This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Creating a
Data Access Layer

Introduction

As web developers, our lives revolve around working with data. We create databases to store the data, code to
retrieve and modify it, and web pages to collect and summarize it. This is the first tutorial in a lengthy series
that will explore techniques for implementing these common patterns in ASP.NET 2.0. We'll start with creating
a software architecture composed of a Data Access Layer (DAL) using Typed DataSets, a Business Logic Layer
(BLL) that enforces custom business rules, and a presentation layer composed of ASP.NET pages that share a
common page layout. Once this backend groundwork has been laid, we'll move into reporting, showing how to
display, summarize, collect, and validate data from a web application. These tutorials are geared to be concise
and provide step-by-step instructions with plenty of screen shots to walk you through the process visually. Each
tutorial is available in C# and Visual Basic versions and includes a download of the complete code used. (This
first tutorial is quite lengthy, but the rest are presented in much more digestible chunks.)

For these tutorials we'll be using a Microsoft SQL Server 2005 Express Edition version of the Northwind
database placed in the App Data directory. In addition to the database file, the app Data folder also contains
the SQL scripts for creating the database, in case you want to use a different database version. These scripts can
be also be downloaded directly from Microsoft, if you'd prefer. If you use a different SQL Server version of the
Northwind database, you will need to update the NORTHWNDConnectionString setting in the application's
web.config file. The web application was built using Visual Studio 2005 Professional Edition as a file system-
based Web site project. However, all of the tutorials will work equally well with the free version of Visual
Studio 2005, Visual Web Developer.

In this tutorial we'll start from the very beginning and create the Data Access Layer (DAL), followed by
creating the Business Logic Layer (BLL) in the second tutorial, and working on page layout and navigation in
the third. The tutorials after the third one will build upon the foundation laid in the first three. We've got a lot to
cover in this first tutorial, so fire up Visual Studio and let's get started!

Step 1: Creating a Web Project and Connecting to
the Database

Before we can create our Data Access Layer (DAL), we first need to create a web site and setup our database.
Start by creating a new file system-based ASP.NET web site. To accomplish this, go to the File menu and
choose New Web Site, displaying the New Web Site dialog box. Choose the ASP.NET Web Site template, set
the Location drop-down list to File System, choose a folder to place the web site, and set the language to Visual
Basic.

1 of 33

Templates: I:I -:l
Visual Studio installed templates

2 2 2 e

ASP NET Web ASFBET Weh Perconal'Wsh Empty Wieb
Sika Sardee Sia Starber KR St

My Templates

=

Search Online
Tenplates, .,

A blsnk ASP.MET \Web ste

Location; Fie System w | | CiiDakaTutoria || Browss...
Lamgusge! Wisusl Basic v
[K || Carcel

Figure 1: Create a New File System-Based Web Site

This will create a new web site with a befault.aspx ASP.NET page, an app Data folder, and a web.config
file.

With the web site created, the next step is to add a reference to the database in Visual Studio's Server Explorer.
By adding a database to the Server Explorer you can add tables, stored procedures, views, and so on all from
within Visual Studio. You can also view table data or create your own queries either by hand or graphically via
the Query Builder. Furthermore, when we build the Typed DataSets for the DAL we'll need to point Visual
Studio to the database from which the Typed DataSets should be constructed. While we can provide this
connection information at that point in time, Visual Studio automatically populates a drop-down list of the
databases already registered in the Server Explorer.

The steps for adding the Northwind database to the Server Explorer depend on whether you want to use the
SQL Server 2005 Express Edition database in the App Data folder or if you have a Microsoft SQL Server 2000
or 2005 database server setup that you want to use instead.

Using a Database in the app Data Folder

If you do not have a SQL Server 2000 or 2005 database server to connect to, or you simply want to avoid
having to add the database to a database server, you can use the SQL Server 2005 Express Edition version of
the Northwind database that is located in the downloaded website's App Data folder (NORTHWND . MDF).

A database placed in the App Data folder is automatically added to the Server Explorer. Assuming you have
SQL Server 2005 Express Edition installed on your machine you should see a node named NORTHWND.MDF
in the Server Explorer, which you can expand and explore its tables, views, stored procedure, and so on (see
Figure 2).

The app Data folder can also hold Microsoft Access .mdb files, which, like their SQL Server counterparts, are
automatically added to the Server Explorer. If you don't want to use any of the SQL Server options, you can
always download a Microsoft Access version of the Northwind database file and drop into the App Data
directory. Keep in mind, however, that Access databases aren't as feature-rich as SQL Server, and aren't
designed to be used in web site scenarios. Furthermore, a couple of the 35+ tutorials will utilize certain
database-level features that aren't supported by Access.

2 of 33

Connecting to the Database in a Microsoft SQL
Server 2000 or 2005 Database Server

Alternatively, you may connect to a Northwind database installed on a database server. If the database server
does not already have the Northwind database installed, you first must add it to database server by running the
installation script included in this tutorial's download or by downloading the SQL Server 2000 version of
Northwind and installation script directly from Microsoft's web site.

Once you have the database installed, go to the Server Explorer in Visual Studio, right-click on the Data
Connections node, and choose Add Connection. If you don't see the Server Explorer go to the View / Server
Explorer, or hit Ctrl+Alt+S. This will bring up the Add Connection dialog box, where you can specify the
server to connect to, the authentication information, and the database name. Once you have successfully
configured the database connection information and clicked the OK button, the database will be added as a node
underneath the Data Connections node. You can expand the database node to explore its tables, views, stored
procedures, and so on.

Server Explorer
(2] [<] | 4 .
= [Jd Data Connections
(=R ORTHYND, MDF
=~ [Tables
j Zakegories
j ZusktormenZustomerDemo
j CustomerDemographics
j Zuskamers
] Employees
j EmploveeTerritories
] order Details
] orders
] Products
j Region
] shippers
] suppliers
= j Territories
- [Views
[+ [Stored Procedures
- [Funckions
[+ -_!'.% Servers

-l‘__:gSu:qutiu:un Explorer f'gServer Explarer

Figure 2: Add a Connection to Your Database Server's Northwind Database

Step 2: Creating the Data Access Layer

When working with data one option is to embed the data-specific logic directly into the presentation layer (in a
web application, the ASP.NET pages make up the presentation layer). This may take the form of writing
ADO.NET code in the ASP.NET page's code portion or using the SqlDataSource control from the markup
portion. In either case, this approach tightly couples the data access logic with the presentation layer. The
recommended approach, however, is to separate the data access logic from the presentation layer. This separate
layer is referred to as the Data Access Layer, DAL for short, and is typically implemented as a separate Class

3 0f33

Library project. The benefits of this layered architecture are well documented (see the "Further Readings"
section at the end of this tutorial for information on these advantages) and is the approach we will take in this
series.

All code that is specific to the underlying data source — such as creating a connection to the database, issuing
SELECT, INSERT, UPDATE, and DELETE commands, and so on — should be located in the DAL. The presentation
layer should not contain any references to such data access code, but should instead make calls into the DAL for
any and all data requests. Data Access Layers typically contain methods for accessing the underlying database
data. The Northwind database, for example, has Products and categories tables that record the products for
sale and the categories to which they belong. In our DAL we will have methods like:

e GetCategories (), which will return information about all of the categories

e GetProducts (), which will return information about all of the products

e GetProductsByCategoryID (categoryID), which will return all products that belong to a specified
category

e GetProductByProductID (productID), which will return information about a particular product

These methods, when invoked, will connect to the database, issue the appropriate query, and return the results.
How we return these results is important. These methods could simply return a DataSet or DataReader
populated by the database query, but ideally these results should be returned using strongly-typed objects. A
strongly-typed object is one whose schema is rigidly defined at compile time, whereas the opposite, a loosely-
typed object, is one whose schema is not known until runtime.

For example, the DataReader and the DataSet (by default) are loosely-typed objects since their schema is
defined by the columns returned by the database query used to populate them. To access a particular column
from a loosely-typed DataTable we need to use syntax like: pataTable.Rows (index) ("columnName"). The
DataTable's loose typing in this example is exhibited by the fact that we need to access the column name using
a string or ordinal index. A strongly-typed DataTable, on the other hand, will have each of its columns
implemented as properties, resulting in code that looks like: pataTable.Rows (index) . columnName.

To return strongly-typed objects, developers can either create their own custom business objects or use Typed
DataSets. A business object is implemented by the developer as a class whose properties typically reflect the
columns of the underlying database table the business object represents. A Typed DataSet is a class generated
for you by Visual Studio based on a database schema and whose members are strongly-typed according to this
schema. The Typed DataSet itself consists of classes that extend the ADO.NET DataSet, DataTable, and
DataRow classes. In addition to strongly-typed DataTables, Typed DataSets now also include TableAdapters,
which are classes with methods for populating the DataSet's DataTables and propagating modifications within
the DataTables back to the database.

Note: For more information on the advantages and disadvantages of using Typed DataSets versus custom
business objects, refer to Designing Data Tier Components and Passing Data Through Tiers.

We'll use strongly-typed DataSets for these tutorials' architecture. Figure 3 illustrates the workflow between the
different layers of an application that uses Typed DataSets.

4 of 33

" Presentation | Data Access Layar-\
Layer :
(ASP.NET Pages) b b
NN =33
Database
b - \ i

Figure 3: All Data Access Code is Relegated to the DAL

Creating a Typed DataSet and Table Adapter

To begin creating our DAL, we start by adding a Typed DataSet to our project. To accomplish this, right-click
on the project node in the Solution Explorer and choose Add a New Item. Select the DataSet option from the list

of templates and name it Northwind. xsd.

-]
Add New ltem - C:Wy Projects\Writings\Wicrosoft\MSDH Articles\SDN Ontine Articles\DataTutori... |7 %]
Templakas; A=

Wisual Studio nstalled templates i
= £ L 1 -
- L) A I
= U - s & & M
Weh Forn Master Page Wb sy HTML Page ‘Wieh Sardce Class yle Sheat Fabal
Corkrol fppheati.. .
) 2 B B 5 u B 8
ay = 5 : =
Weh L il #ML Schems Teok Fl=2 Resource Fls SO0 Databass {Generic
Configurati. .. Haridar
T — L = L 2)
ada| d | l:l = E __j ::-'Jﬂ .
Sike MHap HMobis web VBScript Pl Reaport JSiript File Mobile VWb Mobils Wb ¥5LT Fle
Form User Control Configurati.... w
& ke [ge resbieeg &n KR Schems with Datasen dadas
[dame: Morthwind wsd
[_gad | [corce

Figure 4: Choose to Add a New DataSet to Your Project

After clicking Add, when prompted to add the DataSet to the app_code folder, choose Yes. The Designer for
the Typed DataSet will then be displayed, and the TableAdapter Configuration Wizard will start, allowing you
to add your first TableAdapter to the Typed DataSet.

A Typed DataSet serves as a strongly-typed collection of data; it is composed of strongly-typed DataTable
instances, each of which is in turn composed of strongly-typed DataRow instances. We will create a strongly-
typed DataTable for each of the underlying database tables that we need to work with in this tutorials series.
Let's start with creating a DataTable for the Products table.

Keep in mind that strongly-typed DataTables do not include any information on how to access data from their
underlying database table. In order to retrieve the data to populate the DataTable, we use a TableAdapter class,
which functions as our Data Access Layer. For our products DataTable, the TableAdapter will contain the
methods — GetProducts (), GetProductByCategoryID (categoryID), and so on — that we'll invoke from the

5 of 33

presentation layer. The DataTable's role is to serve as the strongly-typed objects used to pass data between the
layers.

The TableAdapter Configuration Wizard begins by prompting you to select which database to work with. The
drop-down list shows those databases in the Server Explorer. If you did not add the Northwind database to the
Server Explorer, you can click the New Connection button at this time to do so.

r

TableAdapter Configuration Wizard

Choose Your Data Connection
Specify the connection string required to connect ba the datshase,

Which dota connection should your application use bo connect to the datsbase?

Bl Connection string

Diata Sourcem. |SOLEXPRESS; AttachDbFlename=|DataDrectory|\ NORTHWND.MOF; Integrated
EIEELl'i',':THJE'jLEE'I' Instarce=Truge

Figure 5: Choose the Northwind Database from the Drop-Down List

After selecting the database and clicking Next, you'll be asked if you want to save the connection string in the
web.config file. By saving the connection string you'll avoid having it hard coded in the TableAdapter classes,
which simplifies things if the connection string information changes in the future. If you opt to save the
connection string in the configuration file it's placed in the <connectionstrings> section, which can be
optionally encrypted for improved security or modified later through the new ASP.NET 2.0 Property Page
within the IIS GUI Admin Tool, which is more ideal for administrators.

6 of 33

TableAdapter Configuration Wizard

Save the Connection String to the Application Configuration File
This step allows vau to name the connection string and save k.

Storing connection strings in your application configuration file eases mainbenance and deployment, To save the
connesction string in the applcation configuration file, enter a name n the box and then dicdk Next, IF you
choose not bo do this, Hha conmection string &5 saved 25 a propeety of the TableAdapter.

Do you want to save the connection string to the application configuration file?
[{¥es. zave the connection s}
WORTHWND ConnectionString

[<previos || pest>

Figure 6: Save the Connection String to Wweb.config

Next, we need to define the schema for the first strongly-typed DataTable and provide the first method for our
TableAdapter to use when populating the strongly-typed DataSet. These two steps are accomplished
simultaneously by creating a query that returns the columns from the table that we want reflected in our
DataTable. At the end of the wizard we'll give a method name to this query. Once that's been accomplished, this
method can be invoked from our presentation layer. The method will execute the defined query and populate a
strongly-typed DataTable.

To get started defining the SQL query we must first indicate how we want the TableAdapter to issue the query.
We can use an ad-hoc SQL statement, create a new stored procedure, or use an existing stored procedure. For
these tutorials we'll use ad-hoc SQL statements. Refer to Brian Noyes's article, Build a Data Access Layer with
the Visual Studio 2005 DataSet Designer for an example of using stored procedures.

7 of 33

=

TableAdapter Configuration Wizard

Choose a Command Type
The TableAdapter uses SOL skabemants or shored procedures,

Howe should the TableAdapber access the database?

Speciy 8 50U statement, If you provide a single-table SELECT statement, the wizerd can generate INSERT,
UPDATE; and DELETE statements fior vou.

[} Create new stored procedures

Spacify a S0L statement and the wizard will creaba a new stored procedure. IF you provide a single-table
SELECT skatement, the wizard can ganerate INSERT, UPDATE, and DELETE stored proceduires for you,

) Use existing stored procedures
Choose an exsting stored procedure For sach command (SELECT, INSERT, UPDWTE, and DELETE).

[<previows || met= |

Figure 7: Query the Data Using an Ad-Hoc SQL Statement

At this point we can type in the SQL query by hand. When creating the first method in the TableAdapter you
typically want to have the query return those columns that need to be expressed in the corresponding DataTable.
We can accomplish this by creating a query that returns all columns and all rows from the products table:

r

TableAdapter Configuration Wizard

Enter a SOL Statement
The TableAdapter uses the daba returned by this statemeant ba Fill its DataTable.

Type your SOL statement or use the Cuery Builder bo construct it. What data should be loaded into the table?
What data should be loaded inko the table?
SELECT ProductlD, Producthlame, SupplierID, CategoryID, QuankityPerUnit, UnikPrice, UnitsEnShock,

UritsOnidrder, Reorderbesal, Discontnuwed
FRIZM Products

[<previons || metx | [Einish

Figure 8: Enter the SQL Query Into the Textbox

Alternatively, use the Query Builder and graphically construct the query, as shown in Figure 9.

8 of 33

-
Quary Builder

| o CatugeryD

Tabke

Erochucts
Froducts
Frocucts
Prodiets
st PerUni Prosipctis
LirikPrice Frodits
UrksInstock Products
Lirdk s ey Products
Drdvnsytine | drvnisd [t T

:
i

ﬂﬂﬁﬂﬂmﬁmﬂg

w
»

ProduatID, PracuctPlang, SoppiedD, Cabega [0, Cusit®yEsl i, LinkPrics, Uik slraiock, LinksOndrdir, RaorderLinal, Degont s
Products

| Productn Froducdhlams SupplerD QuantityPariint
s] 10 berews = 20 b,
hang 1 24 - 13 o bokties
Brkseed Swun t 12 « S50l boktes
ihef Anton's Ca . 2 & - 02 jars

ofT7 | F M b

Figure 9: Create the Query Graphically, through the Query Editor

After creating the query, but before moving onto the next screen, click the Advanced Options button. In Web
Site Projects, "Generate Insert, Update, and Delete statements" is the only advanced option selected by default;
if you run this wizard from a Class Library or a Windows Project the "Use optimistic concurrency" option will
also be selected. Leave the "Use optimistic concurrency" option unchecked for now. We'll examine optimistic
concurrency in future tutorials.

-
Advanced Options

Additional Insert, Update, and Delste skatements can be generated to updake the data
SOurCe,
iGenerate Insert, Update and Delete statements:

Generates Insert, Lipdate, and Delete statements basad on your Select statement,
D Lise optimistic concurrency

Modifies Update and Delete statements to detect whether the database has changed
since the record was lnaded into the datasst, This helps prevent cancurrency conflicks.

[] Refresh the data kable

Adds & Select skatement after Insert and Updake statements ko rabrieve identiby column
values, default values, and other values calculated by the database.

C o J[e]

Figure 10: Select Only the "Generate Insert, Update, and Delete statements' Option

After verifying the advanced options, click Next to proceed to the final screen. Here we are asked to select
which methods to add to the TableAdapter. There are two patterns for populating data:

o Fill a DataTable — with this approach a method is created that takes in a DataTable as a parameter and

90f33

populates it based on the results of the query. The ADO.NET DataAdapter class, for example,
implements this pattern with its Fi11 () method.

e Return a DataTable — with this approach the method creates and fills the DataTable for you and returns
it as the methods return value.

You can have the TableAdapter implement one or both of these patterns. You can also rename the methods
provided here. Let's leave both checkboxes checked, even though we'll only be using the latter pattern
throughout these tutorials. Also, let's rename the rather generic Getbata method to GetProducts.

If checked, the final checkbox, "GenerateDBDirectMethods," creates Insert (), Update (), and Delete ()
methods for the TableAdapter. If you leave this option unchecked, all updates will need to be done through the
TableAdapter's sole update () method, which takes in the Typed DataSet, a DataTable, a single DataRow, or an
array of DataRows. (If you've unchecked the "Generate Insert, Update, and Delete statements" option from the
advanced properties in Figure 9 this checkbox's setting will have no effect.) Let's leave this checkbox selected.

-
TableAdapter Configuration Wizard

Choose Methods to Generate

The Tableadapter methods lbad snd save data bebween your spplication snd the
database,

‘Which methods do you want to add to the TableAdapter?
[+] Fill a DataTable

Creates a method that takes a DataTable or DakaSet o & parameter and executes the 50U stabement or
SELECT stored procedure entered on the prendous page.,

Method name: Rl
[+] Return a DataTable

Creates a mathod that returns a nesy DataTable filed with e resulks of the SCL statement or SELECT stored
procedura entered on the prendous page,

Method name: GetPraducts
[+#] Create methods to send ypdates directly to the database {GenerateDBDirectMethods)

Craates Insert, Update, and Delete methods that can be called to send indwidual row changes directly to tha
database.

[{Ertvihus’- H Mexk = || Eirigh —H Cancel]

Figure 11: Change the Method Name from GetData to GetProducts

Complete the wizard by clicking Finish. After the wizard closes we are returned to the DataSet Designer which
shows the DataTable we just created. You can see the list of columns in the Products DataTable (Product1Dp,
ProductName, and so on), as well as the methods of the ProductsTableAdapter (Fill () and GetProducts

0).

10 of 33

T Code - Microssi! Visual Studie

Bl Edt e Welghe Bold Debog Data

L g-.;;ld A L2

el x
1 =
- DstaSet GERT
L | P CiueCode,
vy TabsaRdapter = J-I?uo_c-_t:-de
W Dusry =
'3 DakaTable =1 ﬂ'ﬂm
_—': Salyion Frodustln -
eneral Frocc Hiame
SupcderiD
Thary ars no bl CategoryID
ponkroks in s groun CuantityPeiLing
Drag an kem onba B LindPrice:
Euct ko addd @ 1 the i
el LirtalirStad
Lindts0nvdes
Fmorder, sl
Cepoondinesd
L PrercaTis
o Fil GatProchts O
Sgsokt... “Hrvop.. Mgce JF e
2 P Lint | (3] Ot { S, P s |
Rmacky

Figure 12: The Products DataTable and ProductsTableAdapter have been Added to the Typed DataSet

At this point we have a Typed DataSet with a single DataTable (Northwind.Products) and a strongly-typed
DataAdapter class (NorthwindTableAdapters.ProductsTableAdapter) With a GetProducts () method.
These objects can be used to access a list of all products from code like:

Dim productsAdapter As New NorthwindTableAdapters.ProductsTableAdapter ()
Dim products as Northwind.ProductsDataTable

products = productsAdapter.GetProducts ()

For Each productRow As Northwind.ProductsRow In products
Response.Write ("Product: " & productRow.ProductName & "
")
Next

This code did not require us to write one bit of data access-specific code. We did not have to instantiate any
ADO.NET classes, we didn't have to refer to any connection strings, SQL queries, or stored procedures. Instead,
the TableAdapter provides the low-level data access code for us.

Each object used in this example is also strongly-typed, allowing Visual Studio to provide IntelliSense and
compile-time type checking. And best of all the DataTables returned by the TableAdapter can be bound to
ASP.NET data Web controls, such as the GridView, DetailsView, DropDownList, CheckBoxList, and several
others. The following example illustrates binding the DataTable returned by the GetProducts () method to a
GridView in just a scant three lines of code within the Page Load event handler.

AllProducts.aspx

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="AllProducts.aspx.cs"
Inherits="AllProducts" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>View All Products in a GridView</title>
<link href="Styles.css" rel="stylesheet" type="text/css" />

11 of 33

</head>

<body>
<form id="forml" runat="server">
<div>
<hl>
All Products</hl>
<p>
<asp:GridView ID="GridViewl" runat="server"
CssClass="DataWebControlStyle">
<HeaderStyle CssClass="HeaderStyle" />
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
</asp:GridView>
</p>
</div>
</form>
</body>
</html>
AllProducts.aspx.vb

Imports NorthwindTableAdapters

Partial Class AllProducts
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim productsAdapter As New ProductsTableAdapter
GridViewl.DataSource = productsAdapter.GetProducts ()
GridViewl.DataBind ()
End Sub
End Class

3 View Al Products in a GridView Microsoft Internel Explorcr
Bl Edt Wew Fawortes Tools Help

4 Smarch Pavorkes &

Adedrees |48 bt floc it 354 o AP roducts. asp:

Productlll Producthlame [Supplierl|Category ID|QuantityPerUnit{UnitPrice Units InS
10k 20

ol 18,0000

ags

chang E;E;:f i 19,0000

Chal

12 - B850 ml
bottles

48 - & 0Z jars 22,0000

Anizesd Syrup 10,0000

Chef Anton's
Cajn Seasoning
Chef Anton's
Gumbo Mix
Grandma's
Boysenberry 12 - B oz jars 25, 0000
Spread

Unde Bob's

36 boxes 21.3500

Figure 13: The List of Products is Displayed in a GridView

While this example required that we write three lines of code in our ASP.NET page's page Load event handler,
in future tutorials we'll examine how to use the ObjectDataSource to declaratively retrieve the data from the

12 of 33

DAL. With the ObjectDataSource we'll not have to write any code and will get paging and sorting support as
well!

Step 3: Adding Parameterized Methods to the Data
Access Layer

At this point our ProductsTableAdapter class has but one method, GetpProducts (), which returns all of the
products in the database. While being able to work with all products is definitely useful, there are times when
we'll want to retrieve information about a specific product, or all products that belong to a particular category.
To add such functionality to our Data Access Layer we can add parameterized methods to the TableAdapter.

Let's add the GetProductsByCategoryID (categoryID) method. To add a new method to the DAL, return to
the DataSet Designer, right-click in the ProductsTableAdapter section, and choose Add Query.

| App_Code/Northwind.xsd* |

¥ ProductID
Productiame
SupplierID
CategoryID
QuantityPerlUnit
InitPrice
InitsInStock,
InitsonCirder
ReorderLevel

Discontinued

8 ProductsTableAdapter [%]

sz Fill, metProducts ()

Add Query, ..

Configure, ..

et
j Preview Data...
[Z] wiew Code

|_=| Properties

Figure 14: Right-Click on the TableAdapter and Choose Add Query

We are first prompted about whether we want to access the database using an ad-hoc SQL statement or a new or
existing stored procedure. Let's choose to use an ad-hoc SQL statement again. Next, we are asked what type of
SQL query we'd like to use. Since we want to return all products that belong to a specified category, we want to
write a SELECT statement which returns rows.

13 of 33

r

TableAdapter Query Configuration Wizard

Choose a Query Type
Chooss the bype of quary bo be genersted

¥hat type of SQL query would you like to use?
(2 {SELECT which returns rovs |
Fieiums one or many rows or columns.
() SELECT which returns a single value
Returns & sngle value (for example, Sum, Count, or any other sggregats functian).
() UPDATE
Changes existing data in a tshle,
) DELETE
Remaves rows from 4 tsble,
) INSERT
Adds & nes row to a kable,

[<previows || met= |

Figure 15: Choose to Create a sELECT Statement Which Returns Rows

The next step is to define the SQL query used to access the data. Since we want to return only those products
that belong to a particular category, I use the same SeLECT statement from GetProducts (), but add the
following wHERE clause: WHERE CategoryID = @CategoryID. The @CategoryID parameter indicates to the
TableAdapter wizard that the method we're creating will require an input parameter of the corresponding type
(namely, a nullable integer).

TableAdapter Query Configuration Wizard

Specify a SOL SELECT statement
The SELECT statement will be used by the query.

Type your SCL stabement or use the Cuery Builder bo construct it. ‘What daka should be loaded into the table?
What data should the table load?

SELECT ProductID, Producthlame, SupplierID, CategoryID, QuankityPerlnit, UniPrice, UnitsInStock,
UrnitsOnirder, Reorderlesal, Disconknuwed

FROM Products

WHERE CategorylD = @CategoryID

[<previows || wets || mnish | [cones |

Figure 16: Enter a Query to Only Return Products in a Specified Category

14 of 33

In the final step we can choose which data access patterns to use, as well as customize the names of the methods
generated. For the Fill pattern, let's change the name to Fil1ByCategoryID and for the return a DataTable
return pattern (the cet x methods), let's use Get ProductsByCategoryID.

-
TableAdapter Query Configuration Wizard
Choose Methods to Generate

The TableAdapter methads losd snd save dats bebween your spplicstion snd the
database,

Which methods do you want to add to the TableAdapter?
[] Fill a DataTabile

Creates a method that takes a DataTable or DakaSet o & parameter and executes the 50U stabement or
SELECT stored procedure entered on the prendous page.,

Method name: FM?Cata-gury!D

[] Return a DataTable

Creates a method that retumns a nesw DataTable filed with the results of the S04 statement or SELECT stored
procedura entered on the prendous page,

Method name: GetFroductsByCategoryID|

[<previows || mets || sk | [conce |

Figure 17: Choose the Names for the TableAdapter Methods

After completing the wizard, the DataSet Designer includes the new TableAdapter methods.

_~App_Code /Northwind.xsd* | - X

E: Products [#]

¥ ProductID
ProductMame
SupplierID
CategoryID
QuantityPerlnit
InitPrice
InitsInStock,
InitsOndrder
ReorderLevel
Discontinued

Figure 18: The Products Can Now be Queried by Category
Take a moment to add a Get ProductByProductID (productID) method using the same technique.

These parameterized queries can be tested directly from the DataSet Designer. Right-click on the method in the

15 of 33

TableAdapter and choose Preview Data. Next, enter the values to use for the parameters and click Preview.

Sabect s phimek bo previsw: Paramebers:

Mot havined . Praduucts, FlECabegor v Get Prod » | Hame Tvpe Walue
(1) CategorylD Int32

Rorsuls:

Froductin Producthlams CauanbikyPorLind UinitPrice
Chai 10 ks = 20 b, | 15,0000

Charg & - 12 oz bottes | 19,0000
| Gusand Fantss. . | ' [1z-35mcans | +.5000
bm.ub:l'ﬂe [.'.-l:.'l:zb-ntﬂes- .]'1‘.L'IJ5|.|
[Pr—— 26 12 oz botties | 19,0000
[Edte de Baye ' [1278 dibctties | 269,500
[— 750 cc per bektle | 19,0000
[y, ' [16-so0gbns | +6.0000

Lansghing Lumbia, ' |26+ 12 oz botties. | 14,0000
| crtback Lager ' |24 - 308 mi bottes | 15,0000

Cobmms: 12 Rows: 12

Figure 19: Those Products Belonging to the Beverages Category are Shown
With the GetProductsByCategoryID (categoryID) method in our DAL, we can now create an ASP.NET page
that displays only those products in a specified category. The following example shows all products that are in

the Beverages category, which have a categoryID of 1.

Beverages.aspx

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Beverages.aspx.cs"
Inherits="Beverages" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>
<link href="Styles.css" rel="stylesheet" type="text/css" />

</head>
<body>
<form id="forml" runat="server">
<div>
<hl>Beverages</hl>
<p>
<asp:GridView ID="GridViewl" runat="server"
CssClass="DataWebControlStyle">
<HeaderStyle CssClass="HeaderStyle" />
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
</asp:GridView>
</p>
</div>
</form>
</body>
</html>

16 of 33

Beverages.aspx.vb

Imports NorthwindTableAdapters

Partial Class Beverages
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim productsAdapter As New ProductsTableAdapter
Gridviewl.DataSource =
productsAdapter.GetProductsByCategoryID (1)
GridViewl.DataBind ()
End Sub
End Class

N Untitied Pags - Microzaft Internet Explorer

s Edt Yiew Fayoortes Tools Help
Qbeck = &3 - = @ & O Sewch frFavokes £
Aoy -B'_'| Bty fiocalhost ; 1 84 ndeBerverages, s

Beverages

10 boxes x 20
bags

24 =12 02
bottes

10 12 - 255 mi cans 4,3000

Chai 18,0000

Charg 19,0000

Glarans
Faritdstca

Sasquatch ale 16 24-12 0z

bottles
24 = 12 o2
bottes

140000 111

Stesleye Stout 16 18.0000 20

Cote de Blaye 18 12 - 75 d bottles 263 5000 17

Chartrevse
werts
Innh Coffies 1R - SN A Hne 4F DNOR 17

TEQ oo per bottle 18.0000 &3

% Locd intraret:

Figure 20: Those Products in the Beverages Category are Displayed

Step 4: Inserting, Updating, and Deleting Data

There are two patterns commonly used for inserting, updating, and deleting data. The first pattern, which I'll call
the database direct pattern, involves creating methods that, when invoked, issue an INSERT, UPDATE, Or DELETE
command to the database that operates on a single database record. Such methods are typically passed in a
series of scalar values (integers, strings, Booleans, DateTimes, and so on) that correspond to the values to insert,
update, or delete. For example, with this pattern for the products table the delete method would take in an
integer parameter, indicating the Product1D of the record to delete, while the insert method would take in a
string for the ProductName, a decimal for the unitprice, an integer for the unitsonstock, and so on.

17 of 33

~ myhAdaptar
ASP.NET Page (Products
Dim wyAdapter As New Tahlﬂﬁdﬂp'ﬂj

e e —-
POl URdalol.) — ss—

myhdapter _:'_ alak | —
i J—tm

Figure 21: Each Insert, Update, and Delete Request is Sent to the Database Immediately

-

The other pattern, which I'll refer to as the batch update pattern, is to update an entire DataSet, DataTable, or
collection of DataRows in one method call. With this pattern a developer deletes, inserts, and modifies the
DataRows in a DataTable and then passes those DataRows or DataTable into an update method. This method
then enumerates the DataRows passed in, determines whether or not they've been modified, added, or deleted
(via the DataRow's RowState property value), and issues the appropriate database request for each record.

ASP.NET Page
bl LR P
o r'.:u":l'l' ceaih | myAdapter
- {Products
TN TableAdapter)

Figure 22: All Changes are Synchronized with the Database When the Update Method is Invoked

The TableAdapter uses the batch update pattern by default, but also supports the DB direct pattern. Since we
selected the "Generate Insert, Update, and Delete statements" option from the Advanced Properties when
creating our TableAdapter, the ProductsTableAdapter contains an Update () method, which implements the
batch update pattern. Specifically, the TableAdapter contains an Update () method that can be passed the Typed
DataSet, a strongly-typed DataTable, or one or more DataRows. If you left the "GenerateDBDirectMethods"
checkbox checked when first creating the TableAdapter the DB direct pattern will also be implemented via
Insert (), Update (), and Delete () methods.

Both data modification patterns use the TableAdapter's InsertCommand, UpdateCommand, and DeleteCommand
properties to issue their INSERT, UPDATE, and DELETE commands to the database. You can inspect and modify
the InsertCommand, UpdateCommand, and DeleteCommand properties by clicking on the TableAdapter in the
DataSet Designer and then going to the Properties window. (Make sure you have selected the TableAdapter,
and that the ProductsTableAdapter object is the one selected in the drop-down list in the Properties window.)

18 of 33

*% Code - Micresef Yiswal Studic

W Products TableAdapter

w By Category D, GatProduct sy CabegoryID [ategerylD]

CowmnandTaxt

Paraimeters

Uipdatel ommmand
S0 comiand Lo update data i a delabace

Sgiohtion .. | “iFroperiies | By S
5 Ervor Lisk [3 Deutpus | S Frd Resaks 2
Ready

Figure 23: The TableAdapter has InsertCommand, UpdateCommand, and DeleteCommand Properties

To examine or modify any of these database command properties, click on the commandText subproperty,
which will bring up the Query Builder.

[

Query Builder

=

@froducth, .
5upphesD

SlstmgorylD
DOuAEY, .

IIEHIEHE

»

SET Productilame = @FToductMame, SupplierlD = @rSuppleriD, CategorylD = @CategarylD, QuanttyPerUnt = §ouantt
LUritsInStock = @_nits[nStock, UnksOnOrder = @UntsOnOrder, Reorderlevel = @Reorderevel, Discontirusd = @i
WHERE (ProductID = @Criginal_ProdoctiD)

Figure 24: Configure the INSERT, UPDATE, and DELETE Statements in the Query Builder

The following code example shows how to use the batch update pattern to double the price of all products that
are not discontinued and that have 25 units in stock or less:

19 of 33

Dim productsAdapter As New NorthwindTableAdapters.ProductsTableAdapter ()

Dim products As Northwind.ProductsDataTable = productsAdapter.GetProducts ()
For Each product As Northwind.ProductsRow In products
If Not product.Discontinued AndAlso product.UnitsInStock <= 25 Then
product.UnitPrice *= 2
End if
Next

productsAdapter.Update (products)

The code below illustrates how to use the DB direct pattern to programmatically delete a particular product,
then update one, and then add a new one:

Dim productsAdapter As New NorthwindTableAdapters.ProductsTableAdapter ()
productsAdapter.Delete (3)

productsAdapter.Update (
"Chai", 1, 1, "10 boxes x 20 bags", 18.0, 39, 15, 10, false, 1)

productsAdapter.Insert (_
"New Product", 1, 1, "12 tins per carton", 14.95, 15, 0, 10, false)

Creating Custom Insert, Update, and Delete
Methods

The Tnsert (), Update (), and Delete () methods created by the DB direct method can be a bit cumbersome,
especially for tables with many columns. Looking at the previous code example, without IntelliSense's help it's
not particularly clear what products table column maps to each input parameter to the update () and Insert ()
methods. There may be times when we only want to update a single column or two, or want a customized
Insert () method that will, perhaps, return the value of the newly inserted record's IDENTITY (auto-increment)
field.

To create such a custom method, return to the DataSet Designer. Right-click on the TableAdapter and choose
Add Query, returning to the TableAdapter wizard. On the second screen we can indicate the type of query to
create. Let's create a method that adds a new product and then returns the value of the newly added record's
productID. Therefore, opt to create an INSERT query.

20 of 33

r

TableAdapter Query Configuration Wizard

Choose a Query Type
Chooss the bype of query bo be genersted

¥hat type of SQL query would you like to use?
() SELECT which returns rows
Fieiums one or many rows or columns.
() SELECT which returns & single value
Returf & single value (for example, Sum, Count, or any other sgaregate functian].

() UPDATE
Changes existing data in a tshle,

() DELETE
Remaves rows fram & table,

Adds a new row to a kable,

[<previows || met= |

Figure 25: Create a Method to Add a New Row to the products Table

On the next screen the TnsertCommand's CommandText appears. Augment this query by adding sELECT
SCOPE_IDENTITY () at the end of the query, which will return the last identity value inserted into an IDENTITY
column in the same scope. (See the technical documentation for more information about SCOPE_IDENTITY ()
and why you probably want to use SCOPE_IDENTITY() in lieu of @@IDENTITY.) Make sure that you end
the INSERT statement with a semi-colon before adding the sELECT statement.

r

TableAdapter Query Configuration Wizard

Speecify a SOL INSERT statement
The INSERT statement will be usad by the query,

Type your SOL statement or use the Cuery Builder bo construct it. What data should be loaded into the table?
What data should the table load?

IMZERT INTO [Products] ([Productilame], [SupphberlD], [CategoryID], [QuankityPerUinit], [UnitPrice],
[UriksInStodk], [UnitsOnOrder], [ReordarLeval], [Dsconbnued]) VALUES (@ProductMame, @SuppherlD,

(@iakagoryID, @CuanbbyPerUnk, @UnkPrice, @UnitsinStock, @UntsOnOrder, @Asorderlevel,
@Discantinuad);

= Return the ProductiD value For the newly cresbed record, ..
SELECT SCOPE_IDENTITY()

(<movon][wt>) (own] o

Figure 26: Augment the Query to Return the scopE_IDENTITY () Value

21 of 33

Finally, name the new method InsertpProduct.

r

TableAdapter Query Configuration Wizard

Choose Function Narme
Chiooss the name aof the function ta be genersted

Wethat wiculd you lie bo name the new function?
InsertPraoduct

[<previows || mets || sk | [conce |

Figure 27: Set the New Method Name to InsertProduct

When you return to the DataSet Designer you'll see that the ProductsTableAdapter contains a new method,
InsertProduct. If this new method doesn't have a parameter for each column in the products table, chances
are you forgot to terminate the INSERT statement with a semi-colon. Configure the InsertProduct method and
ensure you have a semi-colon delimiting the INSERT and SELECT statements.

By default, insert methods issue non-query methods, meaning that they return the number of affected rows.
However, we want the InsertProduct method to return the value returned by the query, not the number of
rows affected. To accomplish this, adjust the TnsertpProduct method's ExecuteMode property to scalar.

*% Code - Micresef Yiswal Studio

LA N BT

_ﬁ.pp_i:ndq'&m.. A.TErecc2acs AlFroducts. aspoocs

B

IS8 Fl, GatProducts ()
sgorpll, GatFroduct sEyCstegory 1 [sbe., EmecubeMode

et (FProducthlane, @fupcher(D, Eoate. . | ExmoubeMods for the query, Rasde: reburrs rows of dala;
Scalar: FeEUns & singhe vabae; NonCueny ! netume an inbeger |....

_"g_a':l.'r in jﬁmpg'ﬂeg J'-1:.-'\-' apr F

i Eevor List | (30 Cutput | S Find Ressks

Ready

22 of 33

Figure 28: Change the ExecuteMode Property to scalar

The following code shows this new InsertProduct method in action:

Dim productsAdapter As New NorthwindTableAdapters.ProductsTableAdapter ()

Dim new productID As Integer = Convert.ToInt32 (productsAdapter.InsertProduct(_
"New Product", 1, 1, "12 tins per carton", 14.95, 10, 0, 10, false))

productsAdapter.Delete (new_productID)

Step 5: Completing the Data Access Layer

Note that the ProductsTableAdapters class returns the categoryID and Supplier1D values from the
Products table, but doesn't include the categoryName column from the categories table or the companyName
column from the suppliers table, although these are likely the columns we want to display when showing
product information. We can augment the TableAdapter's initial method, GetProducts (), to include both the
CategoryName and CompanyName column values, which will update the strongly-typed DataTable to include
these new columns as well.

This can present a problem, however, as the TableAdapter's methods for inserting, updating, and deleting data
are based off of this initial method. Fortunately, the auto-generated methods for inserting, updating, and
deleting are not affected by subqueries in the seLECT clause. By taking care to add our queries to Categories
and suppliers as subqueries, rather than Joins, we'll avoid having to rework those methods for modifying
data. Right-click on the GetProducts () method in the ProductsTableadapter and choose Configure. Then,
adjust the seLECT clause so that it looks like:

SELECT ProductID, ProductName, SupplierID, CategoryID,

QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder, ReorderlLevel, Discontinued,
(SELECT CategoryName FROM Categories

WHERE Categories.CategoryID = Products.CategoryID) as CategoryName,

(SELECT CompanyName FROM Suppliers

WHERE Suppliers.SupplierID = Products.SupplierID) as SupplierName

FROM Products

23 of 33

r

TableAdapter Configuration Wizard

Enter a S50L Statement
The Tableadapter uses the dabs returned by this stabement b fill its DetsTsbe.

Type your SO0 statement o use te Guery Bulder bo construct it. what data should be loaded into the table?
What data should be loaded into the table?

SELECT ProductiD, Producthiame, SupplerlD, CategaryID, QuankityPerUnit, UnkPrice, Unitstnstack,
UritsOnOrder, Reorderlevel, Discontinweed,

(SELECT Categoryhame FROM Categories WHERE Cabegories. CategorylD = Products, CategoryID) as
CabegoryPlame, (SELECT ComparvyMame FROM Suppliers WHERE Suppliers, SupplierID =

Products, SupplerlD) as Supplerhiame
FREM Products

(<movon][wt>) (own] o

Figure 29: Update the seLECT Statement for the GetProducts () Method

After updating the GetProducts () method to use this new query the DataTable will include two new columns:
CategoryName and SupplierName.

_“App_Code/ Northwind.ssd |

E. Products E3]

¥ ProductID
ProductiMame
SupplierID
CakeqoryID
QuantityPerlnit
UnitPrice
UnitsInSkock
Unitsonrder
ReorderLevel
Discontinued
CakegoryMame
Suppliertame
EN Fill,zetProducts () ik
s FilleyCateqoryID, GetProducksBvCateqoryID (@C, ., W

Figure 30: The Products DataTable has Two New Columns
Take a moment to update the seLECT clause in the GetProductsByCategoryID (categoryID) method as well.

If you update the GetProducts () SELECT using JoIN syntax the DataSet Designer won't be able to auto-
generate the methods for inserting, updating, and deleting database data using the DB direct pattern. Instead,

24 of 33

you'll have to manually create them much like we did with the TnsertProduct method earlier in this tutorial.
Furthermore, you'll manually have to provide the InsertCommand, UpdateCommand, and DeleteCommand
property values if you want to use the batch updating pattern.

Adding the Remaining TableAdapters

Up until now, we've only looked at working with a single TableAdapter for a single database table. However,
the Northwind database contains several related tables that we'll need to work with in our web application. A
Typed DataSet can contain multiple, related DataTables. Therefore, to complete our DAL we need to add
DataTables for the other tables we'll be using in these tutorials. To add a new TableAdapter to a Typed DataSet,
open the DataSet Designer, right-click in the Designer, and choose Add / TableAdapter. This will create a new
DataTable and TableAdapter and walk you through the wizard we examined earlier in this tutorial.

Take a few minutes to create the following TableAdapters and methods using the following queries. Note that
the queries in the ProductsTableAdapter include the subqueries to grab each product's category and supplier
names. Additionally, if you've been following along, you've already added the productsTableadapter class's
GetProducts()andGetProductsByCategoryID(categoryID)nﬂﬁhod&

o ProductsTableAdapter
o GetProducts:

SELECT ProductID, ProductName, SupplierID,
CategoryID, QuantityPerUnit, UnitPrice, UnitsInStock,

UnitsOnOrder, ReorderlLevel, Discontinued,
(SELECT CategoryName FROM Categories WHERE
Categories.CategoryID = Products.CategoryID) as
CategoryName, (SELECT CompanyName FROM Suppliers
WHERE Suppliers.SupplierID = Products.SupplierID)
as SupplierName

FROM Products

o GetProductsByCategorylID:

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,

ReorderLevel, Discontinued , (SELECT CategoryName
FROM Categories WHERE Categories.CategoryID =
Products.CategoryID) as CategoryName,

(SELECT CompanyName FROM Suppliers WHERE
Suppliers.SupplierID = Products.SupplierID)

as SupplierName

FROM Products

WHERE CategoryID = @CategoryID

o GetProductsBySupplierID

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,

ReorderLevel, Discontinued , (SELECT CategoryName

FROM Categories WHERE Categories.CategoryID =
Products.CategoryID) as CategoryName,

(SELECT CompanyName FROM Suppliers WHERE
Suppliers.SupplierID = Products.SupplierID) as SupplierName
FROM Products

WHERE SupplierID = @SupplierID

o GetProductByProductID

25 of 33

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,

ReorderlLevel, Discontinued, (SELECT CategoryName

FROM Categories WHERE Categories.CategoryID =
Products.CategoryID) as CategoryName,

(SELECT CompanyName FROM Suppliers WHERE Suppliers.SupplierID =
Products.SupplierID)

as SupplierName

FROM Products

WHERE ProductID = @ProductID

o CategoriesTableAdapter
o GetCategories

SELECT CategoryID, CategoryName, Description
FROM Categories

o GetCategoryByCategoryID

SELECT CategoryID, CategoryName, Description
FROM Categories
WHERE CategoryID = @CategoryID

o SuppliersTableAdapter
o GetSuppliers

SELECT SupplierID, CompanyName, Address,
City, Country, Phone
FROM Suppliers

o GetSuppliersByCountry

SELECT SupplierID, CompanyName, Address,
City, Country, Phone

FROM Suppliers

WHERE Country = @Country

o GetSupplierBySupplierID

SELECT SupplierID, CompanyName, Address,
City, Country, Phone

FROM Suppliers

WHERE SupplierID = @SupplierID

o EmployeesTableAdapter
o GetEmployees

SELECT EmployeelID, LastName, FirstName, Title,
HireDate, ReportsTo, Country
FROM Employees

o GetEmployeesByManager

SELECT EmployeelID, LastName, FirstName, Title,
HireDate, ReportsTo, Country

FROM Employees

WHERE ReportsTo = @ManagerID

o GetEmployeeByEmployeelD

SELECT EmployeelID, LastName, FirstName, Title,
HireDate, ReportsTo, Country
FROM Employees

26 of 33

WHERE EmployeeID = (@EmployeelID

*% Code - Micressdt Yeual Studio

Bl ER Mew Webghe fuld Debag Dpfs Jods Windos Cowmandy Helo Sddee

T T RN PRy e el ‘2

M App_Cade Northeindasd™ SupplersiedProducts. ssoe cs - ¥

E T, Pradiscts &
! ProdetiD

Proxhstiisre

Suppman Ty

CategaryD

QugnitibyPariind

UnitFrice
untsinShack

Retiderlavel

! Pl GatProducts ()

S ity Cstegory |l BetProduc Sy Cstegory D o Cats
vt I, St aductBy Produt [T (e voduct 10 |

Ry Suppier DY CetProductsEn b 1D (Srsuppbss(D)
] IreeitProduct (Productivemes, SriuppieniD, §Cats...

vt B v w1 g s g | s

=8 Pl Erpho el GatEmpkoestiyErphkrmsedD (el

H8 FillrMsnsgern, GatlmplopssdiyFacager (3 snsoe T

£ Ererw ot |] it -i Fircl i |
Rty

Figure 31: The DataSet Designer After the Four TableAdapters Have Been Added

Adding Custom Code to the DAL

The TableAdapters and DataTables added to the Typed DataSet are expressed as an XML Schema Definition
file (Northwind.xsd). You can view this schema information by right-clicking on the Northwind. xsd file in
the Solution Explorer and choosing View Code.

27 of 33

® Cedde - Micrgaof) Fivual Studio

Bl Bl Wew ‘Webgle Buld Qebg BA Jeck Windes Qwwwordy Help Sdde
F R ™ - B] - ¥ % CovaandColeotan T
a a —=oi "
B T [T b oar RER =2 3 [s
3 Ape_Lede Lund | g Cod vl sl X
1 ion=*1.0" emcoding="eTE-B0 T =
= i Ld="Horchwind® carpetismenpace="RrIpi /i t r
s=urn!actamas-pictosnlt -oom: ¥nl-pedatascource>
Iades=R0" FunsloestomponenMare = Juer ieaTab le daprac® Bodif)
= - 2 L
1ectlins="Feb .conf ig™ AppIstoingefroperyiiamss= "NOETHEND Conmes -
CimmmanSysram, Conponentlode] Component” parsiccemsorfodyfisr=riecole | W)
~anni snlef= *HORTHEND Connect 1anSte isng (Meb.conZigl® Dol jectblasss @D,
< | o e
<ibComeand CommndType="Text" Hodifisdiyliager="Falae">
>DELETE TROM [Froducts] WHERX ||[Frodoctlh] = [dc igimal Prodoctl -
-l
cParawater f)LowliEly) l=*Falss? Luropensracediamse=®® [ara: Flagpe=A® BT &
</ PArAEst e
¢/ Faramacars>
L DbComomnd
of e Letelomm s
<Inae
<[k C wenndType="Text" Hodifisdbiyllasc="Falas">
AP A TE et TMERT TNTR FDradieea] (E Dt et T Hime e THY TR,
L 3 ¥
i E T§ Cuipuk .i
Eaxdy Lfil ol thi (0]

Figure 32: The XML Schema Definition (XSD) File for the Northwinds Typed DataSet

This schema information is translated into C# or Visual Basic code at design time when compiled or at runtime
(if needed), at which point you can step through it with the debugger. To view this auto-generated code go to
the Class View and drill down to the TableAdapter or Typed DataSet classes. If you don't see the Class View on
your screen, go to the View menu and select it from there, or hit Ctrl+Shift+C. From the Class View you can
see the properties, methods, and events of the Typed DataSet and TableAdapter classes. To view the code for a
particular method, double-click the method name in the Class View or right-click on it and choose Go To

Definition.

28 of 33

Class Migw

L L I =
<Searchi - 3

s

|-*1% Morthwind.EmployeesRowChangeEvent e
j rorthwwind, EmployeesRowChangeEventHanc]
“I% Morthwind,ProductsDataTable

“I% Morthwind, ProducksR.ow

“I% Morthwind, ProductsRowChangeEvent

4 Morthwind, ProductsR.owChangeEventHandle
“I% Morthwind, SuppliersDataTable

“I% Morthwind, SuppliersRow

“I% Morthwind, SuppliersRowChangeEvent

j rorthwwind, SuppliersR.owChangeEventHandle
{} MorthwindTableddapters

F-“1% CategoriesTablefdapter

F-“1% EmployeesTableAdapter

F-“0% ProducksTableAdapter

F-“1% suppliersTableAdapter w

o a
@ Filliart = 3o To Definition

W FilByCa ;% Browse Definition able,
W FillByPro le, ir
i FillBysu le, ir
W GetProc 58 Copy
i GetProc ab
i GetProc™
L] GetF‘ru:u: Shows Public Members

W Initad
g a| Show Protected Members

R I B e R R |

Find All References

Rename...

&% InitCam
gw InitCu:unl Shows Private Members i
i Insert(s = i
Shows ther Members ’
L) F‘ru:u:luu:t -
W Update Shows Inherited Members
pdake
i Sort Alphabetically
i Updates
L*] Updatel Sort By Member Tyvpe
5 1 imA aka i
% e Sort By Member Access ;
g alutio,.. | Group By Member Type 55 View

Figure 33: Inspect the Auto-Generated Code by Selecting Go To Definition from the Class View

While auto-generated code can be a great time saver, the code is often very generic and needs to be customized
to meet the unique needs of an application. The risk of extending auto-generated code, though, is that the tool
that generated the code might decide it's time to "regenerate" and overwrite your customizations. With .NET
2.0's new partial class concept, it's easy to split a class across multiple files. This enables us to add our own
methods, properties, and events to the auto-generated classes without having to worry about Visual Studio
overwriting our customizations.

To demonstrate how to customize the DAL, let's add a GetProducts () method to the suppliersRow class. The
suppliersRow class represents a single record in the suppliers table; each supplier can provider zero to many
products, so GetProducts () will return those products of the specified supplier. To accomplish this create a
new class file in the app code folder named suppliersrow.vb and add the following code:

29 of 33

Imports NorthwindTableAdapters

Partial Public Class Northwind
Partial Public Class SuppliersRow
Public Function GetProducts () As Northwind.ProductsDataTable
Dim productsAdapter As New ProductsTableAdapter
Return productsAdapter.GetProductsBySupplierID (Me.SupplierID)
End Function
End Class
End Class

This partial class instructs the compiler that when building the Northwind. SsuppliersRrow class to include the
GetProducts () method we just defined. If you build your project and then return to the Class View you'll see
GetProducts () now listed as a method of Northwind. SuppliersRow.

o

|G| = = | E -
<Search - &3
-~ Morthwind ProductsRowChangeEwvent |

- =g Morthwind ProductsRowChangeEventHandle =
E] v%g Morthwind, SuppliersDiataTable
] v%g Morthwind . SuppliersFow
- Morthwind SuppliersRowChangeEvent
- =g Morthwind . SuppliersfowChangeEventHandle
{} MorthwindTableddapters |
% CategoriesTableddapter "
] |
. .:GﬂﬁﬁiL“; A
‘i GetProducksRows)
‘g IsAddressMull()
g TsCiby Mulld) —
‘i IsCountryMulld)
% IsPhonemull)
‘g SetfddressMull
i SetCibyMull) »

i

I'_"_:__f‘JSDIuI:iD... | Properties | 5 Server ... :Q%Class Wi

Figure 34: The GetProducts () Method is Now Part of the Northwind. SuppliersRow Class

The GetProducts () method can now be used to enumerate the set of products for a particular supplier, as the
following code shows:

Dim suppliersAdapter As New NorthwindTableAdapters.SuppliersTableAdapter ()
Dim suppliers As Northwind.SuppliersDataTable = suppliersAdapter.GetSuppliers/()
For Each supplier As Northwind.SuppliersRow In suppliers

Response.Write ("Supplier: " & supplier.CompanyName)

Response.Write ("")

Dim products As Northwind.ProductsDataTable = supplier.GetProducts ()

For Each product As Northwind.ProductsRow In products

Response.Write ("<1i>" & product.ProductName & "</1i>")
Next

Response.Write ("<p> </p>")

30 0f 33

Next

This data can also be displayed in any of ASP.NET's data Web controls. The following page uses a GridView

control with two fields:

o A BoundField that displays the name of each supplier, and

o A TemplateField that contains a BulletedList control that is bound to the results returned by the

GetProducts () method for each supplier.

We'll examine how to display such master-detail reports in future tutorials. For now, this example is designed to

illustrate using the custom method added to the Northwind. SuppliersRow class.

SuppliersAndProducts.aspx

<%@ Page Language="VB" CodeFile="SuppliersAndProducts.aspx.cs"
AutoEventWireup="true" Inherits="SuppliersAndProducts" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>

<link href="Styles.css" rel="stylesheet" type="text/css" />
</head>

<body>
<form id="forml" runat="server">
<div>
<hl>
Suppliers and Their Products</hl>
<p>
<asp:GridView ID="GridViewl" runat="server"
AutoGenerateColumns="False"
CssClass="DataWebControlStyle">
<HeaderStyle CssClass="HeaderStyle" />
<AlternatingRowStyle CssClass="AlternatingRowStyle"
<Columns>
<asp:BoundField DataField="CompanyName"
HeaderText="Supplier" />
<asp:TemplateField HeaderText="Products">
<ItemTemplate>
<asp:BulletedList ID="BulletedListl"
runat="server" DataSource="<%#
((Northwind.SuppliersRow) ((System.Data.DataRowView)
Container.Dataltem) .Row) .GetProducts () %>"
DataTextField="ProductName">
</asp:BulletedList>
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:GridView>
</p>
</div>
</form>
</body>
</html>

SuppliersAndProducts.aspx.vb

Imports NorthwindTableAdapters

310f33

/>

Partial Class SuppliersAndProducts
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim suppliersAdapter As New SuppliersTableAdapter
GridViewl.DataSource = suppliersAdapter.GetSuppliers/()
GridViewl.DataBind ()
End Sub
End Class

A Untitled Page - Microsoft Internet Explorer

File [Edt Yew Favorites Tools Help
Qeak ») - & F@ 2 Foeach oy Favertes
Sdcress @http:sf&:-cal'mt:Lamfcaﬂaﬁmimsnmﬂmdm;.asm

Suppliers and Their Products

Supplier Products
s Chai
s Chang
Exobc Liquids « Anizeed Syrup

Chef Anton's Cajun Seasoning
Chef Anton's Gumbo Mix

Mew Orfeans Cajun Delights Louisiana Fery Hot Pepper Sauce
Loulsiana Hot Splced Okra

Grandma's Boysenberty Spread
« LIncle Bob's Grganic Dried Pears

Grandima Kally’s Homeslead « Northwoods Cranberry Sauce

= Mishi kobe Mikiu

lkura
Tokyo Traders « Longlife Tofu

e Queso Cabrales
Cooperativa de Quesos 'Las Cabras' Quesa Manchego La Pastora

= konbu
» ToOfU

- PrAasmesm O i

% Local intranat

Figure 35: The Supplier's Company Name is Listed in the Left Column, Their Products in the Right

Summary

When building a web application creating the DAL should be one of your first steps, occurring before you start
creating your presentation layer. With Visual Studio, creating a DAL based on Typed DataSets is a task that can
be accomplished in 10-15 minutes without writing a line of code. The tutorials moving forward will build upon
this DAL. In the next tutorial we'll define a number of business rules and see how to implement them in a
separate Business Logic Layer.

Happy Programming!

Further Reading

320f33

For more information on the topics discussed in this tutorial, refer to the following resources:

Building a DAL using Strongly Typed TableAdapters and DataTables in VS 2005 and ASP.NET 2.0

Designing Data Tier Components and Passing Data Through Tiers
Build a Data Access Layer with the Visual Studio 2005 DataSet Designer

Encrypting Configuration Information in ASP.NET 2.0 Applications
TableAdapter Overview

Working with a Typed DataSet

Using Strongly-Typed Data Access in Visual Studio 2005 and ASP.NET 2.0
How to Extend TableAdapter Methods

Retrieving Scalar Data from a Stored Procedure

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Ron
Green, Hilton Giesenow, Dennis Patterson, Liz Shulok, Abel Gomez, and Carlos Santos. Interested in
reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

330f33

