェイスの実装

IDisposable.Dispose() IDisposable.Dispose() IDisposable.Dispose() IDisposable.Dispose()

SymmetricAlgorithm によって使用されているアンマネージド リソースを解放し、オプションでマネージド リソースも解放します。Releases the unmanaged resources used by the SymmetricAlgorithm and optionally releases the managed resources.

(Inherited from SymmetricAlgorithm)

適用対象

こちらもご覧ください