Math.Log 메서드

정의

지정된 숫자의 로그를 반환합니다.Returns the logarithm of a specified number.

오버로드

Log(Double)

지정된 숫자의 자연(밑 e) 로그를 반환합니다.Returns the natural (base e) logarithm of a specified number.

Log(Double, Double)

지정된 밑을 사용하여 지정된 숫자의 로그를 반환합니다.Returns the logarithm of a specified number in a specified base.

Log(Double)

지정된 숫자의 자연(밑 e) 로그를 반환합니다.Returns the natural (base e) logarithm of a specified number.

public:
 static double Log(double d);
public static double Log (double d);
static member Log : double -> double
Public Shared Function Log (d As Double) As Double

매개 변수

d
Double

로그가 있는 숫자입니다.The number whose logarithm is to be found.

반환

Double

다음 표에 나와 있는 값 중 하나입니다.One of the values in the following table.

d 매개 변수d parameter 반환 값Return value
양수Positive d의 자연 로그인 ln d 또는 log e dThe natural logarithm of d; that is, ln d, or log e d
0Zero NegativeInfinity
음수Negative NaN
NaN과 같습니다.Equal to NaNNaN
PositiveInfinity과 같습니다.Equal to PositiveInfinityPositiveInfinity

예제

다음 예제에서는 메서드를 보여 줍니다 Log .The following example illustrates the Log method.

using System;
public class Example
{
   public static void Main()
   {
      Console.WriteLine("  Evaluate this identity with selected values for X:");
      Console.WriteLine("                              ln(x) = 1 / log[X](B)");
      Console.WriteLine();

      double[] XArgs = { 1.2, 4.9, 9.9, 0.1 };

      foreach (double argX in XArgs)
      {
         // Find natural log of argX.
         Console.WriteLine("                      Math.Log({0}) = {1:E16}",
                           argX, Math.Log(argX));

         // Evaluate 1 / log[X](e).
         Console.WriteLine("             1.0 / Math.Log(e, {0}) = {1:E16}",
                           argX, 1.0 / Math.Log(Math.E, argX));
         Console.WriteLine();
      }
   }
}
// This example displays the following output:
//         Evaluate this identity with selected values for X:
//                                     ln(x) = 1 / log[X](B)
//
//                             Math.Log(1.2) = 1.8232155679395459E-001
//                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
//
//                             Math.Log(4.9) = 1.5892352051165810E+000
//                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
//
//                             Math.Log(9.9) = 2.2925347571405443E+000
//                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
//
//                             Math.Log(0.1) = -2.3025850929940455E+000
//                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000
Module Example
   Sub Main()
      Console.WriteLine( _
         "  Evaluate this identity with selected values for X:")
      Console.WriteLine("                              ln(x) = 1 / log[X](B)")
      Console.WriteLine()
          
      Dim XArgs() As Double = { 1.2, 4.9, 9.9, 0.1 }
   
      For Each argX As Double In XArgs
         ' Find natural log of argX.
         Console.WriteLine("                      Math.Log({0}) = {1:E16}", _
                           argX, Math.Log(argX))

         ' Evaluate 1 / log[X](e).
         Console.WriteLine("             1.0 / Math.Log(e, {0}) = {1:E16}", _
                           argX, 1.0 / Math.Log(Math.E, argX))
         Console.WriteLine()
      Next
   End Sub 
End Module
' This example displays the following output:
'         Evaluate this identity with selected values for X:
'                                     ln(x) = 1 / log[X](B)
'       
'                             Math.Log(1.2) = 1.8232155679395459E-001
'                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
'       
'                             Math.Log(4.9) = 1.5892352051165810E+000
'                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
'       
'                             Math.Log(9.9) = 2.2925347571405443E+000
'                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
'       
'                             Math.Log(0.1) = -2.3025850929940455E+000
'                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000

설명

매개 변수가 d 밑수 10 숫자로 지정 됩니다.Parameter d is specified as a base 10 number.

이 메서드는 기본 C 런타임을 호출 하 고 정확한 결과 또는 올바른 입력 범위는 서로 다른 운영 체제 또는 아키텍처 간에 달라질 수 있습니다.This method calls into the underlying C runtime, and the exact result or valid input range may differ between different operating systems or architectures.

이 메서드는 기본 C 런타임을 호출 하 고 정확한 결과 또는 올바른 입력 범위는 서로 다른 운영 체제 또는 아키텍처 간에 달라질 수 있습니다.This method calls into the underlying C runtime, and the exact result or valid input range may differ between different operating systems or architectures.

추가 정보

적용 대상

Log(Double, Double)

지정된 밑을 사용하여 지정된 숫자의 로그를 반환합니다.Returns the logarithm of a specified number in a specified base.

public:
 static double Log(double a, double newBase);
public static double Log (double a, double newBase);
static member Log : double * double -> double
Public Shared Function Log (a As Double, newBase As Double) As Double

매개 변수

a
Double

로그가 있는 숫자입니다.The number whose logarithm is to be found.

newBase
Double

로그의 밑입니다.The base of the logarithm.

반환

Double

다음 표에 나와 있는 값 중 하나입니다.One of the values in the following table. +Infinity는 PositiveInfinity, -Infinity는 NegativeInfinity,NaN은 NaN을 의미합니다.(+Infinity denotes PositiveInfinity, -Infinity denotes NegativeInfinity, and NaN denotes NaN.)

anewBase 반환 값Return value
a> 0a> 0 (0 <newBase< 1) -또는-(newBase> 1)(0 <newBase< 1) -or-(newBase> 1) lognewBase(a)lognewBase(a)
a< 0a< 0 (모든 값)(any value) NaNNaN
(모든 값)(any value) newBase< 0newBase< 0 NaNNaN
a != 1a != 1 newBase = 0newBase = 0 NaNNaN
a != 1a != 1 newBase = +InfinitynewBase = +Infinity NaNNaN
a = NaNa = NaN (모든 값)(any value) NaNNaN
(모든 값)(any value) newBase = NaNnewBase = NaN NaNNaN
(모든 값)(any value) newBase = 1newBase = 1 NaNNaN
a = 0a = 0 0 <newBase< 10 <newBase< 1 +Infinity+Infinity
a = 0a = 0 newBase> 1newBase> 1 -Infinity-Infinity
a = +무한대a = +Infinity 0 <newBase< 10 <newBase< 1 -Infinity-Infinity
a = +무한대a = +Infinity newBase> 1newBase> 1 +Infinity+Infinity
a = 1a = 1 newBase = 0newBase = 0 00
a = 1a = 1 newBase = +InfinitynewBase = +Infinity 00

예제

다음 예에서는 Log 를 사용 하 여 선택한 값에 대 한 특정 로그 id를 평가 합니다.The following example uses Log to evaluate certain logarithmic identities for selected values.

// Example for the Math::Log( double ) and Math::Log( double, double ) methods.
using namespace System;

// Evaluate logarithmic identities that are functions of two arguments.
void UseBaseAndArg( double argB, double argX )
{
   
   // Evaluate log(B)[X] == 1 / log(X)[B].
   Console::WriteLine( "\n                     Math::Log({1}, {0}) == {2:E16}"
   "\n               1.0 / Math::Log({0}, {1}) == {3:E16}", argB, argX, Math::Log( argX, argB ), 1.0 / Math::Log( argB, argX ) );
   
   // Evaluate log(B)[X] == ln[X] / ln[B].
   Console::WriteLine( "         Math::Log({1}) / Math::Log({0}) == {2:E16}", argB, argX, Math::Log( argX ) / Math::Log( argB ) );
   
   // Evaluate log(B)[X] == log(B)[e] * ln[X].
   Console::WriteLine( "Math::Log(Math::E, {0}) * Math::Log({1}) == {2:E16}", argB, argX, Math::Log( Math::E, argB ) * Math::Log( argX ) );
}

void main()
{
   Console::WriteLine( "This example of Math::Log( double ) and "
   "Math::Log( double, double )\n"
   "generates the following output.\n" );
   Console::WriteLine( "Evaluate these identities with "
   "selected values for X and B (base):" );
   Console::WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
   Console::WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
   Console::WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );
   UseBaseAndArg( 0.1, 1.2 );
   UseBaseAndArg( 1.2, 4.9 );
   UseBaseAndArg( 4.9, 9.9 );
   UseBaseAndArg( 9.9, 0.1 );
}

/*
This example of Math::Log( double ) and Math::Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                     Math::Log(1.2, 0.1) == -7.9181246047624818E-002
               1.0 / Math::Log(0.1, 1.2) == -7.9181246047624818E-002
         Math::Log(1.2) / Math::Log(0.1) == -7.9181246047624818E-002
Math::Log(Math::E, 0.1) * Math::Log(1.2) == -7.9181246047624804E-002

                     Math::Log(4.9, 1.2) == 8.7166610085093179E+000
               1.0 / Math::Log(1.2, 4.9) == 8.7166610085093161E+000
         Math::Log(4.9) / Math::Log(1.2) == 8.7166610085093179E+000
Math::Log(Math::E, 1.2) * Math::Log(4.9) == 8.7166610085093179E+000

                     Math::Log(9.9, 4.9) == 1.4425396251981288E+000
               1.0 / Math::Log(4.9, 9.9) == 1.4425396251981288E+000
         Math::Log(9.9) / Math::Log(4.9) == 1.4425396251981288E+000
Math::Log(Math::E, 4.9) * Math::Log(9.9) == 1.4425396251981288E+000

                     Math::Log(0.1, 9.9) == -1.0043839404494075E+000
               1.0 / Math::Log(9.9, 0.1) == -1.0043839404494075E+000
         Math::Log(0.1) / Math::Log(9.9) == -1.0043839404494075E+000
Math::Log(Math::E, 9.9) * Math::Log(0.1) == -1.0043839404494077E+000
*/
// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
using System;

class LogDLogDD
{
    public static void Main()
    {
        Console.WriteLine(
            "This example of Math.Log( double ) and " +
            "Math.Log( double, double )\n" +
            "generates the following output.\n" );
        Console.WriteLine(
            "Evaluate these identities with " +
            "selected values for X and B (base):" );
        Console.WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
        Console.WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
        Console.WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );

        UseBaseAndArg(0.1, 1.2);
        UseBaseAndArg(1.2, 4.9);
        UseBaseAndArg(4.9, 9.9);
        UseBaseAndArg(9.9, 0.1);
    }

    // Evaluate logarithmic identities that are functions of two arguments.
    static void UseBaseAndArg(double argB, double argX)
    {
        // Evaluate log(B)[X] == 1 / log(X)[B].
        Console.WriteLine(
            "\n                   Math.Log({1}, {0}) == {2:E16}" +
            "\n             1.0 / Math.Log({0}, {1}) == {3:E16}",
            argB, argX, Math.Log(argX, argB),
            1.0 / Math.Log(argB, argX) );

        // Evaluate log(B)[X] == ln[X] / ln[B].
        Console.WriteLine(
            "        Math.Log({1}) / Math.Log({0}) == {2:E16}",
            argB, argX, Math.Log(argX) / Math.Log(argB) );

        // Evaluate log(B)[X] == log(B)[e] * ln[X].
        Console.WriteLine(
            "Math.Log(Math.E, {0}) * Math.Log({1}) == {2:E16}",
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX) );
    }
}

/*
This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                   Math.Log(1.2, 0.1) == -7.9181246047624818E-002
             1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
        Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002

                   Math.Log(4.9, 1.2) == 8.7166610085093179E+000
             1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
        Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000

                   Math.Log(9.9, 4.9) == 1.4425396251981288E+000
             1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
        Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000

                   Math.Log(0.1, 9.9) == -1.0043839404494075E+000
             1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
        Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
*/
' Example for the Math.Log( Double ) and Math.Log( Double, Double ) methods.
Module LogDLogDD
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Log( Double ) and " + _
            "Math.Log( Double, Double )" & vbCrLf & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate these identities with selected " & _
            "values for X and B (base):")
        Console.WriteLine("   log(B)[X] = 1 / log(X)[B]")
        Console.WriteLine("   log(B)[X] = ln[X] / ln[B]")
        Console.WriteLine("   log(B)[X] = log(B)[e] * ln[X]")
          
        UseBaseAndArg(0.1, 1.2)
        UseBaseAndArg(1.2, 4.9)
        UseBaseAndArg(4.9, 9.9)
        UseBaseAndArg(9.9, 0.1)
    End Sub
       
    ' Evaluate logarithmic identities that are functions of two arguments.
    Sub UseBaseAndArg(argB As Double, argX As Double)

        ' Evaluate log(B)[X] = 1 / log(X)[B].
        Console.WriteLine( _
            vbCrLf & "                   Math.Log({1}, {0}) = {2:E16}" + _
            vbCrLf & "             1.0 / Math.Log({0}, {1}) = {3:E16}", _
            argB, argX, Math.Log(argX, argB), _
            1.0 / Math.Log(argB, argX))
          
        ' Evaluate log(B)[X] = ln[X] / ln[B].
        Console.WriteLine( _
            "        Math.Log({1}) / Math.Log({0}) = {2:E16}", _
            argB, argX, Math.Log(argX) / Math.Log(argB))
          
        ' Evaluate log(B)[X] = log(B)[e] * ln[X].
        Console.WriteLine( _
            "Math.Log(Math.E, {0}) * Math.Log({1}) = {2:E16}", _
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX))

    End Sub
End Module 'LogDLogDD

' This example of Math.Log( Double ) and Math.Log( Double, Double )
' generates the following output.
' 
' Evaluate these identities with selected values for X and B (base):
'    log(B)[X] = 1 / log(X)[B]
'    log(B)[X] = ln[X] / ln[B]
'    log(B)[X] = log(B)[e] * ln[X]
' 
'                    Math.Log(1.2, 0.1) = -7.9181246047624818E-002
'              1.0 / Math.Log(0.1, 1.2) = -7.9181246047624818E-002
'         Math.Log(1.2) / Math.Log(0.1) = -7.9181246047624818E-002
' Math.Log(Math.E, 0.1) * Math.Log(1.2) = -7.9181246047624804E-002
' 
'                    Math.Log(4.9, 1.2) = 8.7166610085093179E+000
'              1.0 / Math.Log(1.2, 4.9) = 8.7166610085093161E+000
'         Math.Log(4.9) / Math.Log(1.2) = 8.7166610085093179E+000
' Math.Log(Math.E, 1.2) * Math.Log(4.9) = 8.7166610085093179E+000
' 
'                    Math.Log(9.9, 4.9) = 1.4425396251981288E+000
'              1.0 / Math.Log(4.9, 9.9) = 1.4425396251981288E+000
'         Math.Log(9.9) / Math.Log(4.9) = 1.4425396251981288E+000
' Math.Log(Math.E, 4.9) * Math.Log(9.9) = 1.4425396251981288E+000
' 
'                    Math.Log(0.1, 9.9) = -1.0043839404494075E+000
'              1.0 / Math.Log(9.9, 0.1) = -1.0043839404494075E+000
'         Math.Log(0.1) / Math.Log(9.9) = -1.0043839404494075E+000
' Math.Log(Math.E, 9.9) * Math.Log(0.1) = -1.0043839404494077E+000

설명

이 메서드는 기본 C 런타임을 호출 하 고 정확한 결과 또는 올바른 입력 범위는 서로 다른 운영 체제 또는 아키텍처 간에 달라질 수 있습니다.This method calls into the underlying C runtime, and the exact result or valid input range may differ between different operating systems or architectures.

적용 대상