PerformanceCounterType PerformanceCounterType PerformanceCounterType PerformanceCounterType Enum

정의

NextValue() 인스턴스의 PerformanceCounter 메서드를 계산하는 데 사용되는 수식을 지정합니다.Specifies the formula used to calculate the NextValue() method for a PerformanceCounter instance.

public enum class PerformanceCounterType
[System.ComponentModel.TypeConverter(typeof(System.Diagnostics.AlphabeticalEnumConverter))]
public enum PerformanceCounterType
type PerformanceCounterType = 
Public Enum PerformanceCounterType
상속
PerformanceCounterTypePerformanceCounterTypePerformanceCounterTypePerformanceCounterType
특성

필드

AverageBase AverageBase AverageBase AverageBase 1073939458

AverageTimer32AverageCount64처럼 시간이나 횟수 평균을 계산하는 데 사용되는 기본 카운터입니다.A base counter that is used in the calculation of time or count averages, such as AverageTimer32 and AverageCount64. "연산 당 시간" 또는 "연산 당 수"를 나타내는 카운터를 계산하는 데 사용되는 분모를 저장합니다.Stores the denominator for calculating a counter to present "time per operation" or "count per operation".

AverageCount64 AverageCount64 AverageCount64 AverageCount64 1073874176

작업하는 동안에 처리되는 평균 항목 수를 표시하는 평균 카운터입니다.An average counter that shows how many items are processed, on average, during an operation. 이 형식의 카운터는 완성되는 작업 수에 대한 처리되는 항목의 비율을 표시합니다.Counters of this type display a ratio of the items processed to the number of operations completed. 이 비율은 마지막 기간 동안 처리되는 항목의 수를 해당 기간 동안 완성되는 작업의 수와 비교하여 계산됩니다.The ratio is calculated by comparing the number of items processed during the last interval to the number of operations completed during the last interval. 이 형식의 카운터에는 PhysicalDisk\Avg. Disk Bytes/Transfer가 포함됩니다.Counters of this type include PhysicalDisk\ Avg. Disk Bytes/Transfer.

AverageTimer32 AverageTimer32 AverageTimer32 AverageTimer32 805438464

프로세스나 작업을 완성하는 데 소요되는 평균 시간을 측정하는 평균 카운터입니다.An average counter that measures the time it takes, on average, to complete a process or operation. 이 형식의 카운터는 샘플 기간 동안 완성되는 프로세스나 작업의 수에 대한 해당 기간의 총 경과 시간의 비율을 표시합니다.Counters of this type display a ratio of the total elapsed time of the sample interval to the number of processes or operations completed during that time. 이 카운터 형식은 시스템 시계의 틱을 단위로 하여 시간을 측정합니다.This counter type measures time in ticks of the system clock. 이 형식의 카운터에는 PhysicalDisk\Avg. Disk sec/Transfer가 포함됩니다.Counters of this type include PhysicalDisk\ Avg. Disk sec/Transfer.

CounterDelta32 CounterDelta32 CounterDelta32 CounterDelta32 4195328

가장 최근의 두 샘플 기간 사이에 측정된 특성의 변경 내용을 표시하는 차이 카운터입니다.A difference counter that shows the change in the measured attribute between the two most recent sample intervals.

CounterDelta64 CounterDelta64 CounterDelta64 CounterDelta64 4195584

가장 최근의 두 샘플 기간 사이에 측정된 특성의 변경 내용을 표시하는 차이 카운터입니다.A difference counter that shows the change in the measured attribute between the two most recent sample intervals. 더 큰 값을 수용하기 위해 큰 필드를 사용하는 것을 제외하면 CounterDelta32 카운터 형식과 동일합니다.It is the same as the CounterDelta32 counter type except that is uses larger fields to accommodate larger values.

CounterMultiBase CounterMultiBase CounterMultiBase CounterMultiBase 1107494144

샘플링되는 항목의 수를 나타내는 기본 카운터입니다.A base counter that indicates the number of items sampled. 이 카운터는 여러 개의 유사한 타이밍 항목을 사용하는 경우에 샘플링된 항목들의 평균을 구하는 계산에서 분모로 사용됩니다.It is used as the denominator in the calculations to get an average among the items sampled when taking timings of multiple, but similar items. CounterMultiTimer, CounterMultiTimerInverse, CounterMultiTimer100NsCounterMultiTimer100NsInverse와 함께 사용됩니다.Used with CounterMultiTimer, CounterMultiTimerInverse, CounterMultiTimer100Ns, and CounterMultiTimer100NsInverse.

CounterMultiTimer CounterMultiTimer CounterMultiTimer CounterMultiTimer 574686464

하나 이상의 구성 요소에 대한 활성 시간을 샘플 기간의 총 시간에 대한 백분율로 표시하는 백분율 카운터입니다.A percentage counter that displays the active time of one or more components as a percentage of the total time of the sample interval. 분자는 동시에 작동하는 구성 요소의 활성 시간을 기록하므로 결과 백분율은 100%를 초과할 수 있습니다.Because the numerator records the active time of components operating simultaneously, the resulting percentage can exceed 100 percent. 이 카운터 형식은 100나노초가 아닌 시스템 성능 타이머의 틱을 단위로 하여 시간을 측정한다는 점에서 CounterMultiTimer100Ns와는 다릅니다.This counter type differs from CounterMultiTimer100Ns in that it measures time in units of ticks of the system performance timer, rather than in 100 nanosecond units. 이 카운터 형식은 멀티타이머입니다.This counter type is a multitimer.

CounterMultiTimer100Ns CounterMultiTimer100Ns CounterMultiTimer100Ns CounterMultiTimer100Ns 575735040

하나 이상의 구성 요소에 대한 활성 시간을 샘플 기간의 총 시간에 대한 백분율로 표시하는 백분율 카운터입니다.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. 이 카운터는 100나노초(ns)를 단위로 하여 시간을 측정합니다.It measures time in 100 nanosecond (ns) units. 이 카운터 형식은 멀티타이머입니다.This counter type is a multitimer.

CounterMultiTimer100NsInverse CounterMultiTimer100NsInverse CounterMultiTimer100NsInverse CounterMultiTimer100NsInverse 592512256

하나 이상의 구성 요소에 대한 활성 시간을 샘플 기간의 총 시간에 대한 백분율로 표시하는 백분율 카운터입니다.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. 이 형식의 카운터는 100나노초(ns)를 단위로 하여 시간을 측정하며,Counters of this type measure time in 100 nanosecond (ns) units. 구성 요소가 비활성 상태인 시간을 측정한 다음 모니터링되는 개체의 수에 100%를 곱한 값에서 이 시간을 빼서 활성 시간을 구합니다.They derive the active time by measuring the time that the components were not active and subtracting the result from multiplying 100 percent by the number of objects monitored. 이 카운터 형식은 멀티타이머와는 정반대입니다.This counter type is an inverse multitimer.

CounterMultiTimerInverse CounterMultiTimerInverse CounterMultiTimerInverse CounterMultiTimerInverse 591463680

하나 이상의 구성 요소에 대한 활성 시간을 샘플 기간의 총 시간에 대한 백분율로 표시하는 백분율 카운터입니다.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. 이 카운터는 구성 요소가 비활성 상태인 시간을 측정한 다음 모니터링되는 개체의 수에 100%를 곱한 값에서 이 시간을 빼서 활성 시간을 계산합니다.It derives the active time by measuring the time that the components were not active and subtracting the result from 100 percent by the number of objects monitored. 이 카운터 형식은 멀티타이머와는 정반대입니다.This counter type is an inverse multitimer. 이는 100나노초가 아닌 시스템 성능 타이머의 틱을 단위로 하여 시간을 측정한다는 점에서 CounterMultiTimer100NsInverse와는 다릅니다.It differs from CounterMultiTimer100NsInverse in that it measures time in units of ticks of the system performance timer, rather than in 100 nanosecond units.

CounterTimer CounterTimer CounterTimer CounterTimer 541132032

구성 요소가 활성 상태인 평균 시간을 총 샘플 시간에 대한 백분율로 나타내는 백분율 카운터입니다.A percentage counter that shows the average time that a component is active as a percentage of the total sample time.

CounterTimerInverse CounterTimerInverse CounterTimerInverse CounterTimerInverse 557909248

샘플 기간 동안 관찰되는 활성 시간의 평균 백분율을 표시하는 백분율 카운터입니다.A percentage counter that displays the average percentage of active time observed during sample interval. 이러한 카운터의 값은 서비스가 비활성 상태인 시간의 백분율을 모니터링한 다음 이 값을 100%에서 빼서 계산합니다.The value of these counters is calculated by monitoring the percentage of time that the service was inactive and then subtracting that value from 100 percent. 이 형식은 카운터 형식과는 정반대입니다.This is an inverse counter type. 이는 100나노초 단위가 아닌 시스템 성능 타이머의 틱을 단위로 시간을 측정한다는 점을 제외하고 CounterTimer100NsInv와는 동일합니다.It is the same as CounterTimer100NsInv, except that it measures time in units of ticks of the system performance timer rather than in 100 nanosecond units.

CountPerTimeInterval32 CountPerTimeInterval32 CountPerTimeInterval32 CountPerTimeInterval32 4523008

평균 카운터는 시간 경과에 따라 리소스 큐의 평균 길이를 모니터링하도록 설계되었으며,An average counter designed to monitor the average length of a queue to a resource over time. 기간별로 나누어진 마지막 두 샘플 기간 중에 관찰되는 큐 길이 간 차이를 표시합니다.It shows the difference between the queue lengths observed during the last two sample intervals divided by the duration of the interval. 일반적으로 이 형식의 카운터는 큐에 들어와 있거나 대기 중인 항목 수를 추적하는 데 사용됩니다.This type of counter is typically used to track the number of items that are queued or waiting.

CountPerTimeInterval64 CountPerTimeInterval64 CountPerTimeInterval64 CountPerTimeInterval64 4523264

시간 경과에 따라 리소스 큐의 평균 길이를 모니터링하는 평균 카운터입니다.An average counter that monitors the average length of a queue to a resource over time. 이 형식의 카운터는 기간별로 나누어진 마지막 두 샘플 기간 중에 관찰되는 큐 길이 간 차이를 표시합니다.Counters of this type display the difference between the queue lengths observed during the last two sample intervals, divided by the duration of the interval. 큰 값을 수용하기 위해 좀 더 큰 필드를 사용한다는 점을 제외하면 이 카운터 형식은 CountPerTimeInterval32와 같습니다.This counter type is the same as CountPerTimeInterval32 except that it uses larger fields to accommodate larger values. 일반적으로 이 형식의 카운터는 큐에 들어와 있거나 대기 중인 대용량 또는 다수의 항목을 추적하는 데 사용됩니다.This type of counter is typically used to track a high-volume or very large number of items that are queued or waiting.

ElapsedTime ElapsedTime ElapsedTime ElapsedTime 807666944

구성 요소나 프로세스가 시작된 시간과 이 값이 계산되는 시간 간의 총 시간을 표시하는 차이 타이머입니다.A difference timer that shows the total time between when the component or process started and the time when this value is calculated. 이 형식의 카운터에는 System\System Up Time이 포함됩니다.Counters of this type include System\ System Up Time.

NumberOfItems32 NumberOfItems32 NumberOfItems32 NumberOfItems32 65536

가장 최근에 관찰된 값을 표시하는 순간 카운터입니다.An instantaneous counter that shows the most recently observed value. 예를 들어, 항목 또는 연산의 단순한 수를 유지하는 데 사용됩니다.Used, for example, to maintain a simple count of items or operations. 이 형식의 카운터에는 Memory\Available Bytes가 포함됩니다.Counters of this type include Memory\Available Bytes.

NumberOfItems64 NumberOfItems64 NumberOfItems64 NumberOfItems64 65792

가장 최근에 관찰된 값을 표시하는 순간 카운터입니다.An instantaneous counter that shows the most recently observed value. 예를 들어, 매우 많은 항목 또는 연산의 단순한 수를 유지하는 데 사용됩니다.Used, for example, to maintain a simple count of a very large number of items or operations. 큰 값을 수용하기 위해 좀 더 큰 필드를 사용한다는 점을 제외하면 이 카운터 형식은 NumberOfItems32와 같습니다.It is the same as NumberOfItems32 except that it uses larger fields to accommodate larger values.

NumberOfItemsHEX32 NumberOfItemsHEX32 NumberOfItemsHEX32 NumberOfItemsHEX32 0

가장 최근에 관찰된 값을 16진수 형식으로 표시하는 순간 카운터입니다.An instantaneous counter that shows the most recently observed value in hexadecimal format. 예를 들어, 항목 또는 연산의 단순한 수를 유지하는 데 사용됩니다.Used, for example, to maintain a simple count of items or operations.

NumberOfItemsHEX64 NumberOfItemsHEX64 NumberOfItemsHEX64 NumberOfItemsHEX64 256

가장 최근에 관찰된 값을 표시하는 순간 카운터입니다.An instantaneous counter that shows the most recently observed value. 예를 들어, 매우 많은 항목 또는 연산의 단순한 수를 유지하는 데 사용됩니다.Used, for example, to maintain a simple count of a very large number of items or operations. 큰 값을 수용하기 위해 좀 더 큰 필드를 사용한다는 점을 제외하면 이 카운터 형식은 NumberOfItemsHEX32와 같습니다.It is the same as NumberOfItemsHEX32 except that it uses larger fields to accommodate larger values.

RateOfCountsPerSecond32 RateOfCountsPerSecond32 RateOfCountsPerSecond32 RateOfCountsPerSecond32 272696320

샘플 기간에 초 당 완성되는 평균 작업 수를 표시하는 차이 카운터입니다.A difference counter that shows the average number of operations completed during each second of the sample interval. 이 형식의 카운터는 시스템 시계의 틱을 단위로 하여 시간을 측정합니다.Counters of this type measure time in ticks of the system clock. 이 형식의 카운터에는 System\File Read Operations/sec가 포함됩니다.Counters of this type include System\ File Read Operations/sec.

RateOfCountsPerSecond64 RateOfCountsPerSecond64 RateOfCountsPerSecond64 RateOfCountsPerSecond64 272696576

샘플 기간에 초 당 완성되는 평균 작업 수를 표시하는 차이 카운터입니다.A difference counter that shows the average number of operations completed during each second of the sample interval. 이 형식의 카운터는 시스템 시계의 틱을 단위로 하여 시간을 측정합니다.Counters of this type measure time in ticks of the system clock. 이 카운터 형식은 RateOfCountsPerSecond32 형식과 같지만 큰 값을 수용하기 위해 좀 더 큰 필드를 사용하여 초 당 많은 수의 항목 또는 작업을 추적합니다(예: 바이트 전송률).This counter type is the same as the RateOfCountsPerSecond32 type, but it uses larger fields to accommodate larger values to track a high-volume number of items or operations per second, such as a byte-transmission rate. 이 형식의 카운터에는 System\File Read Bytes/sec가 포함됩니다.Counters of this type include System\ File Read Bytes/sec.

RawBase RawBase RawBase RawBase 1073939459

일반 산술 분수를 제공하는 카운터의 분모를 저장하는 기본 카운터입니다.A base counter that stores the denominator of a counter that presents a general arithmetic fraction. 해당 값을 분모로 사용하여 RawFraction 값을 계산하려는 경우 이 값이 0보다 커야 합니다.Check that this value is greater than zero before using it as the denominator in a RawFraction value calculation.

RawFraction RawFraction RawFraction RawFraction 537003008

해당 집합에 대한 하위 집합의 비율을 백분율로 표시하는 순간 백분율 카운터입니다.An instantaneous percentage counter that shows the ratio of a subset to its set as a percentage. 예를 들어, 이 카운터는 디스크에서 사용되는 바이트 수를 디스크에 있는 총 바이트 수와 비교합니다.For example, it compares the number of bytes in use on a disk to the total number of bytes on the disk. 이 형식의 카운터는 현재 백분율만 표시하며 시간 경과에 따른 평균은 표시하지 않습니다.Counters of this type display the current percentage only, not an average over time. 이 형식의 카운터에는 Paging File\% Usage Peak이 포함됩니다.Counters of this type include Paging File\% Usage Peak.

SampleBase SampleBase SampleBase SampleBase 1073939457

샘플링한 샘플링 인터럽트의 수를 저장하며 샘플링 분수에서 분모로 사용되는 기본 카운터입니다.A base counter that stores the number of sampling interrupts taken and is used as a denominator in the sampling fraction. 샘플링 분수는 샘플 인터럽트가1(또는 true)인 샘플의 수입니다.The sampling fraction is the number of samples that were 1 (or true) for a sample interrupt. 해당 값을 분모로 사용하여 SampleFraction을 계산하려는 경우 이 값이 0보다 커야 합니다.Check that this value is greater than zero before using it as the denominator in a calculation of SampleFraction.

SampleCounter SampleCounter SampleCounter SampleCounter 4260864

초 당 완성되는 평균 작업 수를 표시하는 평균 카운터입니다.An average counter that shows the average number of operations completed in one second. 이 형식의 카운터가 데이터를 샘플링할 때 각 샘플링 인터럽트가 1 또는 0을 반환합니다.When a counter of this type samples the data, each sampling interrupt returns one or zero. 카운터 데이터는 샘플링된 데이터 수입니다.The counter data is the number of ones that were sampled. 이는 시스템 성능 타이머의 틱을 단위로 하여 시간을 측정합니다.It measures time in units of ticks of the system performance timer.

SampleFraction SampleFraction SampleFraction SampleFraction 549585920

마지막 두 샘플 기간 동안의 모든 작업에 대한 평균 적중 비율을 표시하는 백분율 카운터입니다.A percentage counter that shows the average ratio of hits to all operations during the last two sample intervals. 이 형식의 카운터에는 Cache\Pin Read Hits %가 포함됩니다.Counters of this type include Cache\Pin Read Hits %.

Timer100Ns Timer100Ns Timer100Ns Timer100Ns 542180608

구성 요소의 활성 시간을 샘플 기간의 총 경과 시간에 대한 백분율로 표시하는 백분율 카운터입니다.A percentage counter that shows the active time of a component as a percentage of the total elapsed time of the sample interval. 이 카운터는 100나노초(ns)를 단위로 하여 시간을 측정합니다.It measures time in units of 100 nanoseconds (ns). 이 형식의 카운터는 한 번에 하나의 구성 요소에 대한 작업을 측정하도록 설계되었습니다.Counters of this type are designed to measure the activity of one component at a time. 이 형식의 카운터에는 Processor% User Time이 포함됩니다.Counters of this type include Processor\ % User Time.

Timer100NsInverse Timer100NsInverse Timer100NsInverse Timer100NsInverse 558957824

샘플 기간 동안 관찰되는 활성 시간의 평균 백분율을 표시하는 백분율 카운터입니다.A percentage counter that shows the average percentage of active time observed during the sample interval. 이는 역 카운터입니다.This is an inverse counter. 이 형식의 카운터에는 Processor% Processor Time이 포함됩니다.Counters of this type include Processor\ % Processor Time.

예제

다음 예제에서는 카운터 형식 중 일부를 보여 줍니다는 PerformanceCounterType 열거형입니다.The following examples demonstrate several of the counter types in the PerformanceCounterType enumeration.

AverageCount64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    Description - This counter type shows how many items are processed, on average,
//        during an operation. Counters of this type display a ratio of the items 
//        processed (such as bytes sent) to the number of operations completed. The  
//        ratio is calculated by comparing the number of items processed during the 
//        last interval to the number of operations completed during the last interval. 
// Generic type - Average
//      Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
//        of items processed during the last sample interval and the denominator (D) 
//        represents the number of operations completed during the last two sample 
//        intervals. 
//    Average (Nx - N0) / (Dx - D0)  
//    Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)s1.RawValue - (float)s0.RawValue;
   float denomenator = (float)s1.BaseValue - (float)s0.BaseValue;
   float counterValue = numerator / denomenator;
   return counterValue;
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "AverageCounter64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ averageCount64 = gcnew CounterCreationData;
      averageCount64->CounterType = PerformanceCounterType::AverageCount64;
      averageCount64->CounterName = "AverageCounter64Sample";
      CCDC->Add( averageCount64 );
      
      // Add the base counter.
      CounterCreationData^ averageCount64Base = gcnew CounterCreationData;
      averageCount64Base->CounterType = PerformanceCounterType::AverageBase;
      averageCount64Base->CounterName = "AverageCounter64SampleBase";
      CCDC->Add( averageCount64Base );
      
      // Create the category.
      PerformanceCounterCategory::Create( "AverageCounter64SampleCategory", "Demonstrates usage of the AverageCounter64 performance counter type.", CCDC );
      return (true);
   }
   else
   {
      Console::WriteLine( "Category exists - AverageCounter64SampleCategory" );
      return (false);
   }
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
   
   // Create the counters.
   PC = gcnew PerformanceCounter( "AverageCounter64SampleCategory","AverageCounter64Sample",false );

   BPC = gcnew PerformanceCounter( "AverageCounter64SampleCategory","AverageCounter64SampleBase",false );
   PC->RawValue = 0;
   BPC->RawValue = 0;
}
void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, PerformanceCounter^ BPC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      BPC->Increment();
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );
      
      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
      
      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   PerformanceCounter^ BPC;
   SetupCategory();
   CreateCounters( PC, BPC );
   CollectSamples( samplesList, PC, BPC );
   CalculateResults( samplesList );
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App {

    private static PerformanceCounter avgCounter64Sample;
    private static PerformanceCounter avgCounter64SampleBase;

    public static void Main()
    {
    
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);

    }

    private static bool SetupCategory()
    {
        if ( !PerformanceCounterCategory.Exists("AverageCounter64SampleCategory") ) 
        {

            CounterCreationDataCollection counterDataCollection = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData averageCount64 = new CounterCreationData();
            averageCount64.CounterType = PerformanceCounterType.AverageCount64;
            averageCount64.CounterName = "AverageCounter64Sample";
            counterDataCollection.Add(averageCount64);

            // Add the base counter.
            CounterCreationData averageCount64Base = new CounterCreationData();
            averageCount64Base.CounterType = PerformanceCounterType.AverageBase;
            averageCount64Base.CounterName = "AverageCounter64SampleBase";
            counterDataCollection.Add(averageCount64Base);

            // Create the category.
            PerformanceCounterCategory.Create("AverageCounter64SampleCategory",
                "Demonstrates usage of the AverageCounter64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, counterDataCollection);

            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - AverageCounter64SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.

        avgCounter64Sample = new PerformanceCounter("AverageCounter64SampleCategory", 
            "AverageCounter64Sample", 
            false);


        avgCounter64SampleBase = new PerformanceCounter("AverageCounter64SampleCategory", 
            "AverageCounter64SampleBase", 
            false);

        avgCounter64Sample.RawValue=0;
        avgCounter64SampleBase.RawValue=0;
    }
    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {

            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            avgCounter64Sample.IncrementBy(value);

            avgCounter64SampleBase.Increment();

            if ((j % 10) == 9) 
            {
                OutputSample(avgCounter64Sample.NextSample());
                samplesList.Add( avgCounter64Sample.NextSample() );
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + 
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //    Description - This counter type shows how many items are processed, on average,
    //        during an operation. Counters of this type display a ratio of the items 
    //        processed (such as bytes sent) to the number of operations completed. The  
    //        ratio is calculated by comparing the number of items processed during the 
    //        last interval to the number of operations completed during the last interval. 
    // Generic type - Average
    //      Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
    //        of items processed during the last sample interval and the denominator (D) 
    //        represents the number of operations completed during the last two sample 
    //        intervals. 
    //    Average (Nx - N0) / (Dx - D0)  
    //    Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)s1.RawValue - (Single)s0.RawValue;
        Single denomenator = (Single)s1.BaseValue - (Single)s0.BaseValue;
        Single counterValue = numerator / denomenator;
        return(counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App

    Private Shared avgCounter64Sample As PerformanceCounter
    Private Shared avgCounter64SampleBase As PerformanceCounter


    Public Shared Sub Main()

        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub

    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("AverageCounter64SampleCategory") Then

            Dim counterDataCollection As New CounterCreationDataCollection()

            ' Add the counter.
            Dim averageCount64 As New CounterCreationData()
            averageCount64.CounterType = PerformanceCounterType.AverageCount64
            averageCount64.CounterName = "AverageCounter64Sample"
            counterDataCollection.Add(averageCount64)

            ' Add the base counter.
            Dim averageCount64Base As New CounterCreationData()
            averageCount64Base.CounterType = PerformanceCounterType.AverageBase
            averageCount64Base.CounterName = "AverageCounter64SampleBase"
            counterDataCollection.Add(averageCount64Base)

            ' Create the category.
            PerformanceCounterCategory.Create("AverageCounter64SampleCategory", _
               "Demonstrates usage of the AverageCounter64 performance counter type.", _
                      PerformanceCounterCategoryType.SingleInstance, counterDataCollection)

            Return True
        Else
            Console.WriteLine("Category exists - AverageCounter64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory

    Private Shared Sub CreateCounters()
        ' Create the counters.

        avgCounter64Sample = New PerformanceCounter("AverageCounter64SampleCategory", "AverageCounter64Sample", False)

        avgCounter64SampleBase = New PerformanceCounter("AverageCounter64SampleCategory", "AverageCounter64SampleBase", False)

        avgCounter64Sample.RawValue = 0
        avgCounter64SampleBase.RawValue = 0
    End Sub

    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write(j.ToString() + " = " + value.ToString())

            avgCounter64Sample.IncrementBy(value)

            avgCounter64SampleBase.Increment()

            If j Mod 10 = 9 Then
                OutputSample(avgCounter64Sample.NextSample())
                samplesList.Add(avgCounter64Sample.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub

    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub

    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	Description - This counter type shows how many items are processed, on average,
    '		during an operation. Counters of this type display a ratio of the items 
    '		processed (such as bytes sent) to the number of operations completed. The  
    '		ratio is calculated by comparing the number of items processed during the 
    '		last interval to the number of operations completed during the last interval. 
    ' Generic type - Average
    '  	Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
    '		of items processed during the last sample interval and the denominator (D) 
    '		represents the number of operations completed during the last two sample 
    '		intervals. 
    '	Average (Nx - N0) / (Dx - D0)  
    '	Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue, [Single]) - CType(s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.BaseValue, [Single]) - CType(s0.BaseValue, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue

    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class 'App

AverageTimer32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
using namespace System::Runtime::InteropServices;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
// PERF_AVERAGE_TIMER
//  Description - This counter type measures the time it takes, on 
//     average, to complete a process or operation. Counters of this
//     type display a ratio of the total elapsed time of the sample 
//     interval to the number of processes or operations completed
//     during that time. This counter type measures time in ticks 
//     of the system clock. The F variable represents the number of
//     ticks per second. The value of F is factored into the equation
//     so that the result can be displayed in seconds.
//    
//  Generic type - Average
//    
//  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
//     represents the number of ticks counted during the last 
//     sample interval, F represents the frequency of the ticks, 
//     and the denominator (D) represents the number of operations
//     completed during the last sample interval.
//    
//  Average - ((Nx - N0) / F) / (Dx - D0)
//    
//  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
    __int64 n1 = s1.RawValue;
    __int64 n0 = s0.RawValue;
    unsigned __int64 f = s1.SystemFrequency;
    __int64 d1 = s1.BaseValue;
    __int64 d0 = s0.BaseValue;
    double numerator = (double)(n1 - n0);
    double denominator = (double)(d1 - d0);
    float counterValue = (float)((numerator / f) / denominator);
    return counterValue;
}

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
    Console::WriteLine( "+++++++++++" );
    Console::WriteLine( "Sample values - \r\n" );
    Console::WriteLine( "   CounterType      = {0}", s.CounterType );
    Console::WriteLine( "   RawValue         = {0}", s.RawValue.ToString() );
    Console::WriteLine( "   BaseValue        = {0}", s.BaseValue.ToString() );
    Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency.ToString() );
    Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp.ToString() );
    Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency.ToString() );
    Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp.ToString() );
    Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec.ToString() );
    Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
    if (  !PerformanceCounterCategory::Exists( "AverageTimer32SampleCategory") )
       {
        CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

        // Add the counter.
        CounterCreationData^ averageTimer32 = gcnew CounterCreationData;
        averageTimer32->CounterType = PerformanceCounterType::AverageTimer32;
        averageTimer32->CounterName = "AverageTimer32Sample";
        CCDC->Add( averageTimer32 );

        // Add the base counter.
        CounterCreationData^ averageTimer32Base = gcnew CounterCreationData;
        averageTimer32Base->CounterType = PerformanceCounterType::AverageBase;
        averageTimer32Base->CounterName = "AverageTimer32SampleBase";
        CCDC->Add( averageTimer32Base );

        // Create the category.
        PerformanceCounterCategory::Create( "AverageTimer32SampleCategory", 
            "Demonstrates usage of the AverageTimer32 performance counter type", 
            PerformanceCounterCategoryType::SingleInstance, CCDC );
        Console::WriteLine( "Category created - AverageTimer32SampleCategory" );
        return (true);
        }

    Console::WriteLine( "Category exists - AverageTimer32SampleCategory" );
    return (false);
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
    // Create the counters.
    PC = gcnew PerformanceCounter( "AverageTimer32SampleCategory","AverageTimer32Sample",false );
    BPC = gcnew PerformanceCounter( "AverageTimer32SampleCategory","AverageTimer32SampleBase",false );
    PC->RawValue = 0;
    BPC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, 
PerformanceCounter^ BPC )
{
    __int64 perfTime = 0;
    Random^ r = gcnew Random( DateTime::Now.Millisecond );

    // Loop for the samples.
    for ( int i = 0; i < 10; i++ )
        {
        PC->RawValue = Stopwatch::GetTimestamp();
        BPC->IncrementBy( 10 );
        System::Threading::Thread::Sleep( 1000 );
        Console::WriteLine( "Next value = {0}", PC->NextValue().ToString() );
        samplesList->Add( PC->NextSample() );
        }
}

void CalculateResults( ArrayList^ samplesList )
{
    for ( int i = 0; i < (samplesList->Count - 1); i++ )
        {
        // Output the sample.
        OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
        OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

        // Use .NET to calculate the counter value.
        Console::WriteLine( ".NET computed counter value = {0}",
           CounterSample::Calculate(  *safe_cast<CounterSample^>(samplesList[ i ]),
           *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

        // Calculate the counter value manually.
        Console::WriteLine( "My computed counter value = {0}", 
            MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),
           *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
        }
}

int main()
{
    ArrayList^ samplesList = gcnew ArrayList;
    PerformanceCounter^ PC;
    PerformanceCounter^ BPC;
    SetupCategory();
    CreateCounters( PC, BPC );
    CollectSamples( samplesList, PC, BPC );
    CalculateResults( samplesList );

    Console::WriteLine("\n\nHit ENTER to return");
    Console::ReadLine();
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Runtime.InteropServices;

public class App
{

    private static PerformanceCounter PC;
    private static PerformanceCounter BPC;

    private const String categoryName = "AverageTimer32SampleCategory";
    private const String counterName = "AverageTimer32Sample";
    private const String baseCounterName = "AverageTimer32SampleBase";

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }




    private static bool SetupCategory()
    {

        if (!PerformanceCounterCategory.Exists(categoryName))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData averageTimer32 = new CounterCreationData();
            averageTimer32.CounterType = PerformanceCounterType.AverageTimer32;
            averageTimer32.CounterName = counterName;
            CCDC.Add(averageTimer32);

            // Add the base counter.
            CounterCreationData averageTimer32Base = new CounterCreationData();
            averageTimer32Base.CounterType = PerformanceCounterType.AverageBase;
            averageTimer32Base.CounterName = baseCounterName;
            CCDC.Add(averageTimer32Base);

            // Create the category.
            PerformanceCounterCategory.Create(categoryName, 
                "Demonstrates usage of the AverageTimer32 performance counter type", 
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            Console.WriteLine("Category created - " + categoryName);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - " + categoryName);
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter(categoryName,
                 counterName,
                 false);

        BPC = new PerformanceCounter(categoryName,
            baseCounterName,
            false);

        PC.RawValue = 0;
        BPC.RawValue = 0;
    }


    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Loop for the samples.
        for (int i = 0; i < 10; i++)
        {

            PC.RawValue = Stopwatch.GetTimestamp();

            BPC.IncrementBy(10);

            System.Threading.Thread.Sleep(1000);

            Console.WriteLine("Next value = " + PC.NextValue().ToString());
            samplesList.Add(PC.NextSample());

        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSample.Calculate((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

        }
    }



    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    // PERF_AVERAGE_TIMER
    //  Description - This counter type measures the time it takes, on 
    //     average, to complete a process or operation. Counters of this
    //     type display a ratio of the total elapsed time of the sample 
    //     interval to the number of processes or operations completed
    //     during that time. This counter type measures time in ticks 
    //     of the system clock. The F variable represents the number of
    //     ticks per second. The value of F is factored into the equation
    //     so that the result can be displayed in seconds.
    //    
    //  Generic type - Average
    //    
    //  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
    //     represents the number of ticks counted during the last 
    //     sample interval, F represents the frequency of the ticks, 
    //     and the denominator (D) represents the number of operations
    //     completed during the last sample interval.
    //    
    //  Average - ((Nx - N0) / F) / (Dx - D0)
    //    
    //  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Int64 n1 = s1.RawValue;
        Int64 n0 = s0.RawValue;
        ulong f = (ulong)s1.SystemFrequency;
        Int64 d1 = s1.BaseValue;
        Int64 d0 = s0.BaseValue;

        double numerator = (double)(n1 - n0);
        double denominator = (double)(d1 - d0);
        Single counterValue = (Single)((numerator / f) / denominator);
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics
Imports System.Runtime.InteropServices
Public Class App

    Private Const categoryName As String = "AverageTimer32SampleCategory"
    Private Const counterName As String = "AverageTimer32Sample"
    Private Const baseCounterName As String = "AverageTimer32SampleBase"

    Private Shared PC As PerformanceCounter
    Private Shared BPC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        SetupCategory()
        CreateCounters()
        CollectSamples(samplesList)
        CalculateResults(samplesList)
    End Sub


    Private Shared Function SetupCategory() As Boolean

        If Not PerformanceCounterCategory.Exists(categoryName) Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim averageTimer32 As New CounterCreationData()
            averageTimer32.CounterType = PerformanceCounterType.AverageTimer32
            averageTimer32.CounterName = counterName
            CCDC.Add(averageTimer32)

            ' Add the base counter.
            Dim averageTimer32Base As New CounterCreationData()
            averageTimer32Base.CounterType = PerformanceCounterType.AverageBase
            averageTimer32Base.CounterName = baseCounterName
            CCDC.Add(averageTimer32Base)

            ' Create the category.
            PerformanceCounterCategory.Create( _
               categoryName, _
               "Demonstrates usage of the AverageTimer32 performance counter type", _
                 PerformanceCounterCategoryType.SingleInstance, CCDC)

            Console.WriteLine("Category created - " + categoryName)

            Return True
        Else
            Console.WriteLine(("Category exists - " + _
               categoryName))
            Return False
        End If
    End Function


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter(categoryName, _
              counterName, False)

        BPC = New PerformanceCounter(categoryName, _
              baseCounterName, False)

        PC.RawValue = 0
        BPC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim i As Integer
        For i = 0 To 9

            PC.RawValue = Stopwatch.GetTimeStamp()

            BPC.IncrementBy(10)

            System.Threading.Thread.Sleep(1000)
            Console.WriteLine(("Next value = " + PC.NextValue().ToString()))
            samplesList.Add(PC.NextSample())
        Next i
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        Dim sample1 As CounterSample
        Dim sample2 As CounterSample
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            sample1 = CType(samplesList(i), CounterSample)
            sample2 = CType(samplesList(i + 1), CounterSample)
            OutputSample(sample1)
            OutputSample(sample2)

            ' Use .NET to calculate the counter value.
            Console.WriteLine((".NET computed counter value = " _
               + CounterSample.Calculate(sample1, sample2).ToString()))

            ' Calculate the counter value manually.
            Console.WriteLine(("My computed counter value = " _
               + MyComputeCounterValue(sample1, sample2).ToString()))

        Next i
    End Sub


    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    ' PERF_AVERAGE_TIMER
    '  Description - This counter type measures the time it takes, on 
    '     average, to complete a process or operation. Counters of this
    '     type display a ratio of the total elapsed time of the sample 
    '     interval to the number of processes or operations completed
    '     during that time. This counter type measures time in ticks 
    '     of the system clock. The F variable represents the number of
    '     ticks per second. The value of F is factored into the equation
    '     so that the result can be displayed in seconds.
    '
    '  Generic type - Average
    '
    '  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
    '     represents the number of ticks counted during the last 
    '     sample interval, F represents the frequency of the ticks, 
    '     and the denominator (D) represents the number of operations
    '     completed during the last sample interval.
    '
    '  Average - ((Nx - N0) / F) / (Dx - D0)
    '
    '  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    Private Shared Function MyComputeCounterValue( _
    ByVal s0 As CounterSample, _
    ByVal s1 As CounterSample) As Single
        Dim n1 As Int64 = s1.RawValue
        Dim n0 As Int64 = s0.RawValue
        Dim f As Decimal = CType(s1.SystemFrequency, Decimal)
        Dim d1 As Int64 = s1.BaseValue
        Dim d0 As Int64 = s0.BaseValue

        Dim numerator As Double = System.Convert.ToDouble(n1 - n0)
        Dim denominator As Double = System.Convert.ToDouble(d1 - d0)
        Dim counterValue As Single = CType(numerator, Single)
        counterValue = counterValue / CType(f, Single)
        counterValue = counterValue / CType(denominator, Single)

        Return counterValue
    End Function


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine("+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Cr _
              + ControlChars.Lf)
        Console.WriteLine(("   CounterType      = " + _
              s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + _
              s.RawValue.ToString()))
        Console.WriteLine(("   BaseValue        = " _
              + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + _
              s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + _
              s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + _
              s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + _
              s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + _
              s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub


End Class

ElapsedTime

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
using namespace System::Runtime::InteropServices;

void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

void CollectSamples()
{
   String^ categoryName = "ElapsedTimeSampleCategory";
   String^ counterName = "ElapsedTimeSample";
   
   // Create the performance counter category.
   if (  !PerformanceCounterCategory::Exists( categoryName ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ ETimeData = gcnew CounterCreationData;
      ETimeData->CounterType = PerformanceCounterType::ElapsedTime;
      ETimeData->CounterName = counterName;
      CCDC->Add( ETimeData );
      
      // Create the category.
      PerformanceCounterCategory::Create( categoryName,
         "Demonstrates ElapsedTime performance counter usage.",
         CCDC );
   }
   else
   {
      Console::WriteLine( "Category exists - {0}", categoryName );
   }

   
   // Create the performance counter.
   PerformanceCounter^ PC = gcnew PerformanceCounter( categoryName,
                                                      counterName,
                                                      false );
   // Initialize the counter.
   PC->RawValue = Stopwatch::GetTimestamp();

   DateTime Start = DateTime::Now;
   
   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      // Output the values.
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( "NextValue() = {0}", PC->NextValue() );
         Console::WriteLine( "Actual elapsed time = {0}", DateTime::Now.Subtract( Start ) );
         OutputSample( PC->NextSample() );
      }
      
      // Reset the counter on every 20th iteration.
      if ( j % 20 == 0 )
      {
         PC->RawValue = Stopwatch::GetTimestamp();
         Start = DateTime::Now;
      }
      System::Threading::Thread::Sleep( 50 );
   }

   Console::WriteLine( "Elapsed time = {0}", DateTime::Now.Subtract( Start ) );
}

int main()
{
   CollectSamples();
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Runtime.InteropServices;

public class App 
{

    public static void Main()
    {	
        CollectSamples();
    }

   
    public static void CollectSamples()
    {
        const String categoryName = "ElapsedTimeSampleCategory";
        const String counterName = "ElapsedTimeSample";

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if ( !PerformanceCounterCategory.Exists(categoryName) ) 
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData ETimeData = new CounterCreationData();
            ETimeData.CounterType = PerformanceCounterType.ElapsedTime;
            ETimeData.CounterName = counterName;
            CCDC.Add(ETimeData);	   
		
            // Create the category.
            PerformanceCounterCategory.Create(categoryName,
                    "Demonstrates ElapsedTime performance counter usage.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            // Return, rerun the application to make use of the new counters.
            return;

        }
        else
        {
            Console.WriteLine("Category exists - {0}", categoryName);
        }        

        // Create the performance counter.
        PerformanceCounter PC = new PerformanceCounter(categoryName, 
                                                       counterName, 
                                                       false);
        // Initialize the counter.
        PC.RawValue = Stopwatch.GetTimestamp();

        DateTime Start = DateTime.Now;

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {
            // Output the values.
            if ((j % 10) == 9) 
            {
                Console.WriteLine("NextValue() = " + PC.NextValue().ToString());
                Console.WriteLine("Actual elapsed time = " + DateTime.Now.Subtract(Start).ToString());
                OutputSample(PC.NextSample());
            }

            // Reset the counter on every 20th iteration.
            if (j % 20 == 0)
            {
                PC.RawValue = Stopwatch.GetTimestamp();
                Start = DateTime.Now;
            }
            System.Threading.Thread.Sleep(50);
        }

        Console.WriteLine("Elapsed time = " + DateTime.Now.Subtract(Start).ToString());
    }

	
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics
Imports System.Runtime.InteropServices

Public Class App

    Public Shared Sub Main()
        CollectSamples()
    End Sub

    Private Shared Sub CollectSamples()

        Dim categoryName As String = "ElapsedTimeSampleCategory"
        Dim counterName As String = "ElapsedTimeSample"

        If Not PerformanceCounterCategory.Exists(categoryName) Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim ETimeData As New CounterCreationData()
            ETimeData.CounterType = PerformanceCounterType.ElapsedTime
            ETimeData.CounterName = counterName
            CCDC.Add(ETimeData)

            ' Create the category.
            PerformanceCounterCategory.Create(categoryName, _
               "Demonstrates ElapsedTime performance counter usage.", _
                   PerformanceCounterCategoryType.SingleInstance, CCDC)

        Else
            Console.WriteLine("Category exists - {0}", categoryName)
        End If

        ' Create the counter.
        Dim PC As PerformanceCounter
        PC = New PerformanceCounter(categoryName, counterName, False)

        ' Initialize the counter.
        PC.RawValue = Stopwatch.GetTimestamp()

        Dim Start As DateTime = DateTime.Now

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99
            ' Output the values.
            If j Mod 10 = 9 Then
                Console.WriteLine(("NextValue() = " _
                    + PC.NextValue().ToString()))
                Console.WriteLine(("Actual elapsed time = " _
                    + DateTime.Now.Subtract(Start).ToString()))
                OutputSample(PC.NextSample())
            End If

            ' Reset the counter every 20th iteration.
            If j Mod 20 = 0 Then
                PC.RawValue = Stopwatch.GetTimestamp()
                Start = DateTime.Now
            End If
            System.Threading.Thread.Sleep(50)
        Next j

        Console.WriteLine(("Elapsed time = " + _
              DateTime.Now.Subtract(Start).ToString()))
    End Sub


    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++")

        Console.WriteLine("Sample values - " + ControlChars.Cr _
              + ControlChars.Lf)
        Console.WriteLine(("   BaseValue        = " _
              + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + _
              s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + _
              s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + _
              s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + _
              s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + _
              s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + _
              s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + _
              s.TimeStamp100nSec.ToString()))

        Console.WriteLine("+++++++")
    End Sub
End Class

NumberOfItems32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float counterValue = (float)s1.RawValue;
   return counterValue;
}

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "NumberOfItems32SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ NOI64 = gcnew CounterCreationData;
      NOI64->CounterType = PerformanceCounterType::NumberOfItems64;
      NOI64->CounterName = "NumberOfItems32Sample";
      CCDC->Add( NOI64 );

      // Create the category.
      PerformanceCounterCategory::Create( "NumberOfItems32SampleCategory", "Demonstrates usage of the NumberOfItems32 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - NumberOfItems32SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "NumberOfItems32SampleCategory","NumberOfItems32Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );

   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

void main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class NumberOfItems64
{

	private static PerformanceCounter PC;

	public static void Main()
	{	
		ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
		CollectSamples(samplesList);
		CalculateResults(samplesList);
	}

    private static bool SetupCategory()
    {		
        if ( !PerformanceCounterCategory.Exists("NumberOfItems32SampleCategory") ) 
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData NOI64 = new CounterCreationData();
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64;
            NOI64.CounterName = "NumberOfItems32Sample";
            CCDC.Add(NOI64);

            // Create the category.
            PerformanceCounterCategory.Create("NumberOfItems32SampleCategory",
                "Demonstrates usage of the NumberOfItems32 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - NumberOfItems32SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("NumberOfItems32SampleCategory", 
			"NumberOfItems32Sample", 
			false);

        PC.RawValue=0;
        
    }

	private static void CollectSamples(ArrayList samplesList)
	{
	
		
		
		Random r = new Random( DateTime.Now.Millisecond );

		// Loop for the samples.
		for (int j = 0; j < 100; j++) 
		{
	        
			int value = r.Next(1, 10);
			Console.Write(j + " = " + value);

			PC.IncrementBy(value);

			if ((j % 10) == 9) 
			{
				OutputSample(PC.NextSample());
				samplesList.Add( PC.NextSample() );
			}
			else
				Console.WriteLine();
	        
			System.Threading.Thread.Sleep(50);
		}

		
	}


    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

			// Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + 
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

			// Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + 
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

        }
    }
	

	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
	{
		Single counterValue = s1.RawValue;
		return(counterValue);
	}
	
	// Output information about the counter sample.
	private static void OutputSample(CounterSample s)
	{
		Console.WriteLine("\r\n+++++++++++");
		Console.WriteLine("Sample values - \r\n");
		Console.WriteLine("   BaseValue        = " + s.BaseValue);
		Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
		Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
		Console.WriteLine("   CounterType      = " + s.CounterType);
		Console.WriteLine("   RawValue         = " + s.RawValue);
		Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
		Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
		Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
		Console.WriteLine("++++++++++++++++++++++");
	}


	
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class NumberOfItems64

    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub


    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("NumberOfItems32SampleCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim NOI64 As New CounterCreationData()
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64
            NOI64.CounterName = "NumberOfItems32Sample"
            CCDC.Add(NOI64)

            ' Create the category.
            PerformanceCounterCategory.Create("NumberOfItems32SampleCategory", _
            "Demonstrates usage of the NumberOfItems32 performance counter type.", _
                      PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - NumberOfItems32SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("NumberOfItems32SampleCategory", "NumberOfItems32Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)



        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write(j.ToString() + " = " + value.ToString())

            PC.IncrementBy(value)

            If j Mod 10 = 9 Then
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub




    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim counterValue As [Single] = s1.RawValue
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine("   BaseValue        = " + s.BaseValue.ToString())
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency.ToString())
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp.ToString())
        Console.WriteLine("   CounterType      = " + s.CounterType.ToString())
        Console.WriteLine("   RawValue         = " + s.RawValue.ToString())
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency.ToString())
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp.ToString())
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString())
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class 'NumberOfItems64 


NumberOfItems64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float counterValue = (float)s1.RawValue;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "NumberOfItems64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ NOI64 = gcnew CounterCreationData;
      NOI64->CounterType = PerformanceCounterType::NumberOfItems64;
      NOI64->CounterName = "NumberOfItems64Sample";
      CCDC->Add( NOI64 );

      // Create the category.
      PerformanceCounterCategory::Create( "NumberOfItems64SampleCategory", "Demonstrates usage of the NumberOfItems64 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - NumberOfItems64SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counters.
   PC = gcnew PerformanceCounter( "NumberOfItems64SampleCategory","NumberOfItems64Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class NumberOfItems64
{

	private static PerformanceCounter PC;

	public static void Main()
	{	
		ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
		CreateCounters();
		CollectSamples(samplesList);
		CalculateResults(samplesList);
	}

	private static bool SetupCategory()
	{		
		if ( !PerformanceCounterCategory.Exists("NumberOfItems64SampleCategory") ) 
		{

			CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

			// Add the counter.
			CounterCreationData NOI64 = new CounterCreationData();
			NOI64.CounterType = PerformanceCounterType.NumberOfItems64;
			NOI64.CounterName = "NumberOfItems64Sample";
			CCDC.Add(NOI64);

			// Create the category.
			PerformanceCounterCategory.Create("NumberOfItems64SampleCategory",
                "Demonstrates usage of the NumberOfItems64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
			return(true);
		}
		else
		{
			Console.WriteLine("Category exists - NumberOfItems64SampleCategory");
			return(false);
		}
	}

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter("NumberOfItems64SampleCategory", 
            "NumberOfItems64Sample", 
            false);

        PC.RawValue=0;
        
    }

    private static void CollectSamples(ArrayList samplesList)
    {
		
        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {
	        
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            PC.IncrementBy(value);

            if ((j % 10) == 9) 
            {
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
                Console.WriteLine();
	        
            System.Threading.Thread.Sleep(50);
        }

    }

	private static void CalculateResults(ArrayList samplesList)
	{
		for(int i = 0; i < (samplesList.Count - 1); i++)
		{
			// Output the sample.
			OutputSample( (CounterSample)samplesList[i] );
			OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
			Console.WriteLine(".NET computed counter value = " + 
				CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
			Console.WriteLine("My computed counter value = " + 
				MyComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );

		}
	}

	
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
	{
		Single counterValue = s1.RawValue;
		return(counterValue);
	}
	
	// Output information about the counter sample.
    private static void OutputSample(CounterSample s)
	{
		Console.WriteLine("\r\n+++++++++++");
		Console.WriteLine("Sample values - \r\n");
		Console.WriteLine("   BaseValue        = " + s.BaseValue);
		Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
		Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
		Console.WriteLine("   CounterType      = " + s.CounterType);
		Console.WriteLine("   RawValue         = " + s.RawValue);
		Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
		Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
		Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
		Console.WriteLine("++++++++++++++++++++++");
	}

}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class NumberOfItems64

    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub


    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("NumberOfItems64SampleCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim NOI64 As New CounterCreationData()
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64
            NOI64.CounterName = "NumberOfItems64Sample"
            CCDC.Add(NOI64)

            ' Create the category.
            PerformanceCounterCategory.Create("NumberOfItems64SampleCategory", _
            "Demonstrates usage of the NumberOfItems64 performance counter type.", _
                   PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - NumberOfItems64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter("NumberOfItems64SampleCategory", "NumberOfItems64Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write((j.ToString() + " = " + value.ToString()))

            PC.IncrementBy(value)

            If j Mod 10 = 9 Then
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim counterValue As [Single] = s1.RawValue
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class 'NumberOfItems64 

SampleFraction

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

// Provides a SampleFraction counter to measure the percentage of the user processor 
// time for this process to total processor time for the process.
public class App
{

    private static PerformanceCounter perfCounter;
    private static PerformanceCounter basePerfCounter;
    private static Process thisProcess = Process.GetCurrentProcess();

    public static void Main()
    {

        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);

    }


    private static bool SetupCategory()
    {
        if (!PerformanceCounterCategory.Exists("SampleFractionCategory"))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData sampleFraction = new CounterCreationData();
            sampleFraction.CounterType = PerformanceCounterType.SampleFraction;
            sampleFraction.CounterName = "SampleFractionSample";
            CCDC.Add(sampleFraction);

            // Add the base counter.
            CounterCreationData sampleFractionBase = new CounterCreationData();
            sampleFractionBase.CounterType = PerformanceCounterType.SampleBase;
            sampleFractionBase.CounterName = "SampleFractionSampleBase";
            CCDC.Add(sampleFractionBase);

            // Create the category.
            PerformanceCounterCategory.Create("SampleFractionCategory",
                "Demonstrates usage of the SampleFraction performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - SampleFractionCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.

        perfCounter = new PerformanceCounter("SampleFractionCategory",
            "SampleFractionSample",
            false);


        basePerfCounter = new PerformanceCounter("SampleFractionCategory",
            "SampleFractionSampleBase",
            false);


        perfCounter.RawValue = thisProcess.UserProcessorTime.Ticks;
        basePerfCounter.RawValue = thisProcess.TotalProcessorTime.Ticks;
    }
    private static void CollectSamples(ArrayList samplesList)
    {


        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            perfCounter.IncrementBy(thisProcess.UserProcessorTime.Ticks);

            basePerfCounter.IncrementBy(thisProcess.TotalProcessorTime.Ticks);

            if ((j % 10) == 9)
            {
                OutputSample(perfCounter.NextSample());
                samplesList.Add(perfCounter.NextSample());
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

        }
    }


    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    // Description - This counter type provides A percentage counter that shows the 
    // average ratio of user proccessor time to total processor time  during the last 
    // two sample intervals.
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)s1.RawValue - (Single)s0.RawValue;
        Single denomenator = (Single)s1.BaseValue - (Single)s0.BaseValue;
        Single counterValue = 100 * (numerator / denomenator);
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics


' Provides a SampleFraction counter to measure the percentage of the user processor 
' time for this process to total processor time for the process.

Public Class App

    Private Shared perfCounter As PerformanceCounter
    Private Shared basePerfCounter As PerformanceCounter
    Private Shared thisProcess As Process = Process.GetCurrentProcess()


    Public Shared Sub Main()

        Dim samplesList As New ArrayList()

        ' If the category does not exist, create the category and exit.
        ' Performance counters should not be created and immediately used.
        ' There is a latency time to enable the counters, they should be created
        ' prior to executing the application that uses the counters.
        ' Execute this sample a second time to use the category.
        If SetupCategory() Then
            Return
        End If
        CreateCounters()
        CollectSamples(samplesList)
        CalculateResults(samplesList)

    End Sub



    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("SampleFractionCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim sampleFraction As New CounterCreationData()
            sampleFraction.CounterType = PerformanceCounterType.SampleFraction
            sampleFraction.CounterName = "SampleFractionSample"
            CCDC.Add(sampleFraction)

            ' Add the base counter.
            Dim sampleFractionBase As New CounterCreationData()
            sampleFractionBase.CounterType = PerformanceCounterType.SampleBase
            sampleFractionBase.CounterName = "SampleFractionSampleBase"
            CCDC.Add(sampleFractionBase)

            ' Create the category.
            PerformanceCounterCategory.Create("SampleFractionCategory", "Demonstrates usage of the SampleFraction performance counter type.", PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - SampleFractionCategory")
            Return False
        End If

    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        perfCounter = New PerformanceCounter("SampleFractionCategory", "SampleFractionSample", False)


        basePerfCounter = New PerformanceCounter("SampleFractionCategory", "SampleFractionSampleBase", False)


        perfCounter.RawValue = thisProcess.UserProcessorTime.Ticks
        basePerfCounter.RawValue = thisProcess.TotalProcessorTime.Ticks

    End Sub

    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)


        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            perfCounter.IncrementBy(thisProcess.UserProcessorTime.Ticks)

            basePerfCounter.IncrementBy(thisProcess.TotalProcessorTime.Ticks)

            If j Mod 10 = 9 Then
                OutputSample(perfCounter.NextSample())
                samplesList.Add(perfCounter.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j

    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1)
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)))

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)))
        Next i

    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    ' Description - This counter type provides A percentage counter that shows the 
    ' average ratio of user proccessor time to total processor time  during the last 
    ' two sample intervals.
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue, [Single]) - CType(s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.BaseValue, [Single]) - CType(s0.BaseValue, [Single])
        Dim counterValue As [Single] = 100 * (numerator / denomenator)
        Return counterValue

    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(vbCr + vbLf + "+++++++++++")
        Console.WriteLine("Sample values - " + vbCr + vbLf)
        Console.WriteLine("   BaseValue        = " + s.BaseValue)
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency)
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp)
        Console.WriteLine("   CounterType      = " + s.CounterType)
        Console.WriteLine("   RawValue         = " + s.RawValue)
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency)
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp)
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec)
        Console.WriteLine("++++++++++++++++++++++")

    End Sub
End Class 'App

RateOfCountsPerSecond32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    PERF_COUNTER_COUNTER
//    Description     - This counter type shows the average number of operations completed
//        during each second of the sample interval. Counters of this type
//        measure time in ticks of the system clock. The F variable represents
//        the number of ticks per second. The value of F is factored into the
//        equation so that the result can be displayed in seconds.
//
//    Generic type - Difference
//
//    Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
//        of operations performed during the last sample interval, the denominator
//        (D) represents the number of ticks elapsed during the last sample
//        interval, and F is the frequency of the ticks.
//
//         Average - (Nx - N0) / ((Dx - D0) / F) 
//
//       Example - System\ File Read Operations/sec 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)(s1.RawValue - s0.RawValue);
   float denomenator = (float)(s1.TimeStamp - s0.TimeStamp) / (float)s1.SystemFrequency;
   float counterValue = numerator / denomenator;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RateOfCountsPerSecond32SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ rateOfCounts32 = gcnew CounterCreationData;
      rateOfCounts32->CounterType = PerformanceCounterType::RateOfCountsPerSecond32;
      rateOfCounts32->CounterName = "RateOfCountsPerSecond32Sample";
      CCDC->Add( rateOfCounts32 );

      // Create the category.
      PerformanceCounterCategory::Create( "RateOfCountsPerSecond32SampleCategory", "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RateOfCountsPerSecond32SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "RateOfCountsPerSecond32SampleCategory","RateOfCountsPerSecond32Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Initialize the performance counter.
   PC->NextSample();

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      PC->IncrementBy( value );
      Console::Write( "{0} = {1}", j, value );
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App 
{
    private static PerformanceCounter PC;

	public static void Main()
	{	
		ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
		CollectSamples(samplesList);
		CalculateResults(samplesList);
	}

    private static bool SetupCategory()
    {
		
        if ( !PerformanceCounterCategory.Exists("RateOfCountsPerSecond32SampleCategory") ) 
        {


            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rateOfCounts32 = new CounterCreationData();
            rateOfCounts32.CounterType = PerformanceCounterType.RateOfCountsPerSecond32;
            rateOfCounts32.CounterName = "RateOfCountsPerSecond32Sample";
            CCDC.Add(rateOfCounts32);
	        
             // Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond32SampleCategory", 
                "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC); 
              return(true);
        }
        else
        {
            Console.WriteLine("Category exists - RateOfCountsPerSecond32SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("RateOfCountsPerSecond32SampleCategory", 
            "RateOfCountsPerSecond32Sample", 
            false);

        PC.RawValue=0;
        
    }

    private static void CollectSamples(ArrayList samplesList)
    {
	
        Random r = new Random( DateTime.Now.Millisecond );

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {
	        
            int value = r.Next(1, 10);
            PC.IncrementBy(value);
            Console.Write(j + " = " + value);

            if ((j % 10) == 9) 
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
                Console.WriteLine();
	        
            System.Threading.Thread.Sleep(50);
        }
    }

	private static void CalculateResults(ArrayList samplesList)
	{
		for(int i = 0; i < (samplesList.Count - 1); i++)
		{
			// Output the sample.
			OutputSample( (CounterSample)samplesList[i] );
			OutputSample( (CounterSample)samplesList[i+1] );


            // Use .NET to calculate the counter value.
			Console.WriteLine(".NET computed counter value = " + 
				CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + 
				MyComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );


		}
	}


	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	//	PERF_COUNTER_COUNTER
	//	Description	 - This counter type shows the average number of operations completed
	//		during each second of the sample interval. Counters of this type
	//		measure time in ticks of the system clock. The F variable represents
	//		the number of ticks per second. The value of F is factored into the
	//		equation so that the result can be displayed in seconds.
	//
    //	Generic type - Difference
	//
	//	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
	//		of operations performed during the last sample interval, the denominator
	//		(D) represents the number of ticks elapsed during the last sample
	//		interval, and F is the frequency of the ticks.
	//
	//	     Average - (Nx - N0) / ((Dx - D0) / F) 
	//
	//       Example - System\ File Read Operations/sec 
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
	{
		Single numerator = (Single)(s1.RawValue - s0.RawValue);
		Single denomenator = (Single)(s1.TimeStamp - s0.TimeStamp) / (Single)s1.SystemFrequency;
		Single counterValue = numerator / denomenator;
		return(counterValue);
	}
	
    // Output information about the counter sample.
	private static void OutputSample(CounterSample s)
	{
		Console.WriteLine("\r\n+++++++++++");
		Console.WriteLine("Sample values - \r\n");
		Console.WriteLine("   BaseValue        = " + s.BaseValue);
		Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
		Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
		Console.WriteLine("   CounterType      = " + s.CounterType);
		Console.WriteLine("   RawValue         = " + s.RawValue);
		Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
		Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
		Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
		Console.WriteLine("++++++++++++++++++++++");
	}

}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App
    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub


    Private Shared Function SetupCategory() As Boolean

        If Not PerformanceCounterCategory.Exists("RateOfCountsPerSecond32SampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rateOfCounts32 As New CounterCreationData()
            rateOfCounts32.CounterType = PerformanceCounterType.RateOfCountsPerSecond32
            rateOfCounts32.CounterName = "RateOfCountsPerSecond32Sample"
            CCDC.Add(rateOfCounts32)

            ' Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond32SampleCategory", _
                "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)
            Return True
        Else
            Console.WriteLine("Category exists - RateOfCountsPerSecond32SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("RateOfCountsPerSecond32SampleCategory", "RateOfCountsPerSecond32Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            PC.IncrementBy(value)
            Console.Write((j.ToString() + " = " + value.ToString()))

            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))


            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub





    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	PERF_COUNTER_COUNTER
    '	Description	 - This counter type shows the average number of operations completed
    '		during each second of the sample interval. Counters of this type
    '		measure time in ticks of the system clock. The F variable represents
    '		the number of ticks per second. The value of F is factored into the
    '		equation so that the result can be displayed in seconds.
    '
    '	Generic type - Difference
    '
    '	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    '		of operations performed during the last sample interval, the denominator
    '		(D) represents the number of ticks elapsed during the last sample
    '		interval, and F is the frequency of the ticks.
    '
    '	     Average - (Nx - N0) / ((Dx - D0) / F) 
    '
    '       Example - System\ File Read Operations/sec 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue - s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.TimeStamp - s0.TimeStamp, [Single]) / CType(s1.SystemFrequency, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class 'App 

RateOfCountsPerSecond64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    PERF_COUNTER_COUNTER
//    Description     - This counter type shows the average number of operations completed
//        during each second of the sample interval. Counters of this type
//        measure time in ticks of the system clock. The F variable represents
//        the number of ticks per second. The value of F is factored into the
//        equation so that the result can be displayed in seconds.
//
//    Generic type - Difference
//
//    Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
//        of operations performed during the last sample interval, the denominator
//        (D) represents the number of ticks elapsed during the last sample
//        interval, and F is the frequency of the ticks.
//
//    Average - (Nx - N0) / ((Dx - D0) / F) 
//
//  Example - System\ File Read Operations/sec 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)(s1.RawValue - s0.RawValue);
   float denomenator = (float)(s1.TimeStamp - s0.TimeStamp) / (float)s1.SystemFrequency;
   float counterValue = numerator / denomenator;
   return counterValue;
}

void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RateOfCountsPerSecond64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ rateOfCounts64 = gcnew CounterCreationData;
      rateOfCounts64->CounterType = PerformanceCounterType::RateOfCountsPerSecond64;
      rateOfCounts64->CounterName = "RateOfCountsPerSecond64Sample";
      CCDC->Add( rateOfCounts64 );

      // Create the category.
      PerformanceCounterCategory::Create( "RateOfCountsPerSecond64SampleCategory", "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RateOfCountsPerSecond64SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "RateOfCountsPerSecond64SampleCategory","RateOfCountsPerSecond64Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Initialize the performance counter.
   PC->NextSample();

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      PC->IncrementBy( value );
      Console::Write( "{0} = {1}", j, value );
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App
{
    private static PerformanceCounter PC;

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {


        if (!PerformanceCounterCategory.Exists("RateOfCountsPerSecond64SampleCategory"))
        {


            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rateOfCounts64 = new CounterCreationData();
            rateOfCounts64.CounterType = PerformanceCounterType.RateOfCountsPerSecond64;
            rateOfCounts64.CounterName = "RateOfCountsPerSecond64Sample";
            CCDC.Add(rateOfCounts64);

            // Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond64SampleCategory",
                "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - RateOfCountsPerSecond64SampleCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("RateOfCountsPerSecond64SampleCategory",
            "RateOfCountsPerSecond64Sample",
            false);

        PC.RawValue = 0;

    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            int value = r.Next(1, 10);
            PC.IncrementBy(value);
            Console.Write(j + " = " + value);

            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add(PC.NextSample());
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);


            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));


        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //	PERF_COUNTER_COUNTER
    //	Description	 - This counter type shows the average number of operations completed
    //		during each second of the sample interval. Counters of this type
    //		measure time in ticks of the system clock. The F variable represents
    //		the number of ticks per second. The value of F is factored into the
    //		equation so that the result can be displayed in seconds.
    //
    //	Generic type - Difference
    //
    //	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    //		of operations performed during the last sample interval, the denominator
    //		(D) represents the number of ticks elapsed during the last sample
    //		interval, and F is the frequency of the ticks.
    //
    //	Average - (Nx - N0) / ((Dx - D0) / F) 
    //
    //  Example - System\ File Read Operations/sec 
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)(s1.RawValue - s0.RawValue);
        Single denomenator = (Single)(s1.TimeStamp - s0.TimeStamp) / (Single)s1.SystemFrequency;
        Single counterValue = numerator / denomenator;
        return (counterValue);
    }

    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App
    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub


    Private Shared Function SetupCategory() As Boolean


        If Not PerformanceCounterCategory.Exists("RateOfCountsPerSecond64SampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rateOfCounts64 As New CounterCreationData()
            rateOfCounts64.CounterType = PerformanceCounterType.RateOfCountsPerSecond64
            rateOfCounts64.CounterName = "RateOfCountsPerSecond64Sample"
            CCDC.Add(rateOfCounts64)

            ' Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond64SampleCategory", _
            "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)
            Return True
        Else
            Console.WriteLine("Category exists - RateOfCountsPerSecond64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("RateOfCountsPerSecond64SampleCategory", "RateOfCountsPerSecond64Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            PC.IncrementBy(value)
            Console.Write((j.ToString() + " = " + value.ToString()))

            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))


            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + _
            CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + _
            MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	PERF_COUNTER_COUNTER
    '	Description	 - This counter type shows the average number of operations completed
    '		during each second of the sample interval. Counters of this type
    '		measure time in ticks of the system clock. The F variable represents
    '		the number of ticks per second. The value of F is factored into the
    '		equation so that the result can be displayed in seconds.
    '
    '	Generic type - Difference
    '
    '	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    '		of operations performed during the last sample interval, the denominator
    '		(D) represents the number of ticks elapsed during the last sample
    '		interval, and F is the frequency of the ticks.
    '
    '	Average - (Nx - N0) / ((Dx - D0) / F) 
    '
    '  Example - System\ File Read Operations/sec 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue - s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.TimeStamp - s0.TimeStamp, [Single]) / CType(s1.SystemFrequency, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue


    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class 'App

RawFraction

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
// Formula from MSDN -
//      Description - This counter type shows the ratio of a subset to its set as a percentage.
//            For example, it compares the number of bytes in use on a disk to the
//            total number of bytes on the disk. Counters of this type display the 
//            current percentage only, not an average over time.
//
// Generic type - Instantaneous, Percentage 
//        Formula - (N0 / D0), where D represents a measured attribute and N represents one
//            component of that attribute.
//
//        Average - SUM (N / D) /x 
//        Example - Paging File\% Usage Peak
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample rfSample )
{
   float numerator = (float)rfSample.RawValue;
   float denomenator = (float)rfSample.BaseValue;
   float counterValue = (numerator / denomenator) * 100;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RawFractionSampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ rf = gcnew CounterCreationData;
      rf->CounterType = PerformanceCounterType::RawFraction;
      rf->CounterName = "RawFractionSample";
      CCDC->Add( rf );
      
      // Add the base counter.
      CounterCreationData^ rfBase = gcnew CounterCreationData;
      rfBase->CounterType = PerformanceCounterType::RawBase;
      rfBase->CounterName = "RawFractionSampleBase";
      CCDC->Add( rfBase );
      
      // Create the category.
      PerformanceCounterCategory::Create( "RawFractionSampleCategory", "Demonstrates usage of the RawFraction performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RawFractionSampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
   
   // Create the counters.
   PC = gcnew PerformanceCounter( "RawFractionSampleCategory","RawFractionSample",false );
   BPC = gcnew PerformanceCounter( "RawFractionSampleCategory","RawFractionSampleBase",false );
   PC->RawValue = 0;
   BPC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, PerformanceCounter^ BPC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );
   
   // Initialize the performance counter.
   PC->NextSample();
   
   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      
      // Increment the base every time, because the counter measures the number 
      // of high hits (raw fraction value) against all the hits (base value).
      BPC->Increment();
      
      // Get the % of samples that are 9 or 10 out of all the samples taken.
      if ( value >= 9 )
            PC->Increment();
      
      // Copy out the next value every ten times around the loop.
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );

   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < samplesList->Count; i++ )
   {
      
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      
      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]) ) );
      
      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]) ) );

   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   PerformanceCounter^ BPC;
   SetupCategory();
   CreateCounters( PC, BPC );
   CollectSamples( samplesList, PC, BPC );
   CalculateResults( samplesList );
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;


public class App
{
    private static PerformanceCounter PC;
    private static PerformanceCounter BPC;

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the counters.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {


        if (!PerformanceCounterCategory.Exists("RawFractionSampleCategory"))
        {


            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rf = new CounterCreationData();
            rf.CounterType = PerformanceCounterType.RawFraction;
            rf.CounterName = "RawFractionSample";
            CCDC.Add(rf);

            // Add the base counter.
            CounterCreationData rfBase = new CounterCreationData();
            rfBase.CounterType = PerformanceCounterType.RawBase;
            rfBase.CounterName = "RawFractionSampleBase";
            CCDC.Add(rfBase);

            // Create the category.
            PerformanceCounterCategory.Create("RawFractionSampleCategory",
                "Demonstrates usage of the RawFraction performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - RawFractionSampleCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter("RawFractionSampleCategory",
            "RawFractionSample",
            false);

        BPC = new PerformanceCounter("RawFractionSampleCategory",
            "RawFractionSampleBase",
            false);

        PC.RawValue = 0;
        BPC.RawValue = 0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            // Increment the base every time, because the counter measures the number 
            // of high hits (raw fraction value) against all the hits (base value).
            BPC.Increment();

            // Get the % of samples that are 9 or 10 out of all the samples taken.
            if (value >= 9)
                PC.Increment();

            // Copy out the next value every ten times around the loop.
            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add(PC.NextSample());
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }


    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < samplesList.Count; i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i]));

        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    // Formula from MSDN -
    //      Description - This counter type shows the ratio of a subset to its set as a percentage.
    //			For example, it compares the number of bytes in use on a disk to the
    //			total number of bytes on the disk. Counters of this type display the 
    //			current percentage only, not an average over time.
    //
    // Generic type - Instantaneous, Percentage 
    //	    Formula - (N0 / D0), where D represents a measured attribute and N represents one
    //			component of that attribute.
    //
    //		Average - SUM (N / D) /x 
    //		Example - Paging File\% Usage Peak
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample rfSample)
    {
        Single numerator = (Single)rfSample.RawValue;
        Single denomenator = (Single)rfSample.BaseValue;
        Single counterValue = (numerator / denomenator) * 100;
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }



}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _


Public Class App
    Private Shared PC As PerformanceCounter
    Private Shared BPC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub


    Private Shared Function SetupCategory() As Boolean


        If Not PerformanceCounterCategory.Exists("RawFractionSampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rf As New CounterCreationData()
            rf.CounterType = PerformanceCounterType.RawFraction
            rf.CounterName = "RawFractionSample"
            CCDC.Add(rf)

            ' Add the base counter.
            Dim rfBase As New CounterCreationData()
            rfBase.CounterType = PerformanceCounterType.RawBase
            rfBase.CounterName = "RawFractionSampleBase"
            CCDC.Add(rfBase)

            ' Create the category.
            PerformanceCounterCategory.Create("RawFractionSampleCategory", _
            "Demonstrates usage of the RawFraction performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - RawFractionSampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter("RawFractionSampleCategory", "RawFractionSample", False)

        BPC = New PerformanceCounter("RawFractionSampleCategory", "RawFractionSampleBase", False)

        PC.RawValue = 0
        BPC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99
            Dim value As Integer = r.Next(1, 10)
            Console.Write((j.ToString() + " = " + value.ToString()))

            ' Increment the base every time, because the counter measures the number 
            ' of high hits (raw fraction value) against all the hits (base value).
            BPC.Increment()

            ' Get the % of samples that are 9 or 10 out of all the samples taken.
            If value >= 9 Then
                PC.Increment()
            End If
            ' Copy out the next value every ten times around the loop.
            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub



    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To samplesList.Count - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample)).ToString())
        Next i
    End Sub


    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    ' Formula from MSDN -
    '      Description - This counter type shows the ratio of a subset to its set as a percentage.
    '			For example, it compares the number of bytes in use on a disk to the
    '			total number of bytes on the disk. Counters of this type display the 
    '			current percentage only, not an average over time.
    '
    ' Generic type - Instantaneous, Percentage 
    '	    Formula - (N0 / D0), where D represents a measured attribute and N represents one
    '			component of that attribute.
    '
    '		Average - SUM (N / D) /x 
    '		Example - Paging File\% Usage Peak
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal rfSample As CounterSample) As [Single]
        Dim numerator As [Single] = CType(rfSample.RawValue, [Single])
        Dim denomenator As [Single] = CType(rfSample.BaseValue, [Single])
        Dim counterValue As [Single] = numerator / denomenator * 100
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine("+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class 'App 



설명

일부 카운터 형식은 하나 이상의 카운터 샘플을 기반으로 하는 계산 된 값을 나타내지만 원시 데이터를 나타냅니다.Some counter types represent raw data, while others represent calculated values that are based on one or more counter samples. 다음 범주에 사용할 수 있는 카운터의 유형을 분류 합니다.The following categories classify the types of counters available.

  • 평균: 시간에 따른 값을 측정 하 고 마지막 두 측정값의 평균을 표시 합니다.Average: Measures a value over time and displays the average of the last two measurements. 포함 된 샘플의 수를 추적 하는 기본 카운터는 평균 각 카운터와 관련 된입니다.Associated with each average counter is a base counter that tracks the number of samples involved.

  • 차이점: 이전 측정에서 마지막 측정을 빼고 차이를 표시 합니다 (양수 인 경우). 음수 이면 0을 표시 합니다.Difference: Subtracts the last measurement from the previous one and displays the difference, if it is positive; if negative, it displays a zero.

  • 즉시: 가장 최근의 측정 값을 표시 합니다.Instantaneous: Displays the most recent measurement.

  • 백분율: 계산 된 값을 백분율로 표시 합니다.Percentage: Displays calculated values as a percentage.

  • Rate: 시간이 지남에 따라 늘어나는 이벤트 수를 샘플링 하 고 카운트 값의 변경 내용을 시간 변경으로 나누어 활동의 요율을 표시 합니다.Rate: Samples an increasing count of events over time and divides the change in count values by the change in time to display a rate of activity.

성능 카운터 데이터를 샘플링 하는 경우 평균을 나타내는 카운터 형식을 사용 하 여 가능 원시 데이터 값 사용에 대 한 의미 합니다.When sampling performance counter data, using a counter type that represents an average can make raw data values meaningful for your use. 예를 들어, 원시 데이터 카운터 NumberOfItems64 는 임의의 샘플에서 샘플 데이터를 노출할 수 있습니다.For example, the raw data counter NumberOfItems64 can expose data that is fairly random from sample to sample. 카운터가 반환 하는 값의 평균을 계산에 대 한 계산 됩니다 (X 0 + X 1 +... + X n) n / X 각 i는 원시 카운터 샘플.The formula for an average calculation of the values that the counter returns would be (X 0 +X 1 +…+X n)/n, where each X i is a raw counter sample.

비율 카운터는 평균 카운터와 유사 하지만 속도 증가 리소스 사용 되는 상황에 더 유용 합니다.Rate counters are similar to average counters, but more useful for situations in which the rate increases as a resource is used. 신속 하 게 평균을 계산 하는 수식은 ((n-X X 0) / (n-T 0)) / 빈도 X 각 카운터 샘플 및 각 T i는 i 해당 샘플에 수행 된 시간입니다.A formula that quickly calculates the average is ((X n -X 0)/(T n -T 0)) / frequency, where each X i is a counter sample and each T i is the time that the corresponding sample was taken. 초당 평균 사용 됩니다.The result is the average usage per second.

정반대 카운터 는 하나 이상의 구성 요소 인스턴스 (예: 프로세서 또는 디스크)에서 데이터를 수집 합니다.Multitimer counters collect data from more than one instance of a component, such as a processor or disk.

역 카운터 는 구성 요소가 비활성 상태인 시간을 측정 하 여 해당 측정에서 활성 시간을 파생 시킵니다.Inverse counters measure the time that a component is not active and derive the active time from that measurement.

참고

지정 하지 않을 경우 기본 시간은 시간 (초)입니다.Unless otherwise indicated, the time base is seconds.

(만들고 사용자 지정 성능 카운터를 기록할) 애플리케이션을 계측 하는 경우 계산에서 사용 되는 함께 제공 되는 기본 카운터를 사용 하는 성능 카운터 형식으로 작업 될 수 있습니다.When instrumenting applications (creating and writing custom performance counters), you might be working with performance counter types that rely on an accompanying base counter that is used in the calculations. 기본 카운터에서 연결된 된 카운터 직후 해야는 CounterCreationDataCollection 애플리케이션에서 사용 하는 컬렉션입니다.The base counter must be immediately after its associated counter in the CounterCreationDataCollection collection your application uses. 다음 표에서 해당 성능 카운터 유형 사용 하는 기본 카운터 목록을 표시 합니다.The following table lists the base counter types with their corresponding performance counter types.

기본 카운터 형식Base counter type 성능 카운터 형식Performance counter types
AverageBase AverageTimer32

AverageCount64
CounterMultiBase CounterMultiTimer

CounterMultiTimerInverse

CounterMultiTimer100Ns

CounterMultiTimer100NsInverse
RawBase RawFraction
SampleBase SampleFraction

다음은 계산 된 값을 나타내는 일부 카운터에 사용 되는 수식입니다.The following are the formulas used by some of the counters that represent calculated values:

  • AverageCount64: (N1-N0)/(B1-B0). 여기서 n 1과 N 0은 성능 카운터 판독값 이며 B1 및 B0은 해당 AverageBase 값입니다.AverageCount64: (N1 - N0)/(B1 - B0), where N 1 and N 0 are performance counter readings, and B1 and B0 are their corresponding AverageBase values. 따라서 분자 샘플 간격 동안 처리 되는 항목 수가 나타내며 분모 샘플 간격 동안 완료 된 작업의 수를 나타냅니다.Thus, the numerator represents the numbers of items processed during the sample interval, and the denominator represents the number of operations completed during the sample interval.

  • AverageTimer32: ((N0)/f)/(B1-B0), 여기서 N1 및 N0은 성능 카운터 판독값, B1 및 b0은 해당 AverageBase 값, F는 초당 틱 수입니다.AverageTimer32: ((N1 - N0)/F)/(B1 - B0), where N1 and N0 are performance counter readings, B1 and B0 are their corresponding AverageBase values, and F is the number of ticks per second. F 값은 초 단위로 결과 표시할 수 있도록 수식에 포함 됩니다.The value of F is factored into the equation so that the result can be displayed in seconds. 따라서 분자 마지막 샘플 간격 동안 계산 하는 틱 수를 나타내고, F는 눈금의 빈도 나타냅니다 및 분모 마지막 샘플 간격 동안 완료 된 작업의 수를 나타냅니다.Thus, the numerator represents the numbers of ticks counted during the last sample interval, F represents the frequency of the ticks, and the denominator represents the number of operations completed during the last sample interval.

  • CounterDelta32: N1-N0, 여기서 N1 및 N0는 성능 카운터 판독값입니다.CounterDelta32: N1 - N0, where N1 and N0 are performance counter readings.

  • CounterDelta64: N1-N0, 여기서 N1 및 N0는 성능 카운터 판독값입니다.CounterDelta64: N1 - N0, where N1 and N0 are performance counter readings.

  • CounterMultiTimer: ((N0)/(D1-D0)) x 100/B. 여기서 N1 및 N0은 성능 카운터 판독값, D1 및 D0은 시스템 성능 타이머의 틱에 해당 하는 시간 판독값, B 변수는 모니터링 되는 구성 요소에 대 한 기본 카운터 (ty)를 나타냅니다. pe CounterMultiBase).CounterMultiTimer: ((N1 - N0) / (D1 - D0)) x 100 / B, where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings in ticks of the system performance timer, and the variable B denotes the base count for the monitored components (using a base counter of type CounterMultiBase). 따라서 분자 샘플 간격 동안 활성화 된 모니터링 되는 구성 하 고 분모 샘플 기간의 총 경과 시간을 나타내는 부분을 나타냅니다.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterMultiTimer100Ns: ((N0)/(D1-D0)) x 100/B, 여기서 N1 및 N0은 성능 카운터 판독값, D1 및 D0은 100 나노초 단위의 해당 시간 판독값, B 변수는 모니터링 되는 구성 요소에 대 한 기본 카운터를 사용 하 여 (형식: CounterMultiBase).CounterMultiTimer100Ns: ((N1 - N0) / (D1 - D0)) x 100 / B, where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings in 100-nanosecond units, and the variable B denotes the base count for the monitored components (using a base counter of type CounterMultiBase). 따라서 분자 샘플 간격 동안 활성화 된 모니터링 되는 구성 하 고 분모 샘플 기간의 총 경과 시간을 나타내는 부분을 나타냅니다.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterMultiTimer100NsInverse: (B-((N0)/(D1-D0))) x 100. 여기서 분모는 샘플 기간의 총 경과 시간을 나타내고, 분자는 모니터링 되는 구성 요소가 비활성 상태인 시간을 나타내며, B는 모니터링 되는 구성 요소 수를 나타냅니다. 형식의 CounterMultiBase기본 카운터를 사용 하는입니다.CounterMultiTimer100NsInverse: (B - ((N1 - N0) / (D1 - D0))) x 100, where the denominator represents the total elapsed time of the sample interval, the numerator represents the time during the interval when monitored components were inactive, and B represents the number of components being monitored, using a base counter of type CounterMultiBase.

  • CounterMultiTimerInverse: (B-((N0)/(D1-D0))) x 100. 여기서 분모는 샘플 기간의 총 경과 시간을 나타내고, 분자는 모니터링 되는 구성 요소가 비활성 상태인 시간을 나타내며, B는 모니터링 되는 구성 요소 수를 나타냅니다. 형식의 CounterMultiBase기본 카운터를 사용 하는입니다.CounterMultiTimerInverse: (B- ((N1 - N0) / (D1 - D0))) x 100, where the denominator represents the total elapsed time of the sample interval, the numerator represents the time during the interval when monitored components were inactive, and B represents the number of components being monitored, using a base counter of type CounterMultiBase.

  • CounterTimer: (N1-N0)/(D1-D0), 여기서 N1 및 N0은 성능 카운터 판독값이 고 D1 및 D0은 해당 시간 판독값입니다.CounterTimer: (N1 - N0) / (D1 - D0), where N1 and N0 are performance counter readings, and D1 and D0 are their corresponding time readings. 따라서 분자 샘플 간격 동안 활성화 된 모니터링 되는 구성 하 고 분모 샘플 기간의 총 경과 시간을 나타내는 부분을 나타냅니다.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterTimerInverse: (1-((N0)/(D1-D0))) x 100. 여기서 분자는 모니터링 되는 구성 요소가 비활성 상태인 시간을 나타내며, 분모는 샘플 기간의 총 경과 시간을 나타냅니다.CounterTimerInverse: (1- ((N1 - N0) / (D1 - D0))) x 100, where the numerator represents the time during the interval when the monitored components were inactive, and the denominator represents the total elapsed time of the sample interval.

  • CountPerTimeInterval32: (N1-N0)/(D1-D0). 여기서 분자는 큐에 있는 항목의 수를 나타내고 분모는 마지막 샘플 간격 동안 경과 된 시간을 나타냅니다.CountPerTimeInterval32: (N1 - N0) / (D1 - D0), where the numerator represents the number of items in the queue, and the denominator represents the time elapsed during the last sample interval.

  • CountPerTimeInterval64: (N1-N0)/(D1-D0). 여기서 분자는 큐의 항목 수를 나타내고 분모는 샘플 간격 중 경과 된 시간을 나타냅니다.CountPerTimeInterval64: (N1 - N0) / (D1 - D0), where the numerator represents the number of items in a queue and the denominator represents the time elapsed during the sample interval.

  • ElapsedTime: (D0-N0)/F. 여기서 D0은 현재 시간을 나타내고, N0는 개체가 시작 된 시간을 나타내고, F는 1 초 후에 경과 되는 시간 단위 수를 나타냅니다.ElapsedTime: (D0 - N0) / F, where D0 represents the current time, N0 represents the time the object was started, and F represents the number of time units that elapse in one second. F 값은 초 단위로 결과 표시할 수 있도록 수식에 포함 됩니다.The value of F is factored into the equation so that the result can be displayed in seconds.

  • NumberOfItems32: 없음NumberOfItems32: None. 평균을 표시 되지 않지만 수집 된 원시 데이터를 보여 줍니다.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItems64: 없음NumberOfItems64: None. 평균을 표시 되지 않지만 수집 된 원시 데이터를 보여 줍니다.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItemsHEX32: 없음NumberOfItemsHEX32: None. 평균을 표시 되지 않지만 수집 된 원시 데이터를 보여 줍니다.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItemsHEX64: 없음NumberOfItemsHEX64: None. 평균을 표시 되지 않지만 수집 되는 원시 데이터를 보여 줍니다.Does not display an average, but shows the raw data as it is collected

  • RateOfCountsPerSecond32: (N1-N0)/((D1-D0)/F), 여기서 N1 및 N0은 성능 카운터 판독값, D1 및 D0은 해당 시간 판독값, F는 초당 틱 수를 나타냅니다.RateOfCountsPerSecond32: (N1 - N0) / ((D1 - D0) / F), where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings, and F represents the number of ticks per second. 따라서 분자는 마지막 샘플 기간 동안 경과 된 틱 분모 나타내는 마지막 샘플 간격 동안 수행 된 작업의 수 나타내며 F는 눈금의 빈도입니다.Thus, the numerator represents the number of operations performed during the last sample interval, the denominator represents the number of ticks elapsed during the last sample interval, and F is the frequency of the ticks. F 값은 초 단위로 결과 표시할 수 있도록 수식에 포함 됩니다.The value of F is factored into the equation so that the result can be displayed in seconds.

  • RateOfCountsPerSecond64: (N1-N0)/((D1-D0)/F), 여기서 N1 및 N0은 성능 카운터 판독값, D1 및 D0은 해당 시간 판독값, F는 초당 틱 수를 나타냅니다.RateOfCountsPerSecond64: (N1 - N0) / ((D1 - D0) / F), where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings, and F represents the number of ticks per second. 따라서 분자는 마지막 샘플 기간 동안 경과 된 틱 분모 나타내는 마지막 샘플 간격 동안 수행 된 작업의 수 나타내며 F는 눈금의 빈도입니다.Thus, the numerator represents the number of operations performed during the last sample interval, the denominator represents the number of ticks elapsed during the last sample interval, and F is the frequency of the ticks. F 값은 초 단위로 결과 표시할 수 있도록 수식에 포함 됩니다.The value of F is factored into the equation so that the result can be displayed in seconds.

  • RawFraction: (N0/d0) x 100. 여기서 D0은 측정 된 특성 (형식의 RawBase기본 카운터 사용)을 나타내고 N0는 해당 특성의 한 구성 요소를 나타냅니다.RawFraction: (N0 / D0) x 100, where D0 represents a measured attribute (using a base counter of type RawBase) and N0 represents one component of that attribute.

  • SampleCounter: (N1-N0)/((D1-D0)/F). 여기서 분자 (N)는 완료 된 작업 수를 나타내고, 분모 (D)는 시스템 성능 타이머의 틱 단위로 경과 된 시간을 나타내고, F는 1 초 동안 경과 된 틱 수를 나타냅니다.SampleCounter: (N1 - N0) / ((D1 - D0) / F), where the numerator (N) represents the number of operations completed, the denominator (D) represents elapsed time in units of ticks of the system performance timer, and F represents the number of ticks that elapse in one second. 결과 시간 (초)에 표시할 수 있도록 F 수식에 포함 됩니다.F is factored into the equation so that the result can be displayed in seconds.

  • SampleFraction: ((N0)/(D1-D0)) x 100. 여기서 분자는 마지막 샘플 간격 동안의 성공한 작업 수를 나타내고, 분모는 샘플 간격 중 완료 된 모든 작업의 수 (측정 된 형식)의 변경 내용을 나타냅니다. 형식의 SampleBase카운터를 사용 합니다.SampleFraction: ((N1 - N0) / (D1 - D0)) x 100, where the numerator represents the number of successful operations during the last sample interval, and the denominator represents the change in the number of all operations (of the type measured) completed during the sample interval, using counters of type SampleBase.

  • Timer100Ns: (N1-N0)/(D1-D0) x 100. 여기서 분자는 모니터링 되는 구성 요소가 활성화 된 동안의 샘플 간격 부분을 나타내고 분모는 샘플 기간의 총 경과 시간을 나타냅니다.Timer100Ns: (N1 - N0) / (D1 - D0) x 100, where the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • Timer100NsInverse: (1-((N0)/(D1-D0))) x 100. 여기서 분자는 모니터링 되는 구성 요소가 비활성 상태인 시간을 나타내며, 분모는 샘플 기간의 총 경과 시간을 나타냅니다.Timer100NsInverse: (1- ((N1 - N0) / (D1 - D0))) x 100, where the numerator represents the time during the interval when the monitored components were inactive, and the denominator represents the total elapsed time of the sample interval.

적용 대상

추가 정보