HashSet<T>.IsSubsetOf(IEnumerable<T>) HashSet<T>.IsSubsetOf(IEnumerable<T>) HashSet<T>.IsSubsetOf(IEnumerable<T>) HashSet<T>.IsSubsetOf(IEnumerable<T>) Method

정의

HashSet<T> 개체가 지정된 컬렉션의 하위 집합인지 확인합니다.Determines whether a HashSet<T> object is a subset of the specified collection.

public:
 virtual bool IsSubsetOf(System::Collections::Generic::IEnumerable<T> ^ other);
[System.Security.SecurityCritical]
public bool IsSubsetOf (System.Collections.Generic.IEnumerable<T> other);
abstract member IsSubsetOf : seq<'T> -> bool
override this.IsSubsetOf : seq<'T> -> bool
Public Function IsSubsetOf (other As IEnumerable(Of T)) As Boolean

매개 변수

other
IEnumerable<T> IEnumerable<T> IEnumerable<T> IEnumerable<T>

현재 HashSet<T> 개체와 비교할 컬렉션입니다.The collection to compare to the current HashSet<T> object.

반환

HashSet<T> 개체가 other의 부분 집합이면 true이고, 그렇지 않으면 false입니다.true if the HashSet<T> object is a subset of other; otherwise, false.

구현

예외

예제

다음 예제에서는 두 개의 서로 다른 HashSet<T> 개체를 서로 비교 합니다.The following example creates two disparate HashSet<T> objects and compares them to each other. 이 예제에서는 lowNumbers 는 하위 집합 이자의 진 부분 집합이 allNumbers 될 때까지 allNumbers 사용 하 여 수정 될를 IntersectWith 메서드를 두 집합 모두에 존재 하는 값만 포함 합니다.In this example, lowNumbers is both a subset and a proper subset of allNumbers until allNumbers is modified, using the IntersectWith method, to contain only values that are present in both sets. 한 번 allNumbers 하 고 lowNumbers 동일 lowNumbers 의 하위 집합은 여전히 allNumbers 이지만 더 이상 적절 한 하위 집합입니다.Once allNumbers and lowNumbers are identical, lowNumbers is still a subset of allNumbers but is no longer a proper subset.

static void Main()
{
    HashSet<int> lowNumbers = new HashSet<int>();
    HashSet<int> allNumbers = new HashSet<int>();

    for (int i = 1; i < 5; i++)
    {
        lowNumbers.Add(i);
    }

    for (int i = 0; i < 10; i++)
    {
        allNumbers.Add(i);
    }

    Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count);
    DisplaySet(lowNumbers);

    Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
    DisplaySet(allNumbers);

    Console.WriteLine("lowNumbers overlaps allNumbers: {0}",
        lowNumbers.Overlaps(allNumbers));

    Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
        allNumbers.SetEquals(lowNumbers));

    // Show the results of sub/superset testing
    Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
        lowNumbers.IsSubsetOf(allNumbers));
    Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
        allNumbers.IsSupersetOf(lowNumbers));
    Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
        lowNumbers.IsProperSubsetOf(allNumbers));
    Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
        allNumbers.IsProperSupersetOf(lowNumbers));

    // Modify allNumbers to remove numbers that are not in lowNumbers.
    allNumbers.IntersectWith(lowNumbers);
    Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
    DisplaySet(allNumbers);

    Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
        allNumbers.SetEquals(lowNumbers));

    // Show the results of sub/superset testing with the modified set.
    Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
        lowNumbers.IsSubsetOf(allNumbers));
    Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
        allNumbers.IsSupersetOf(lowNumbers));
    Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
        lowNumbers.IsProperSubsetOf(allNumbers));
    Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
        allNumbers.IsProperSupersetOf(lowNumbers));
}
/* This code example produces output similar to the following:
 * lowNumbers contains 4 elements: { 1 2 3 4 }
 * allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
 * lowNumbers overlaps allNumbers: True
 * allNumbers and lowNumbers are equal sets: False
 * lowNumbers is a subset of allNumbers: True
 * allNumbers is a superset of lowNumbers: True
 * lowNumbers is a proper subset of allNumbers: True
 * allNumbers is a proper superset of lowNumbers: True
 * allNumbers contains 4 elements: { 1 2 3 4 }
 * allNumbers and lowNumbers are equal sets: True
 * lowNumbers is a subset of allNumbers: True
 * allNumbers is a superset of lowNumbers: True
 * lowNumbers is a proper subset of allNumbers: False
 * allNumbers is a proper superset of lowNumbers: False
 */
Shared Sub Main()

    Dim lowNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
    Dim allNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()

    For i As Integer = 1 To 4
        lowNumbers.Add(i)
    Next i

    For i As Integer = 0 To 9
        allNumbers.Add(i)
    Next i


    Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count)
    DisplaySet(lowNumbers)

    Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
    DisplaySet(allNumbers)

    Console.WriteLine("lowNumbers overlaps allNumbers: {0}", _
        lowNumbers.Overlaps(allNumbers))

    Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
        allNumbers.SetEquals(lowNumbers))

    ' Show the results of sub/superset testing
    Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
        lowNumbers.IsSubsetOf(allNumbers))
    Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
        allNumbers.IsSupersetOf(lowNumbers))
    Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
        lowNumbers.IsProperSubsetOf(allNumbers))
    Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
        allNumbers.IsProperSupersetOf(lowNumbers))

    ' Modify allNumbers to remove numbers that are not in lowNumbers.
    allNumbers.IntersectWith(lowNumbers)
    Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
    DisplaySet(allNumbers)

    Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
        allNumbers.SetEquals(lowNumbers))

    ' Show the results of sub/superset testing with the modified set.
    Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
        lowNumbers.IsSubsetOf(allNumbers))
    Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
        allNumbers.IsSupersetOf(lowNumbers))
    Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
        lowNumbers.IsProperSubsetOf(allNumbers))
    Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
        allNumbers.IsProperSupersetOf(lowNumbers))
End Sub
' This code example produces output similar to the following:
' lowNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
' lowNumbers overlaps allNumbers: True
' allNumbers and lowNumbers are equal sets: False
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: True
' allNumbers is a proper superset of lowNumbers: True
' allNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers and lowNumbers are equal sets: True
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: False
' allNumbers is a proper superset of lowNumbers: False

설명

빈 집합이 빈 집합;를 비롯 한 모든 다른 컬렉션의 하위 집합인 따라서이 메서드는 반환 true 현재 표시 되는 컬렉션 HashSet<T> 개체가 비어 있더라도 other 매개 변수는 빈 집합.An empty set is a subset of any other collection, including an empty set; therefore, this method returns true if the collection represented by the current HashSet<T> object is empty, even if the other parameter is an empty set.

이 메서드는 항상 반환 false 하는 경우 Count 의 요소 수보다 큽니다 other합니다.This method always returns false if Count is greater than the number of elements in other.

표시 되는 컬렉션 otherHashSet<T> 현재 같은 같음 비교자를 사용 하 여 컬렉션 HashSet<T> 개체를이 메서드는 O (n) 작업입니다.If the collection represented by other is a HashSet<T> collection with the same equality comparer as the current HashSet<T> object, this method is an O(n) operation. 그렇지 않은 경우이 메서드는 O (n + m) 작업을 여기서 n 됩니다 Countm 의 요소입니다 other합니다.Otherwise, this method is an O(n + m) operation, where n is Count and m is the number of elements in other.

적용 대상