PerformanceCounterType Wyliczenie

Definicja

Określa typy liczników wydajności, które są mapowane bezpośrednio na typy natywne.Specifies performance counter types that map directly to native types.

public enum class PerformanceCounterType
public enum PerformanceCounterType
[System.ComponentModel.TypeConverter(typeof(System.Diagnostics.AlphabeticalEnumConverter))]
public enum PerformanceCounterType
type PerformanceCounterType = 
[<System.ComponentModel.TypeConverter(typeof(System.Diagnostics.AlphabeticalEnumConverter))>]
type PerformanceCounterType = 
Public Enum PerformanceCounterType
Dziedziczenie
PerformanceCounterType
Atrybuty

Pola

AverageBase 1073939458

Licznik podstawowy, który jest używany w obliczeniach średniej czasu lub liczby, takich jak AverageTimer32 i AverageCount64 .A base counter that is used in the calculation of time or count averages, such as AverageTimer32 and AverageCount64. Przechowuje mianownik do obliczania licznika na wartość "czas trwania operacji" lub "liczba operacji".Stores the denominator for calculating a counter to present "time per operation" or "count per operation".

AverageCount64 1073874176

Średni licznik, który pokazuje, ile elementów jest przetwarzanych, średnio w trakcie operacji.An average counter that shows how many items are processed, on average, during an operation. Liczniki tego typu przedstawiają stosunek elementów przetworzonych do liczby zakończonych operacji.Counters of this type display a ratio of the items processed to the number of operations completed. Współczynnik jest obliczany przez porównanie liczby elementów przetworzonych w ostatnim interwale z liczbą operacji zakończonych w ciągu ostatniego interwału.The ratio is calculated by comparing the number of items processed during the last interval to the number of operations completed during the last interval. Liczniki tego typu obejmują dysk fizyczny \ średnią bajtów dysku/Transfer.Counters of this type include PhysicalDisk\ Avg. Disk Bytes/Transfer.

AverageTimer32 805438464

Średni licznik, który mierzy czas potrzebny na średnią, aby ukończyć proces lub operację.An average counter that measures the time it takes, on average, to complete a process or operation. Liczniki tego typu przedstawiają stosunek łącznego czasu, który upłynął dla interwału próbkowania do liczby procesów lub operacji ukończonych w tym czasie.Counters of this type display a ratio of the total elapsed time of the sample interval to the number of processes or operations completed during that time. Ten typ licznika mierzy czas w taktach zegara systemowego.This counter type measures time in ticks of the system clock. Liczniki tego typu obejmują typ DyskFizyczny \ AVG. czas dysku w s/transfer.Counters of this type include PhysicalDisk\ Avg. Disk sec/Transfer.

CounterDelta32 4195328

Licznik różnic, który pokazuje zmianę w zmierzonym atrybucie między dwoma ostatnimi interwałami próbkowania.A difference counter that shows the change in the measured attribute between the two most recent sample intervals.

CounterDelta64 4195584

Licznik różnic, który pokazuje zmianę w zmierzonym atrybucie między dwoma ostatnimi interwałami próbkowania.A difference counter that shows the change in the measured attribute between the two most recent sample intervals. Jest taka sama jak CounterDelta32 typ licznika, z wyjątkiem tego, że używa większych pól, aby pomieścić większe wartości.It is the same as the CounterDelta32 counter type except that is uses larger fields to accommodate larger values.

CounterMultiBase 1107494144

Licznik podstawowy, który wskazuje liczbę elementów próbkowanych.A base counter that indicates the number of items sampled. Jest używany jako mianownik w obliczeniach, aby uzyskać średnią z elementów próbkowanych podczas wykonywania chronometrażu wielu, ale podobnych elementów.It is used as the denominator in the calculations to get an average among the items sampled when taking timings of multiple, but similar items. Używane z CounterMultiTimer , CounterMultiTimerInverse , CounterMultiTimer100Ns , i CounterMultiTimer100NsInverse .Used with CounterMultiTimer, CounterMultiTimerInverse, CounterMultiTimer100Ns, and CounterMultiTimer100NsInverse.

CounterMultiTimer 574686464

Licznik wartości procentowych, który wyświetla czas aktywności jednego lub większej liczby składników jako procent łącznego czasu interwału próbkowania.A percentage counter that displays the active time of one or more components as a percentage of the total time of the sample interval. Ponieważ licznik rejestruje czas aktywności składników jednocześnie, wynikowy procent może przekroczyć 100 procent.Because the numerator records the active time of components operating simultaneously, the resulting percentage can exceed 100 percent. Ten typ licznika różni się od wartości CounterMultiTimer100Ns w tym, że mierzy czas w jednostkach taktowania czasomierza wydajności systemu, a nie w jednostkach 100.This counter type differs from CounterMultiTimer100Ns in that it measures time in units of ticks of the system performance timer, rather than in 100 nanosecond units. Ten typ licznika jest wieloterminowy.This counter type is a multitimer.

CounterMultiTimer100Ns 575735040

Licznik wartości procentowych, który pokazuje czas aktywności jednego lub większej liczby składników jako procent łącznego czasu interwału próbkowania.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. Mierzy czas w jednostkach 100 nanosekund (NS).It measures time in 100 nanosecond (ns) units. Ten typ licznika jest wieloterminowy.This counter type is a multitimer.

CounterMultiTimer100NsInverse 592512256

Licznik wartości procentowych, który pokazuje czas aktywności jednego lub większej liczby składników jako procent łącznego czasu interwału próbkowania.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. Liczniki tego typu mierzą czas w jednostkach 100 (NS).Counters of this type measure time in 100 nanosecond (ns) units. Uzyskują czas aktywności, mierząc czas, przez jaki składniki nie były aktywne, i odejmując wynik mnożenia 100 procent przez liczbę monitorowanych obiektów.They derive the active time by measuring the time that the components were not active and subtracting the result from multiplying 100 percent by the number of objects monitored. Ten typ licznika jest wielowierszowym przekroczeniem.This counter type is an inverse multitimer.

CounterMultiTimerInverse 591463680

Licznik wartości procentowych, który pokazuje czas aktywności jednego lub większej liczby składników jako procent łącznego czasu interwału próbkowania.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. Jest to czas aktywny przez zmierzenie czasu, przez który składniki nie były aktywne i odjęcie wyniku od 100% przez liczbę monitorowanych obiektów.It derives the active time by measuring the time that the components were not active and subtracting the result from 100 percent by the number of objects monitored. Ten typ licznika jest wielowierszowym przekroczeniem.This counter type is an inverse multitimer. Różni się od CounterMultiTimer100NsInverse w tym, że mierzy czas w jednostkach taktowania czasomierza wydajności systemu, a nie w jednostkach 100.It differs from CounterMultiTimer100NsInverse in that it measures time in units of ticks of the system performance timer, rather than in 100 nanosecond units.

CounterTimer 541132032

Licznik wartości procentowych, który pokazuje średni czas aktywności składnika jako procent łącznego czasu próbki.A percentage counter that shows the average time that a component is active as a percentage of the total sample time.

CounterTimerInverse 557909248

Licznik wartości procentowych, który wyświetla średnią wartość procentową czasu aktywnego zaobserwowanego podczas próbkowania interwału.A percentage counter that displays the average percentage of active time observed during sample interval. Wartość tych liczników jest obliczana przez monitorowanie wartości procentowej czasu nieaktywności usługi, a następnie odjęcie tej wartości od 100%.The value of these counters is calculated by monitoring the percentage of time that the service was inactive and then subtracting that value from 100 percent. Jest to odwrócony typ licznika.This is an inverse counter type. Mierzy czas w jednostkach taktowania czasomierza wydajności systemu.It measures time in units of ticks of the system performance timer.

CountPerTimeInterval32 4523008

Średni licznik zaprojektowany do monitorowania średniej długości kolejki do zasobu z upływem czasu.An average counter designed to monitor the average length of a queue to a resource over time. Pokazuje różnicę między długośćmi kolejki obserwowanymi podczas ostatnich dwóch interwałów próbkowania podzieloną przez czas trwania interwału.It shows the difference between the queue lengths observed during the last two sample intervals divided by the duration of the interval. Ten typ licznika jest zazwyczaj używany do śledzenia liczby elementów, które znajdują się w kolejce lub oczekują.This type of counter is typically used to track the number of items that are queued or waiting.

CountPerTimeInterval64 4523264

Średni licznik monitorujący średnią długość kolejki do zasobu z upływem czasu.An average counter that monitors the average length of a queue to a resource over time. Liczniki tego typu wyświetlają różnicę między długośćmi kolejki obserwowanymi w ciągu ostatnich dwóch interwałów próbkowania, podzieloną przez czas trwania interwału.Counters of this type display the difference between the queue lengths observed during the last two sample intervals, divided by the duration of the interval. Ten typ licznika jest taki sam, jak CountPerTimeInterval32 z tą różnicą, że używa większych pól, aby pomieścić większe wartości.This counter type is the same as CountPerTimeInterval32 except that it uses larger fields to accommodate larger values. Ten typ licznika jest zazwyczaj używany do śledzenia dużej ilości elementów, które znajdują się w kolejce lub oczekują.This type of counter is typically used to track a high-volume or very large number of items that are queued or waiting.

ElapsedTime 807666944

Czasomierz różnic pokazujący łączny czas między uruchomieniem składnika lub procesu oraz czasem, gdy ta wartość jest obliczana.A difference timer that shows the total time between when the component or process started and the time when this value is calculated. Liczniki tego typu obejmują system a Time system.Counters of this type include System\ System Up Time.

NumberOfItems32 65536

Licznik chwilowy, który pokazuje ostatnio zaobserwowane wartości.An instantaneous counter that shows the most recently observed value. Używane na przykład, aby zachować prostą liczbę elementów lub operacji.Used, for example, to maintain a simple count of items or operations. Liczniki tego typu obejmują pamięć bajtów.Counters of this type include Memory\Available Bytes.

NumberOfItems64 65792

Licznik chwilowy, który pokazuje ostatnio zaobserwowane wartości.An instantaneous counter that shows the most recently observed value. Używane na przykład, aby zachować prostą liczbę bardzo dużej liczby elementów lub operacji.Used, for example, to maintain a simple count of a very large number of items or operations. Jest to takie samo, jak NumberOfItems32 z tą różnicą, że używa większych pól, aby pomieścić większe wartości.It is the same as NumberOfItems32 except that it uses larger fields to accommodate larger values.

NumberOfItemsHEX32 0

Licznik chwilowy, który pokazuje ostatnio zaobserwowane wartości w formacie szesnastkowym.An instantaneous counter that shows the most recently observed value in hexadecimal format. Używane na przykład, aby zachować prostą liczbę elementów lub operacji.Used, for example, to maintain a simple count of items or operations.

NumberOfItemsHEX64 256

Licznik chwilowy, który pokazuje ostatnio zaobserwowane wartości.An instantaneous counter that shows the most recently observed value. Używane na przykład, aby zachować prostą liczbę bardzo dużej liczby elementów lub operacji.Used, for example, to maintain a simple count of a very large number of items or operations. Jest to takie samo, jak NumberOfItemsHEX32 z tą różnicą, że używa większych pól, aby pomieścić większe wartości.It is the same as NumberOfItemsHEX32 except that it uses larger fields to accommodate larger values.

RateOfCountsPerSecond32 272696320

Licznik różnica, który pokazuje średnią liczbę operacji zakończonych w każdej sekundzie interwału próbkowania.A difference counter that shows the average number of operations completed during each second of the sample interval. Liczniki tego typu mierzą czas w taktach zegara systemowego.Counters of this type measure time in ticks of the system clock. Liczniki tego typu obejmują operacje odczytu z pliku systemowego/s.Counters of this type include System\ File Read Operations/sec.

RateOfCountsPerSecond64 272696576

Licznik różnica, który pokazuje średnią liczbę operacji zakończonych w każdej sekundzie interwału próbkowania.A difference counter that shows the average number of operations completed during each second of the sample interval. Liczniki tego typu mierzą czas w taktach zegara systemowego.Counters of this type measure time in ticks of the system clock. Ten typ licznika jest taki sam jak RateOfCountsPerSecond32 Typ, ale używa większych pól, aby pomieścić większe wartości w celu śledzenia dużej ilości elementów lub operacji na sekundę, takich jak szybkość transmisji bajtów.This counter type is the same as the RateOfCountsPerSecond32 type, but it uses larger fields to accommodate larger values to track a high-volume number of items or operations per second, such as a byte-transmission rate. Liczniki tego typu obejmują System \ bajty odczytu plików/s.Counters of this type include System\ File Read Bytes/sec.

RawBase 1073939459

Podstawowy licznik, który przechowuje mianownik licznika, który przedstawia ogólną część arytmetyczną.A base counter that stores the denominator of a counter that presents a general arithmetic fraction. Sprawdź, czy wartość jest większa niż zero przed użyciem jej jako mianownika w RawFraction obliczeniach wartości.Check that this value is greater than zero before using it as the denominator in a RawFraction value calculation.

RawFraction 537003008

Licznik natychmiastowej wartości procentowej, który pokazuje stosunek podzestawu do jego zestawu jako wartość procentową.An instantaneous percentage counter that shows the ratio of a subset to its set as a percentage. Na przykład porównuje liczbę bajtów używanych na dysku z łączną liczbą bajtów na dysku.For example, it compares the number of bytes in use on a disk to the total number of bytes on the disk. Liczniki tego typu wyświetlają tylko bieżącą wartość procentową, a nie średnią w czasie.Counters of this type display the current percentage only, not an average over time. Liczniki tego typu obejmują plik stronicowania \ % szczytowego użycia.Counters of this type include Paging File\% Usage Peak.

SampleBase 1073939457

Podstawowy licznik, który przechowuje liczbę wykonanych przerwań próbkowania i jest używany jako mianownik w frakcji próbkowania.A base counter that stores the number of sampling interrupts taken and is used as a denominator in the sampling fraction. Część próbkowania jest liczbą próbek, które były 1 (lub true ) dla przykładowego przerwania.The sampling fraction is the number of samples that were 1 (or true) for a sample interrupt. Sprawdź, czy wartość jest większa niż zero przed użyciem jej jako mianownika w obliczeniach SampleFraction .Check that this value is greater than zero before using it as the denominator in a calculation of SampleFraction.

SampleCounter 4260864

Średni licznik, który pokazuje średnią liczbę operacji zakończonych w jednej sekundzie.An average counter that shows the average number of operations completed in one second. Gdy licznik tego typu próbkuje dane, każde przerwanie próbkowania zwraca jeden lub zero.When a counter of this type samples the data, each sampling interrupt returns one or zero. Dane licznika to liczba próbek, które były próbkowane.The counter data is the number of ones that were sampled. Mierzy czas w jednostkach taktowania czasomierza wydajności systemu.It measures time in units of ticks of the system performance timer.

SampleFraction 549585920

Licznik wartości procentowych, który pokazuje średni stosunek trafień do wszystkich operacji w ciągu ostatnich dwóch interwałów próbkowania.A percentage counter that shows the average ratio of hits to all operations during the last two sample intervals. Liczniki tego typu obejmują Cache\Pin trafień odczytu%.Counters of this type include Cache\Pin Read Hits %.

Timer100Ns 542180608

Licznik wartości procentowych, który pokazuje czas aktywności składnika jako procent łącznego czasu, który upłynął.A percentage counter that shows the active time of a component as a percentage of the total elapsed time of the sample interval. Mierzy czas w jednostkach 100 nanosekund (NS).It measures time in units of 100 nanoseconds (ns). Liczniki tego typu są przeznaczone do mierzenia działania jednego składnika w danym momencie.Counters of this type are designed to measure the activity of one component at a time. Liczniki tego typu obejmują \ czas użytkownika procesora (%).Counters of this type include Processor\% User Time.

Timer100NsInverse 558957824

Licznik wartości procentowych, który pokazuje średnią wartość procentową czasu aktywnego zaobserwowanego podczas próbkowania interwału.A percentage counter that shows the average percentage of active time observed during the sample interval. Jest to licznik odwrotny.This is an inverse counter. Liczniki tego typu obejmują procesor \ czas procesora (%).Counters of this type include Processor\% Processor Time.

Przykłady

W poniższych przykładach pokazano kilka typów licznika w PerformanceCounterType wyliczeniu.The following examples demonstrate several of the counter types in the PerformanceCounterType enumeration.

AverageCount64AverageCount64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    Description - This counter type shows how many items are processed, on average,
//        during an operation. Counters of this type display a ratio of the items 
//        processed (such as bytes sent) to the number of operations completed. The  
//        ratio is calculated by comparing the number of items processed during the 
//        last interval to the number of operations completed during the last interval. 
// Generic type - Average
//      Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
//        of items processed during the last sample interval and the denominator (D) 
//        represents the number of operations completed during the last two sample 
//        intervals. 
//    Average (Nx - N0) / (Dx - D0)  
//    Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)s1.RawValue - (float)s0.RawValue;
   float denomenator = (float)s1.BaseValue - (float)s0.BaseValue;
   float counterValue = numerator / denomenator;
   return counterValue;
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "AverageCounter64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ averageCount64 = gcnew CounterCreationData;
      averageCount64->CounterType = PerformanceCounterType::AverageCount64;
      averageCount64->CounterName = "AverageCounter64Sample";
      CCDC->Add( averageCount64 );
      
      // Add the base counter.
      CounterCreationData^ averageCount64Base = gcnew CounterCreationData;
      averageCount64Base->CounterType = PerformanceCounterType::AverageBase;
      averageCount64Base->CounterName = "AverageCounter64SampleBase";
      CCDC->Add( averageCount64Base );
      
      // Create the category.
      PerformanceCounterCategory::Create( "AverageCounter64SampleCategory", "Demonstrates usage of the AverageCounter64 performance counter type.", CCDC );
      return (true);
   }
   else
   {
      Console::WriteLine( "Category exists - AverageCounter64SampleCategory" );
      return (false);
   }
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
   
   // Create the counters.
   PC = gcnew PerformanceCounter( "AverageCounter64SampleCategory","AverageCounter64Sample",false );

   BPC = gcnew PerformanceCounter( "AverageCounter64SampleCategory","AverageCounter64SampleBase",false );
   PC->RawValue = 0;
   BPC->RawValue = 0;
}
void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, PerformanceCounter^ BPC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      BPC->Increment();
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );
      
      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
      
      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   PerformanceCounter^ BPC;
   SetupCategory();
   CreateCounters( PC, BPC );
   CollectSamples( samplesList, PC, BPC );
   CalculateResults( samplesList );
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App {

    private static PerformanceCounter avgCounter64Sample;
    private static PerformanceCounter avgCounter64SampleBase;

    public static void Main()
    {

        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {
        if ( !PerformanceCounterCategory.Exists("AverageCounter64SampleCategory") )
        {

            CounterCreationDataCollection counterDataCollection = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData averageCount64 = new CounterCreationData();
            averageCount64.CounterType = PerformanceCounterType.AverageCount64;
            averageCount64.CounterName = "AverageCounter64Sample";
            counterDataCollection.Add(averageCount64);

            // Add the base counter.
            CounterCreationData averageCount64Base = new CounterCreationData();
            averageCount64Base.CounterType = PerformanceCounterType.AverageBase;
            averageCount64Base.CounterName = "AverageCounter64SampleBase";
            counterDataCollection.Add(averageCount64Base);

            // Create the category.
            PerformanceCounterCategory.Create("AverageCounter64SampleCategory",
                "Demonstrates usage of the AverageCounter64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, counterDataCollection);

            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - AverageCounter64SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.

        avgCounter64Sample = new PerformanceCounter("AverageCounter64SampleCategory",
            "AverageCounter64Sample",
            false);


        avgCounter64SampleBase = new PerformanceCounter("AverageCounter64SampleCategory",
            "AverageCounter64SampleBase",
            false);

        avgCounter64Sample.RawValue=0;
        avgCounter64SampleBase.RawValue=0;
    }
    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            avgCounter64Sample.IncrementBy(value);

            avgCounter64SampleBase.Increment();

            if ((j % 10) == 9)
            {
                OutputSample(avgCounter64Sample.NextSample());
                samplesList.Add( avgCounter64Sample.NextSample() );
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //    Description - This counter type shows how many items are processed, on average,
    //        during an operation. Counters of this type display a ratio of the items
    //        processed (such as bytes sent) to the number of operations completed. The
    //        ratio is calculated by comparing the number of items processed during the
    //        last interval to the number of operations completed during the last interval.
    // Generic type - Average
    //      Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number
    //        of items processed during the last sample interval and the denominator (D)
    //        represents the number of operations completed during the last two sample
    //        intervals.
    //    Average (Nx - N0) / (Dx - D0)
    //    Example PhysicalDisk\ Avg. Disk Bytes/Transfer
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)s1.RawValue - (Single)s0.RawValue;
        Single denomenator = (Single)s1.BaseValue - (Single)s0.BaseValue;
        Single counterValue = numerator / denomenator;
        return(counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App

    Private Shared avgCounter64Sample As PerformanceCounter
    Private Shared avgCounter64SampleBase As PerformanceCounter


    Public Shared Sub Main()

        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub

    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("AverageCounter64SampleCategory") Then

            Dim counterDataCollection As New CounterCreationDataCollection()

            ' Add the counter.
            Dim averageCount64 As New CounterCreationData()
            averageCount64.CounterType = PerformanceCounterType.AverageCount64
            averageCount64.CounterName = "AverageCounter64Sample"
            counterDataCollection.Add(averageCount64)

            ' Add the base counter.
            Dim averageCount64Base As New CounterCreationData()
            averageCount64Base.CounterType = PerformanceCounterType.AverageBase
            averageCount64Base.CounterName = "AverageCounter64SampleBase"
            counterDataCollection.Add(averageCount64Base)

            ' Create the category.
            PerformanceCounterCategory.Create("AverageCounter64SampleCategory", _
               "Demonstrates usage of the AverageCounter64 performance counter type.", _
                      PerformanceCounterCategoryType.SingleInstance, counterDataCollection)

            Return True
        Else
            Console.WriteLine("Category exists - AverageCounter64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory

    Private Shared Sub CreateCounters()
        ' Create the counters.

        avgCounter64Sample = New PerformanceCounter("AverageCounter64SampleCategory", "AverageCounter64Sample", False)

        avgCounter64SampleBase = New PerformanceCounter("AverageCounter64SampleCategory", "AverageCounter64SampleBase", False)

        avgCounter64Sample.RawValue = 0
        avgCounter64SampleBase.RawValue = 0
    End Sub

    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write(j.ToString() + " = " + value.ToString())

            avgCounter64Sample.IncrementBy(value)

            avgCounter64SampleBase.Increment()

            If j Mod 10 = 9 Then
                OutputSample(avgCounter64Sample.NextSample())
                samplesList.Add(avgCounter64Sample.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub

    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub

    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	Description - This counter type shows how many items are processed, on average,
    '		during an operation. Counters of this type display a ratio of the items 
    '		processed (such as bytes sent) to the number of operations completed. The  
    '		ratio is calculated by comparing the number of items processed during the 
    '		last interval to the number of operations completed during the last interval. 
    ' Generic type - Average
    '  	Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
    '		of items processed during the last sample interval and the denominator (D) 
    '		represents the number of operations completed during the last two sample 
    '		intervals. 
    '	Average (Nx - N0) / (Dx - D0)  
    '	Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue, [Single]) - CType(s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.BaseValue, [Single]) - CType(s0.BaseValue, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue

    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class

AverageTimer32AverageTimer32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
using namespace System::Runtime::InteropServices;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
// PERF_AVERAGE_TIMER
//  Description - This counter type measures the time it takes, on 
//     average, to complete a process or operation. Counters of this
//     type display a ratio of the total elapsed time of the sample 
//     interval to the number of processes or operations completed
//     during that time. This counter type measures time in ticks 
//     of the system clock. The F variable represents the number of
//     ticks per second. The value of F is factored into the equation
//     so that the result can be displayed in seconds.
//    
//  Generic type - Average
//    
//  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
//     represents the number of ticks counted during the last 
//     sample interval, F represents the frequency of the ticks, 
//     and the denominator (D) represents the number of operations
//     completed during the last sample interval.
//    
//  Average - ((Nx - N0) / F) / (Dx - D0)
//    
//  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
    __int64 n1 = s1.RawValue;
    __int64 n0 = s0.RawValue;
    unsigned __int64 f = s1.SystemFrequency;
    __int64 d1 = s1.BaseValue;
    __int64 d0 = s0.BaseValue;
    double numerator = (double)(n1 - n0);
    double denominator = (double)(d1 - d0);
    float counterValue = (float)((numerator / f) / denominator);
    return counterValue;
}

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
    Console::WriteLine( "+++++++++++" );
    Console::WriteLine( "Sample values - \r\n" );
    Console::WriteLine( "   CounterType      = {0}", s.CounterType );
    Console::WriteLine( "   RawValue         = {0}", s.RawValue.ToString() );
    Console::WriteLine( "   BaseValue        = {0}", s.BaseValue.ToString() );
    Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency.ToString() );
    Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp.ToString() );
    Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency.ToString() );
    Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp.ToString() );
    Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec.ToString() );
    Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
    if (  !PerformanceCounterCategory::Exists( "AverageTimer32SampleCategory") )
       {
        CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

        // Add the counter.
        CounterCreationData^ averageTimer32 = gcnew CounterCreationData;
        averageTimer32->CounterType = PerformanceCounterType::AverageTimer32;
        averageTimer32->CounterName = "AverageTimer32Sample";
        CCDC->Add( averageTimer32 );

        // Add the base counter.
        CounterCreationData^ averageTimer32Base = gcnew CounterCreationData;
        averageTimer32Base->CounterType = PerformanceCounterType::AverageBase;
        averageTimer32Base->CounterName = "AverageTimer32SampleBase";
        CCDC->Add( averageTimer32Base );

        // Create the category.
        PerformanceCounterCategory::Create( "AverageTimer32SampleCategory", 
            "Demonstrates usage of the AverageTimer32 performance counter type", 
            PerformanceCounterCategoryType::SingleInstance, CCDC );
        Console::WriteLine( "Category created - AverageTimer32SampleCategory" );
        return (true);
        }

    Console::WriteLine( "Category exists - AverageTimer32SampleCategory" );
    return (false);
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
    // Create the counters.
    PC = gcnew PerformanceCounter( "AverageTimer32SampleCategory","AverageTimer32Sample",false );
    BPC = gcnew PerformanceCounter( "AverageTimer32SampleCategory","AverageTimer32SampleBase",false );
    PC->RawValue = 0;
    BPC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, 
PerformanceCounter^ BPC )
{
    __int64 perfTime = 0;
    Random^ r = gcnew Random( DateTime::Now.Millisecond );

    // Loop for the samples.
    for ( int i = 0; i < 10; i++ )
        {
        PC->RawValue = Stopwatch::GetTimestamp();
        BPC->IncrementBy( 10 );
        System::Threading::Thread::Sleep( 1000 );
        Console::WriteLine( "Next value = {0}", PC->NextValue().ToString() );
        samplesList->Add( PC->NextSample() );
        }
}

void CalculateResults( ArrayList^ samplesList )
{
    for ( int i = 0; i < (samplesList->Count - 1); i++ )
        {
        // Output the sample.
        OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
        OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

        // Use .NET to calculate the counter value.
        Console::WriteLine( ".NET computed counter value = {0}",
           CounterSample::Calculate(  *safe_cast<CounterSample^>(samplesList[ i ]),
           *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

        // Calculate the counter value manually.
        Console::WriteLine( "My computed counter value = {0}", 
            MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),
           *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
        }
}

int main()
{
    ArrayList^ samplesList = gcnew ArrayList;
    PerformanceCounter^ PC;
    PerformanceCounter^ BPC;
    SetupCategory();
    CreateCounters( PC, BPC );
    CollectSamples( samplesList, PC, BPC );
    CalculateResults( samplesList );

    Console::WriteLine("\n\nHit ENTER to return");
    Console::ReadLine();
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Runtime.InteropServices;

public class App
{

    private static PerformanceCounter PC;
    private static PerformanceCounter BPC;

    private const String categoryName = "AverageTimer32SampleCategory";
    private const String counterName = "AverageTimer32Sample";
    private const String baseCounterName = "AverageTimer32SampleBase";

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {

        if (!PerformanceCounterCategory.Exists(categoryName))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData averageTimer32 = new CounterCreationData();
            averageTimer32.CounterType = PerformanceCounterType.AverageTimer32;
            averageTimer32.CounterName = counterName;
            CCDC.Add(averageTimer32);

            // Add the base counter.
            CounterCreationData averageTimer32Base = new CounterCreationData();
            averageTimer32Base.CounterType = PerformanceCounterType.AverageBase;
            averageTimer32Base.CounterName = baseCounterName;
            CCDC.Add(averageTimer32Base);

            // Create the category.
            PerformanceCounterCategory.Create(categoryName,
                "Demonstrates usage of the AverageTimer32 performance counter type",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            Console.WriteLine("Category created - " + categoryName);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - " + categoryName);
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter(categoryName,
                 counterName,
                 false);

        BPC = new PerformanceCounter(categoryName,
            baseCounterName,
            false);

        PC.RawValue = 0;
        BPC.RawValue = 0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Loop for the samples.
        for (int i = 0; i < 10; i++)
        {

            PC.RawValue = Stopwatch.GetTimestamp();

            BPC.IncrementBy(10);

            System.Threading.Thread.Sleep(1000);

            Console.WriteLine("Next value = " + PC.NextValue().ToString());
            samplesList.Add(PC.NextSample());
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSample.Calculate((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    // PERF_AVERAGE_TIMER
    //  Description - This counter type measures the time it takes, on
    //     average, to complete a process or operation. Counters of this
    //     type display a ratio of the total elapsed time of the sample
    //     interval to the number of processes or operations completed
    //     during that time. This counter type measures time in ticks
    //     of the system clock. The F variable represents the number of
    //     ticks per second. The value of F is factored into the equation
    //     so that the result can be displayed in seconds.
    //
    //  Generic type - Average
    //
    //  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
    //     represents the number of ticks counted during the last
    //     sample interval, F represents the frequency of the ticks,
    //     and the denominator (D) represents the number of operations
    //     completed during the last sample interval.
    //
    //  Average - ((Nx - N0) / F) / (Dx - D0)
    //
    //  Example - PhysicalDisk\ Avg. Disk sec/Transfer
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Int64 n1 = s1.RawValue;
        Int64 n0 = s0.RawValue;
        ulong f = (ulong)s1.SystemFrequency;
        Int64 d1 = s1.BaseValue;
        Int64 d0 = s0.BaseValue;

        double numerator = (double)(n1 - n0);
        double denominator = (double)(d1 - d0);
        Single counterValue = (Single)((numerator / f) / denominator);
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics
Imports System.Runtime.InteropServices
Public Class App

    Private Const categoryName As String = "AverageTimer32SampleCategory"
    Private Const counterName As String = "AverageTimer32Sample"
    Private Const baseCounterName As String = "AverageTimer32SampleBase"

    Private Shared PC As PerformanceCounter
    Private Shared BPC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        SetupCategory()
        CreateCounters()
        CollectSamples(samplesList)
        CalculateResults(samplesList)
    End Sub


    Private Shared Function SetupCategory() As Boolean

        If Not PerformanceCounterCategory.Exists(categoryName) Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim averageTimer32 As New CounterCreationData()
            averageTimer32.CounterType = PerformanceCounterType.AverageTimer32
            averageTimer32.CounterName = counterName
            CCDC.Add(averageTimer32)

            ' Add the base counter.
            Dim averageTimer32Base As New CounterCreationData()
            averageTimer32Base.CounterType = PerformanceCounterType.AverageBase
            averageTimer32Base.CounterName = baseCounterName
            CCDC.Add(averageTimer32Base)

            ' Create the category.
            PerformanceCounterCategory.Create( _
               categoryName, _
               "Demonstrates usage of the AverageTimer32 performance counter type", _
                 PerformanceCounterCategoryType.SingleInstance, CCDC)

            Console.WriteLine("Category created - " + categoryName)

            Return True
        Else
            Console.WriteLine(("Category exists - " + _
               categoryName))
            Return False
        End If
    End Function


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter(categoryName, _
              counterName, False)

        BPC = New PerformanceCounter(categoryName, _
              baseCounterName, False)

        PC.RawValue = 0
        BPC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim i As Integer
        For i = 0 To 9

            PC.RawValue = Stopwatch.GetTimeStamp()

            BPC.IncrementBy(10)

            System.Threading.Thread.Sleep(1000)
            Console.WriteLine(("Next value = " + PC.NextValue().ToString()))
            samplesList.Add(PC.NextSample())
        Next i
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        Dim sample1 As CounterSample
        Dim sample2 As CounterSample
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            sample1 = CType(samplesList(i), CounterSample)
            sample2 = CType(samplesList(i + 1), CounterSample)
            OutputSample(sample1)
            OutputSample(sample2)

            ' Use .NET to calculate the counter value.
            Console.WriteLine((".NET computed counter value = " _
               + CounterSample.Calculate(sample1, sample2).ToString()))

            ' Calculate the counter value manually.
            Console.WriteLine(("My computed counter value = " _
               + MyComputeCounterValue(sample1, sample2).ToString()))

        Next i
    End Sub


    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    ' PERF_AVERAGE_TIMER
    '  Description - This counter type measures the time it takes, on 
    '     average, to complete a process or operation. Counters of this
    '     type display a ratio of the total elapsed time of the sample 
    '     interval to the number of processes or operations completed
    '     during that time. This counter type measures time in ticks 
    '     of the system clock. The F variable represents the number of
    '     ticks per second. The value of F is factored into the equation
    '     so that the result can be displayed in seconds.
    '
    '  Generic type - Average
    '
    '  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
    '     represents the number of ticks counted during the last 
    '     sample interval, F represents the frequency of the ticks, 
    '     and the denominator (D) represents the number of operations
    '     completed during the last sample interval.
    '
    '  Average - ((Nx - N0) / F) / (Dx - D0)
    '
    '  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    Private Shared Function MyComputeCounterValue( _
    ByVal s0 As CounterSample, _
    ByVal s1 As CounterSample) As Single
        Dim n1 As Int64 = s1.RawValue
        Dim n0 As Int64 = s0.RawValue
        Dim f As Decimal = CType(s1.SystemFrequency, Decimal)
        Dim d1 As Int64 = s1.BaseValue
        Dim d0 As Int64 = s0.BaseValue

        Dim numerator As Double = System.Convert.ToDouble(n1 - n0)
        Dim denominator As Double = System.Convert.ToDouble(d1 - d0)
        Dim counterValue As Single = CType(numerator, Single)
        counterValue = counterValue / CType(f, Single)
        counterValue = counterValue / CType(denominator, Single)

        Return counterValue
    End Function


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine("+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Cr _
              + ControlChars.Lf)
        Console.WriteLine(("   CounterType      = " + _
              s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + _
              s.RawValue.ToString()))
        Console.WriteLine(("   BaseValue        = " _
              + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + _
              s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + _
              s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + _
              s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + _
              s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + _
              s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub


End Class

ElapsedTimeElapsedTime

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
using namespace System::Runtime::InteropServices;

void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

void CollectSamples()
{
   String^ categoryName = "ElapsedTimeSampleCategory";
   String^ counterName = "ElapsedTimeSample";
   
   // Create the performance counter category.
   if (  !PerformanceCounterCategory::Exists( categoryName ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ ETimeData = gcnew CounterCreationData;
      ETimeData->CounterType = PerformanceCounterType::ElapsedTime;
      ETimeData->CounterName = counterName;
      CCDC->Add( ETimeData );
      
      // Create the category.
      PerformanceCounterCategory::Create( categoryName,
         "Demonstrates ElapsedTime performance counter usage.",
         CCDC );
   }
   else
   {
      Console::WriteLine( "Category exists - {0}", categoryName );
   }

   
   // Create the performance counter.
   PerformanceCounter^ PC = gcnew PerformanceCounter( categoryName,
                                                      counterName,
                                                      false );
   // Initialize the counter.
   PC->RawValue = Stopwatch::GetTimestamp();

   DateTime Start = DateTime::Now;
   
   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      // Output the values.
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( "NextValue() = {0}", PC->NextValue() );
         Console::WriteLine( "Actual elapsed time = {0}", DateTime::Now.Subtract( Start ) );
         OutputSample( PC->NextSample() );
      }
      
      // Reset the counter on every 20th iteration.
      if ( j % 20 == 0 )
      {
         PC->RawValue = Stopwatch::GetTimestamp();
         Start = DateTime::Now;
      }
      System::Threading::Thread::Sleep( 50 );
   }

   Console::WriteLine( "Elapsed time = {0}", DateTime::Now.Subtract( Start ) );
}

int main()
{
   CollectSamples();
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Runtime.InteropServices;

public class App
{

    public static void Main()
    {	
        CollectSamples();
    }

    public static void CollectSamples()
    {
        const String categoryName = "ElapsedTimeSampleCategory";
        const String counterName = "ElapsedTimeSample";

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if ( !PerformanceCounterCategory.Exists(categoryName) )
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData ETimeData = new CounterCreationData();
            ETimeData.CounterType = PerformanceCounterType.ElapsedTime;
            ETimeData.CounterName = counterName;
            CCDC.Add(ETimeData);	
        
            // Create the category.
            PerformanceCounterCategory.Create(categoryName,
                    "Demonstrates ElapsedTime performance counter usage.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            // Return, rerun the application to make use of the new counters.
            return;
        }
        else
        {
            Console.WriteLine("Category exists - {0}", categoryName);
        }

        // Create the performance counter.
        PerformanceCounter PC = new PerformanceCounter(categoryName,
                                                       counterName,
                                                       false);
        // Initialize the counter.
        PC.RawValue = Stopwatch.GetTimestamp();

        DateTime Start = DateTime.Now;

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
            // Output the values.
            if ((j % 10) == 9)
            {
                Console.WriteLine("NextValue() = " + PC.NextValue().ToString());
                Console.WriteLine("Actual elapsed time = " + DateTime.Now.Subtract(Start).ToString());
                OutputSample(PC.NextSample());
            }

            // Reset the counter on every 20th iteration.
            if (j % 20 == 0)
            {
                PC.RawValue = Stopwatch.GetTimestamp();
                Start = DateTime.Now;
            }
            System.Threading.Thread.Sleep(50);
        }

        Console.WriteLine("Elapsed time = " + DateTime.Now.Subtract(Start).ToString());
    }

    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics
Imports System.Runtime.InteropServices

Public Class App

    Public Shared Sub Main()
        CollectSamples()
    End Sub

    Private Shared Sub CollectSamples()

        Dim categoryName As String = "ElapsedTimeSampleCategory"
        Dim counterName As String = "ElapsedTimeSample"

        If Not PerformanceCounterCategory.Exists(categoryName) Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim ETimeData As New CounterCreationData()
            ETimeData.CounterType = PerformanceCounterType.ElapsedTime
            ETimeData.CounterName = counterName
            CCDC.Add(ETimeData)

            ' Create the category.
            PerformanceCounterCategory.Create(categoryName, _
               "Demonstrates ElapsedTime performance counter usage.", _
                   PerformanceCounterCategoryType.SingleInstance, CCDC)

        Else
            Console.WriteLine("Category exists - {0}", categoryName)
        End If

        ' Create the counter.
        Dim PC As PerformanceCounter
        PC = New PerformanceCounter(categoryName, counterName, False)

        ' Initialize the counter.
        PC.RawValue = Stopwatch.GetTimestamp()

        Dim Start As DateTime = DateTime.Now

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99
            ' Output the values.
            If j Mod 10 = 9 Then
                Console.WriteLine(("NextValue() = " _
                    + PC.NextValue().ToString()))
                Console.WriteLine(("Actual elapsed time = " _
                    + DateTime.Now.Subtract(Start).ToString()))
                OutputSample(PC.NextSample())
            End If

            ' Reset the counter every 20th iteration.
            If j Mod 20 = 0 Then
                PC.RawValue = Stopwatch.GetTimestamp()
                Start = DateTime.Now
            End If
            System.Threading.Thread.Sleep(50)
        Next j

        Console.WriteLine(("Elapsed time = " + _
              DateTime.Now.Subtract(Start).ToString()))
    End Sub


    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++")

        Console.WriteLine("Sample values - " + ControlChars.Cr _
              + ControlChars.Lf)
        Console.WriteLine(("   BaseValue        = " _
              + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + _
              s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + _
              s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + _
              s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + _
              s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + _
              s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + _
              s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + _
              s.TimeStamp100nSec.ToString()))

        Console.WriteLine("+++++++")
    End Sub
End Class

NumberOfItems32NumberOfItems32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float counterValue = (float)s1.RawValue;
   return counterValue;
}

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "NumberOfItems32SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ NOI64 = gcnew CounterCreationData;
      NOI64->CounterType = PerformanceCounterType::NumberOfItems64;
      NOI64->CounterName = "NumberOfItems32Sample";
      CCDC->Add( NOI64 );

      // Create the category.
      PerformanceCounterCategory::Create( "NumberOfItems32SampleCategory", "Demonstrates usage of the NumberOfItems32 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - NumberOfItems32SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "NumberOfItems32SampleCategory","NumberOfItems32Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );

   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

void main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class NumberOfItems64
{

    private static PerformanceCounter PC;

    public static void Main()
    {	
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {		
        if ( !PerformanceCounterCategory.Exists("NumberOfItems32SampleCategory") )
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData NOI64 = new CounterCreationData();
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64;
            NOI64.CounterName = "NumberOfItems32Sample";
            CCDC.Add(NOI64);

            // Create the category.
            PerformanceCounterCategory.Create("NumberOfItems32SampleCategory",
                "Demonstrates usage of the NumberOfItems32 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - NumberOfItems32SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("NumberOfItems32SampleCategory",
            "NumberOfItems32Sample",
            false);

        PC.RawValue=0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
    
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            PC.IncrementBy(value);

            if ((j % 10) == 9)
            {
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single counterValue = s1.RawValue;
        return(counterValue);
    }
    
    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class NumberOfItems64

    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub


    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("NumberOfItems32SampleCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim NOI64 As New CounterCreationData()
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64
            NOI64.CounterName = "NumberOfItems32Sample"
            CCDC.Add(NOI64)

            ' Create the category.
            PerformanceCounterCategory.Create("NumberOfItems32SampleCategory", _
            "Demonstrates usage of the NumberOfItems32 performance counter type.", _
                      PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - NumberOfItems32SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("NumberOfItems32SampleCategory", "NumberOfItems32Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)



        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write(j.ToString() + " = " + value.ToString())

            PC.IncrementBy(value)

            If j Mod 10 = 9 Then
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub




    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim counterValue As [Single] = s1.RawValue
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine("   BaseValue        = " + s.BaseValue.ToString())
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency.ToString())
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp.ToString())
        Console.WriteLine("   CounterType      = " + s.CounterType.ToString())
        Console.WriteLine("   RawValue         = " + s.RawValue.ToString())
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency.ToString())
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp.ToString())
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString())
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class


NumberOfItems64NumberOfItems64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float counterValue = (float)s1.RawValue;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "NumberOfItems64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ NOI64 = gcnew CounterCreationData;
      NOI64->CounterType = PerformanceCounterType::NumberOfItems64;
      NOI64->CounterName = "NumberOfItems64Sample";
      CCDC->Add( NOI64 );

      // Create the category.
      PerformanceCounterCategory::Create( "NumberOfItems64SampleCategory", "Demonstrates usage of the NumberOfItems64 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - NumberOfItems64SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counters.
   PC = gcnew PerformanceCounter( "NumberOfItems64SampleCategory","NumberOfItems64Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class NumberOfItems64
{

    private static PerformanceCounter PC;

    public static void Main()
    {	
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {		
        if ( !PerformanceCounterCategory.Exists("NumberOfItems64SampleCategory") )
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData NOI64 = new CounterCreationData();
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64;
            NOI64.CounterName = "NumberOfItems64Sample";
            CCDC.Add(NOI64);

            // Create the category.
            PerformanceCounterCategory.Create("NumberOfItems64SampleCategory",
                "Demonstrates usage of the NumberOfItems64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - NumberOfItems64SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter("NumberOfItems64SampleCategory",
            "NumberOfItems64Sample",
            false);

        PC.RawValue=0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {
        
        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
    
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            PC.IncrementBy(value);

            if ((j % 10) == 9)
            {
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single counterValue = s1.RawValue;
        return(counterValue);
    }
    
    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class NumberOfItems64

    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub


    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("NumberOfItems64SampleCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim NOI64 As New CounterCreationData()
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64
            NOI64.CounterName = "NumberOfItems64Sample"
            CCDC.Add(NOI64)

            ' Create the category.
            PerformanceCounterCategory.Create("NumberOfItems64SampleCategory", _
            "Demonstrates usage of the NumberOfItems64 performance counter type.", _
                   PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - NumberOfItems64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter("NumberOfItems64SampleCategory", "NumberOfItems64Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write((j.ToString() + " = " + value.ToString()))

            PC.IncrementBy(value)

            If j Mod 10 = 9 Then
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim counterValue As [Single] = s1.RawValue
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class

SampleFractionSampleFraction

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

// Provides a SampleFraction counter to measure the percentage of the user processor
// time for this process to total processor time for the process.
public class App
{

    private static PerformanceCounter perfCounter;
    private static PerformanceCounter basePerfCounter;
    private static Process thisProcess = Process.GetCurrentProcess();

    public static void Main()
    {

        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {
        if (!PerformanceCounterCategory.Exists("SampleFractionCategory"))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData sampleFraction = new CounterCreationData();
            sampleFraction.CounterType = PerformanceCounterType.SampleFraction;
            sampleFraction.CounterName = "SampleFractionSample";
            CCDC.Add(sampleFraction);

            // Add the base counter.
            CounterCreationData sampleFractionBase = new CounterCreationData();
            sampleFractionBase.CounterType = PerformanceCounterType.SampleBase;
            sampleFractionBase.CounterName = "SampleFractionSampleBase";
            CCDC.Add(sampleFractionBase);

            // Create the category.
            PerformanceCounterCategory.Create("SampleFractionCategory",
                "Demonstrates usage of the SampleFraction performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - SampleFractionCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.

        perfCounter = new PerformanceCounter("SampleFractionCategory",
            "SampleFractionSample",
            false);

        basePerfCounter = new PerformanceCounter("SampleFractionCategory",
            "SampleFractionSampleBase",
            false);

        perfCounter.RawValue = thisProcess.UserProcessorTime.Ticks;
        basePerfCounter.RawValue = thisProcess.TotalProcessorTime.Ticks;
    }
    private static void CollectSamples(ArrayList samplesList)
    {

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            perfCounter.IncrementBy(thisProcess.UserProcessorTime.Ticks);

            basePerfCounter.IncrementBy(thisProcess.TotalProcessorTime.Ticks);

            if ((j % 10) == 9)
            {
                OutputSample(perfCounter.NextSample());
                samplesList.Add(perfCounter.NextSample());
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    // Description - This counter type provides A percentage counter that shows the
    // average ratio of user proccessor time to total processor time  during the last
    // two sample intervals.
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)s1.RawValue - (Single)s0.RawValue;
        Single denomenator = (Single)s1.BaseValue - (Single)s0.BaseValue;
        Single counterValue = 100 * (numerator / denomenator);
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics


' Provides a SampleFraction counter to measure the percentage of the user processor 
' time for this process to total processor time for the process.

Public Class App

    Private Shared perfCounter As PerformanceCounter
    Private Shared basePerfCounter As PerformanceCounter
    Private Shared thisProcess As Process = Process.GetCurrentProcess()


    Public Shared Sub Main()

        Dim samplesList As New ArrayList()

        ' If the category does not exist, create the category and exit.
        ' Performance counters should not be created and immediately used.
        ' There is a latency time to enable the counters, they should be created
        ' prior to executing the application that uses the counters.
        ' Execute this sample a second time to use the category.
        If SetupCategory() Then
            Return
        End If
        CreateCounters()
        CollectSamples(samplesList)
        CalculateResults(samplesList)

    End Sub



    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("SampleFractionCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim sampleFraction As New CounterCreationData()
            sampleFraction.CounterType = PerformanceCounterType.SampleFraction
            sampleFraction.CounterName = "SampleFractionSample"
            CCDC.Add(sampleFraction)

            ' Add the base counter.
            Dim sampleFractionBase As New CounterCreationData()
            sampleFractionBase.CounterType = PerformanceCounterType.SampleBase
            sampleFractionBase.CounterName = "SampleFractionSampleBase"
            CCDC.Add(sampleFractionBase)

            ' Create the category.
            PerformanceCounterCategory.Create("SampleFractionCategory", "Demonstrates usage of the SampleFraction performance counter type.", PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - SampleFractionCategory")
            Return False
        End If

    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        perfCounter = New PerformanceCounter("SampleFractionCategory", "SampleFractionSample", False)


        basePerfCounter = New PerformanceCounter("SampleFractionCategory", "SampleFractionSampleBase", False)


        perfCounter.RawValue = thisProcess.UserProcessorTime.Ticks
        basePerfCounter.RawValue = thisProcess.TotalProcessorTime.Ticks

    End Sub

    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)


        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            perfCounter.IncrementBy(thisProcess.UserProcessorTime.Ticks)

            basePerfCounter.IncrementBy(thisProcess.TotalProcessorTime.Ticks)

            If j Mod 10 = 9 Then
                OutputSample(perfCounter.NextSample())
                samplesList.Add(perfCounter.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j

    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1)
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)))

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)))
        Next i

    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    ' Description - This counter type provides A percentage counter that shows the 
    ' average ratio of user proccessor time to total processor time  during the last 
    ' two sample intervals.
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue, [Single]) - CType(s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.BaseValue, [Single]) - CType(s0.BaseValue, [Single])
        Dim counterValue As [Single] = 100 * (numerator / denomenator)
        Return counterValue

    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(vbCr + vbLf + "+++++++++++")
        Console.WriteLine("Sample values - " + vbCr + vbLf)
        Console.WriteLine("   BaseValue        = " + s.BaseValue)
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency)
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp)
        Console.WriteLine("   CounterType      = " + s.CounterType)
        Console.WriteLine("   RawValue         = " + s.RawValue)
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency)
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp)
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec)
        Console.WriteLine("++++++++++++++++++++++")

    End Sub
End Class

RateOfCountsPerSecond32RateOfCountsPerSecond32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    PERF_COUNTER_COUNTER
//    Description     - This counter type shows the average number of operations completed
//        during each second of the sample interval. Counters of this type
//        measure time in ticks of the system clock. The F variable represents
//        the number of ticks per second. The value of F is factored into the
//        equation so that the result can be displayed in seconds.
//
//    Generic type - Difference
//
//    Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
//        of operations performed during the last sample interval, the denominator
//        (D) represents the number of ticks elapsed during the last sample
//        interval, and F is the frequency of the ticks.
//
//         Average - (Nx - N0) / ((Dx - D0) / F) 
//
//       Example - System\ File Read Operations/sec 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)(s1.RawValue - s0.RawValue);
   float denomenator = (float)(s1.TimeStamp - s0.TimeStamp) / (float)s1.SystemFrequency;
   float counterValue = numerator / denomenator;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RateOfCountsPerSecond32SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ rateOfCounts32 = gcnew CounterCreationData;
      rateOfCounts32->CounterType = PerformanceCounterType::RateOfCountsPerSecond32;
      rateOfCounts32->CounterName = "RateOfCountsPerSecond32Sample";
      CCDC->Add( rateOfCounts32 );

      // Create the category.
      PerformanceCounterCategory::Create( "RateOfCountsPerSecond32SampleCategory", "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RateOfCountsPerSecond32SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "RateOfCountsPerSecond32SampleCategory","RateOfCountsPerSecond32Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Initialize the performance counter.
   PC->NextSample();

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      PC->IncrementBy( value );
      Console::Write( "{0} = {1}", j, value );
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App
{
    private static PerformanceCounter PC;

    public static void Main()
    {	
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {
        
        if ( !PerformanceCounterCategory.Exists("RateOfCountsPerSecond32SampleCategory") )
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rateOfCounts32 = new CounterCreationData();
            rateOfCounts32.CounterType = PerformanceCounterType.RateOfCountsPerSecond32;
            rateOfCounts32.CounterName = "RateOfCountsPerSecond32Sample";
            CCDC.Add(rateOfCounts32);
    
             // Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond32SampleCategory",
                "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
              return(true);
        }
        else
        {
            Console.WriteLine("Category exists - RateOfCountsPerSecond32SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("RateOfCountsPerSecond32SampleCategory",
            "RateOfCountsPerSecond32Sample",
            false);

        PC.RawValue=0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {
    
        Random r = new Random( DateTime.Now.Millisecond );

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
    
            int value = r.Next(1, 10);
            PC.IncrementBy(value);
            Console.Write(j + " = " + value);

            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //	PERF_COUNTER_COUNTER
    //	Description	 - This counter type shows the average number of operations completed
    //		during each second of the sample interval. Counters of this type
    //		measure time in ticks of the system clock. The F variable represents
    //		the number of ticks per second. The value of F is factored into the
    //		equation so that the result can be displayed in seconds.
    //
    //	Generic type - Difference
    //
    //	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    //		of operations performed during the last sample interval, the denominator
    //		(D) represents the number of ticks elapsed during the last sample
    //		interval, and F is the frequency of the ticks.
    //
    //	     Average - (Nx - N0) / ((Dx - D0) / F)
    //
    //       Example - System\ File Read Operations/sec
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)(s1.RawValue - s0.RawValue);
        Single denomenator = (Single)(s1.TimeStamp - s0.TimeStamp) / (Single)s1.SystemFrequency;
        Single counterValue = numerator / denomenator;
        return(counterValue);
    }
    
    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App
    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub


    Private Shared Function SetupCategory() As Boolean

        If Not PerformanceCounterCategory.Exists("RateOfCountsPerSecond32SampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rateOfCounts32 As New CounterCreationData()
            rateOfCounts32.CounterType = PerformanceCounterType.RateOfCountsPerSecond32
            rateOfCounts32.CounterName = "RateOfCountsPerSecond32Sample"
            CCDC.Add(rateOfCounts32)

            ' Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond32SampleCategory", _
                "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)
            Return True
        Else
            Console.WriteLine("Category exists - RateOfCountsPerSecond32SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("RateOfCountsPerSecond32SampleCategory", "RateOfCountsPerSecond32Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            PC.IncrementBy(value)
            Console.Write((j.ToString() + " = " + value.ToString()))

            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))


            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub





    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	PERF_COUNTER_COUNTER
    '	Description	 - This counter type shows the average number of operations completed
    '		during each second of the sample interval. Counters of this type
    '		measure time in ticks of the system clock. The F variable represents
    '		the number of ticks per second. The value of F is factored into the
    '		equation so that the result can be displayed in seconds.
    '
    '	Generic type - Difference
    '
    '	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    '		of operations performed during the last sample interval, the denominator
    '		(D) represents the number of ticks elapsed during the last sample
    '		interval, and F is the frequency of the ticks.
    '
    '	     Average - (Nx - N0) / ((Dx - D0) / F) 
    '
    '       Example - System\ File Read Operations/sec 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue - s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.TimeStamp - s0.TimeStamp, [Single]) / CType(s1.SystemFrequency, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class

RateOfCountsPerSecond64RateOfCountsPerSecond64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    PERF_COUNTER_COUNTER
//    Description     - This counter type shows the average number of operations completed
//        during each second of the sample interval. Counters of this type
//        measure time in ticks of the system clock. The F variable represents
//        the number of ticks per second. The value of F is factored into the
//        equation so that the result can be displayed in seconds.
//
//    Generic type - Difference
//
//    Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
//        of operations performed during the last sample interval, the denominator
//        (D) represents the number of ticks elapsed during the last sample
//        interval, and F is the frequency of the ticks.
//
//    Average - (Nx - N0) / ((Dx - D0) / F) 
//
//  Example - System\ File Read Operations/sec 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)(s1.RawValue - s0.RawValue);
   float denomenator = (float)(s1.TimeStamp - s0.TimeStamp) / (float)s1.SystemFrequency;
   float counterValue = numerator / denomenator;
   return counterValue;
}

void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RateOfCountsPerSecond64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ rateOfCounts64 = gcnew CounterCreationData;
      rateOfCounts64->CounterType = PerformanceCounterType::RateOfCountsPerSecond64;
      rateOfCounts64->CounterName = "RateOfCountsPerSecond64Sample";
      CCDC->Add( rateOfCounts64 );

      // Create the category.
      PerformanceCounterCategory::Create( "RateOfCountsPerSecond64SampleCategory", "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RateOfCountsPerSecond64SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "RateOfCountsPerSecond64SampleCategory","RateOfCountsPerSecond64Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Initialize the performance counter.
   PC->NextSample();

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      PC->IncrementBy( value );
      Console::Write( "{0} = {1}", j, value );
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App
{
    private static PerformanceCounter PC;

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {

        if (!PerformanceCounterCategory.Exists("RateOfCountsPerSecond64SampleCategory"))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rateOfCounts64 = new CounterCreationData();
            rateOfCounts64.CounterType = PerformanceCounterType.RateOfCountsPerSecond64;
            rateOfCounts64.CounterName = "RateOfCountsPerSecond64Sample";
            CCDC.Add(rateOfCounts64);

            // Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond64SampleCategory",
                "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - RateOfCountsPerSecond64SampleCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("RateOfCountsPerSecond64SampleCategory",
            "RateOfCountsPerSecond64Sample",
            false);

        PC.RawValue = 0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            int value = r.Next(1, 10);
            PC.IncrementBy(value);
            Console.Write(j + " = " + value);

            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add(PC.NextSample());
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //	PERF_COUNTER_COUNTER
    //	Description	 - This counter type shows the average number of operations completed
    //		during each second of the sample interval. Counters of this type
    //		measure time in ticks of the system clock. The F variable represents
    //		the number of ticks per second. The value of F is factored into the
    //		equation so that the result can be displayed in seconds.
    //
    //	Generic type - Difference
    //
    //	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    //		of operations performed during the last sample interval, the denominator
    //		(D) represents the number of ticks elapsed during the last sample
    //		interval, and F is the frequency of the ticks.
    //
    //	Average - (Nx - N0) / ((Dx - D0) / F)
    //
    //  Example - System\ File Read Operations/sec
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)(s1.RawValue - s0.RawValue);
        Single denomenator = (Single)(s1.TimeStamp - s0.TimeStamp) / (Single)s1.SystemFrequency;
        Single counterValue = numerator / denomenator;
        return (counterValue);
    }

    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App
    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub


    Private Shared Function SetupCategory() As Boolean


        If Not PerformanceCounterCategory.Exists("RateOfCountsPerSecond64SampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rateOfCounts64 As New CounterCreationData()
            rateOfCounts64.CounterType = PerformanceCounterType.RateOfCountsPerSecond64
            rateOfCounts64.CounterName = "RateOfCountsPerSecond64Sample"
            CCDC.Add(rateOfCounts64)

            ' Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond64SampleCategory", _
            "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)
            Return True
        Else
            Console.WriteLine("Category exists - RateOfCountsPerSecond64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("RateOfCountsPerSecond64SampleCategory", "RateOfCountsPerSecond64Sample", False)

        PC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            PC.IncrementBy(value)
            Console.Write((j.ToString() + " = " + value.ToString()))

            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))


            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + _
            CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + _
            MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	PERF_COUNTER_COUNTER
    '	Description	 - This counter type shows the average number of operations completed
    '		during each second of the sample interval. Counters of this type
    '		measure time in ticks of the system clock. The F variable represents
    '		the number of ticks per second. The value of F is factored into the
    '		equation so that the result can be displayed in seconds.
    '
    '	Generic type - Difference
    '
    '	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    '		of operations performed during the last sample interval, the denominator
    '		(D) represents the number of ticks elapsed during the last sample
    '		interval, and F is the frequency of the ticks.
    '
    '	Average - (Nx - N0) / ((Dx - D0) / F) 
    '
    '  Example - System\ File Read Operations/sec 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue - s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.TimeStamp - s0.TimeStamp, [Single]) / CType(s1.SystemFrequency, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue


    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class

RawFractionRawFraction

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
// Formula from MSDN -
//      Description - This counter type shows the ratio of a subset to its set as a percentage.
//            For example, it compares the number of bytes in use on a disk to the
//            total number of bytes on the disk. Counters of this type display the 
//            current percentage only, not an average over time.
//
// Generic type - Instantaneous, Percentage 
//        Formula - (N0 / D0), where D represents a measured attribute and N represents one
//            component of that attribute.
//
//        Average - SUM (N / D) /x 
//        Example - Paging File\% Usage Peak
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample rfSample )
{
   float numerator = (float)rfSample.RawValue;
   float denomenator = (float)rfSample.BaseValue;
   float counterValue = (numerator / denomenator) * 100;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RawFractionSampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ rf = gcnew CounterCreationData;
      rf->CounterType = PerformanceCounterType::RawFraction;
      rf->CounterName = "RawFractionSample";
      CCDC->Add( rf );
      
      // Add the base counter.
      CounterCreationData^ rfBase = gcnew CounterCreationData;
      rfBase->CounterType = PerformanceCounterType::RawBase;
      rfBase->CounterName = "RawFractionSampleBase";
      CCDC->Add( rfBase );
      
      // Create the category.
      PerformanceCounterCategory::Create( "RawFractionSampleCategory", "Demonstrates usage of the RawFraction performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RawFractionSampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
   
   // Create the counters.
   PC = gcnew PerformanceCounter( "RawFractionSampleCategory","RawFractionSample",false );
   BPC = gcnew PerformanceCounter( "RawFractionSampleCategory","RawFractionSampleBase",false );
   PC->RawValue = 0;
   BPC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, PerformanceCounter^ BPC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );
   
   // Initialize the performance counter.
   PC->NextSample();
   
   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      
      // Increment the base every time, because the counter measures the number 
      // of high hits (raw fraction value) against all the hits (base value).
      BPC->Increment();
      
      // Get the % of samples that are 9 or 10 out of all the samples taken.
      if ( value >= 9 )
            PC->Increment();
      
      // Copy out the next value every ten times around the loop.
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );

   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < samplesList->Count; i++ )
   {
      
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      
      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]) ) );
      
      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]) ) );

   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   PerformanceCounter^ BPC;
   SetupCategory();
   CreateCounters( PC, BPC );
   CollectSamples( samplesList, PC, BPC );
   CalculateResults( samplesList );
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App
{
    private static PerformanceCounter PC;
    private static PerformanceCounter BPC;

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the counters.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {

        if (!PerformanceCounterCategory.Exists("RawFractionSampleCategory"))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rf = new CounterCreationData();
            rf.CounterType = PerformanceCounterType.RawFraction;
            rf.CounterName = "RawFractionSample";
            CCDC.Add(rf);

            // Add the base counter.
            CounterCreationData rfBase = new CounterCreationData();
            rfBase.CounterType = PerformanceCounterType.RawBase;
            rfBase.CounterName = "RawFractionSampleBase";
            CCDC.Add(rfBase);

            // Create the category.
            PerformanceCounterCategory.Create("RawFractionSampleCategory",
                "Demonstrates usage of the RawFraction performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - RawFractionSampleCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter("RawFractionSampleCategory",
            "RawFractionSample",
            false);

        BPC = new PerformanceCounter("RawFractionSampleCategory",
            "RawFractionSampleBase",
            false);

        PC.RawValue = 0;
        BPC.RawValue = 0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            // Increment the base every time, because the counter measures the number
            // of high hits (raw fraction value) against all the hits (base value).
            BPC.Increment();

            // Get the % of samples that are 9 or 10 out of all the samples taken.
            if (value >= 9)
                PC.Increment();

            // Copy out the next value every ten times around the loop.
            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add(PC.NextSample());
            }
            else
            {
                Console.WriteLine();
            }

            System.Threading.Thread.Sleep(50);
        }
    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < samplesList.Count; i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i]));
        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    // Formula from MSDN -
    //      Description - This counter type shows the ratio of a subset to its set as a percentage.
    //			For example, it compares the number of bytes in use on a disk to the
    //			total number of bytes on the disk. Counters of this type display the
    //			current percentage only, not an average over time.
    //
    // Generic type - Instantaneous, Percentage
    //	    Formula - (N0 / D0), where D represents a measured attribute and N represents one
    //			component of that attribute.
    //
    //		Average - SUM (N / D) /x
    //		Example - Paging File\% Usage Peak
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample rfSample)
    {
        Single numerator = (Single)rfSample.RawValue;
        Single denomenator = (Single)rfSample.BaseValue;
        Single counterValue = (numerator / denomenator) * 100;
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _


Public Class App
    Private Shared PC As PerformanceCounter
    Private Shared BPC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub


    Private Shared Function SetupCategory() As Boolean


        If Not PerformanceCounterCategory.Exists("RawFractionSampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rf As New CounterCreationData()
            rf.CounterType = PerformanceCounterType.RawFraction
            rf.CounterName = "RawFractionSample"
            CCDC.Add(rf)

            ' Add the base counter.
            Dim rfBase As New CounterCreationData()
            rfBase.CounterType = PerformanceCounterType.RawBase
            rfBase.CounterName = "RawFractionSampleBase"
            CCDC.Add(rfBase)

            ' Create the category.
            PerformanceCounterCategory.Create("RawFractionSampleCategory", _
            "Demonstrates usage of the RawFraction performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - RawFractionSampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter("RawFractionSampleCategory", "RawFractionSample", False)

        BPC = New PerformanceCounter("RawFractionSampleCategory", "RawFractionSampleBase", False)

        PC.RawValue = 0
        BPC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99
            Dim value As Integer = r.Next(1, 10)
            Console.Write((j.ToString() + " = " + value.ToString()))

            ' Increment the base every time, because the counter measures the number 
            ' of high hits (raw fraction value) against all the hits (base value).
            BPC.Increment()

            ' Get the % of samples that are 9 or 10 out of all the samples taken.
            If value >= 9 Then
                PC.Increment()
            End If
            ' Copy out the next value every ten times around the loop.
            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub



    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To samplesList.Count - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample)).ToString())
        Next i
    End Sub


    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    ' Formula from MSDN -
    '      Description - This counter type shows the ratio of a subset to its set as a percentage.
    '			For example, it compares the number of bytes in use on a disk to the
    '			total number of bytes on the disk. Counters of this type display the 
    '			current percentage only, not an average over time.
    '
    ' Generic type - Instantaneous, Percentage 
    '	    Formula - (N0 / D0), where D represents a measured attribute and N represents one
    '			component of that attribute.
    '
    '		Average - SUM (N / D) /x 
    '		Example - Paging File\% Usage Peak
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal rfSample As CounterSample) As [Single]
        Dim numerator As [Single] = CType(rfSample.RawValue, [Single])
        Dim denomenator As [Single] = CType(rfSample.BaseValue, [Single])
        Dim counterValue As [Single] = numerator / denomenator * 100
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine("+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub
End Class



Uwagi

Niektóre typy liczników reprezentują dane pierwotne, podczas gdy inne reprezentują obliczone wartości, które są oparte na jednym lub większej liczbie próbek liczników.Some counter types represent raw data, while others represent calculated values that are based on one or more counter samples. Poniższe kategorie klasyfikują typy dostępnych liczników.The following categories classify the types of counters available.

  • Średnia: mierzy wartość w czasie i wyświetla średnią z ostatnich dwóch pomiarów.Average: Measures a value over time and displays the average of the last two measurements. Podstawowy licznik, który śledzi liczbę używanych próbek jest skojarzony z każdym licznikiem średnim.A base counter that tracks the number of samples involved is associated with each average counter.

  • Różnica: odejmuje ostatnią miarę od poprzedniego i, jeśli różnica jest dodatnia, wyświetla go; Jeśli wartość jest ujemna, wyświetlana jest wartość zero.Difference: Subtracts the last measurement from the previous one and, if the difference is positive, displays it; if negative, displays a zero.

  • Chwilowe: wyświetla najbardziej aktualną miarę.Instantaneous: Displays the most recent measurement.

  • Wartość procentowa: wyświetla obliczone wartości jako procentowe.Percentage: Displays calculated values as a percentage.

  • Rate: próbki zwiększają liczbę zdarzeń w czasie i dzielą zmiany wartości licznika przez zmianę w czasie, aby wyświetlić współczynnik aktywności.Rate: Samples an increasing count of events over time and divides the change in count values by the change in time to display a rate of activity.

Podczas próbkowania danych licznika wydajności przy użyciu typu licznika, który reprezentuje średni, może spowodować, że pierwotne wartości danych mają znaczenie dla danego użycia.When sampling performance counter data, using a counter type that represents an average can make raw data values meaningful for your use. Na przykład licznik nieprzetworzonych danych NumberOfItems64 może uwidaczniać dane, które są dość losowo z próbki do próbkowania.For example, the raw data counter NumberOfItems64 can expose data that is fairly random from sample to sample. Formułą średniego obliczenia wartości zwracanych przez licznik może być (X 0 + X 1 +... + X n)/n, gdzie każdy X i jest przykładem nieprzetworzonego licznika.The formula for an average calculation of the values that the counter returns would be (X 0 +X 1 +…+X n)/n, where each X i is a raw counter sample.

Liczniki szybkości są podobne do średnich liczników, ale są bardziej przydatne w sytuacjach, w których szybkość rośnie wraz z użyciem zasobów.Rate counters are similar to average counters, but more useful for situations in which the rate increases as a resource is used. Formuła, która szybko oblicza średnią, to ((X n-X 0)/(T n-T 0))/częstotliwość, gdzie każda X i jest próbką licznika, a każdy T to czas, w którym zrobiono odpowiedni przykład.A formula that quickly calculates the average is ((X n -X 0)/(T n -T 0)) / frequency, where each X i is a counter sample and each T i is the time that the corresponding sample was taken. Wynikiem jest średni czas użycia na sekundę.The result is the average usage per second.

Liczniki wielowymiarowe zbierają dane z więcej niż jednego wystąpienia składnika, takiego jak procesor lub dysk.Multitimer counters collect data from more than one instance of a component, such as a processor or disk.

Liczniki odwrotne mierzą czas, przez który składnik nie jest aktywny i uzyskuje czas aktywności z tej miary.Inverse counters measure the time that a component is not active and derive the active time from that measurement.

Uwaga

O ile nie wskazano inaczej, podstawą czasu jest sekunda.Unless otherwise indicated, the time base is seconds.

Podczas Instrumentacji aplikacji (tworzenia i pisania niestandardowych liczników wydajności) można pracować z typami licznika wydajności, które opierają się na dołączonym liczniku bazowym używanym w obliczeniach.When instrumenting applications (creating and writing custom performance counters), you might be working with performance counter types that rely on an accompanying base counter that is used in the calculations. Licznik podstawowy musi być natychmiast po skojarzonym z nim licznik w CounterCreationDataCollection kolekcji używanej przez aplikację.The base counter must be immediately after its associated counter in the CounterCreationDataCollection collection your application uses. W poniższej tabeli wymieniono podstawowe typy liczników z odpowiadającymi im typami liczników wydajności.The following table lists the base counter types with their corresponding performance counter types.

Typ licznika podstawowegoBase counter type Typy liczników wydajnościPerformance counter types
AverageBase AverageTimer32

AverageCount64
CounterMultiBase CounterMultiTimer

CounterMultiTimerInverse

CounterMultiTimer100Ns

CounterMultiTimer100NsInverse
RawBase RawFraction
SampleBase SampleFraction

Poniżej przedstawiono Formuły używane przez niektóre liczniki, które reprezentują obliczone wartości:The following are the formulas used by some of the counters that represent calculated values:

  • AverageCount64: (N1-N0)/(B1-B0), gdzie N 1 i N 0 to odczyty licznika wydajności, a B1 i B0 są odpowiadające im AverageBase wartości.AverageCount64: (N1 - N0)/(B1 - B0), where N 1 and N 0 are performance counter readings, and B1 and B0 are their corresponding AverageBase values. W ten sposób licznik reprezentuje liczbę elementów przetworzonych w ciągu interwału próbkowania, a mianownik reprezentuje licznik operacji zakończonych w ciągu interwału próbkowania.Thus, the numerator represents the numbers of items processed during the sample interval, and the denominator represents the number of operations completed during the sample interval.

  • AverageTimer32: ((N1-N0)/F)/(B1-B0), gdzie N1 i N0 są odczytami liczników wydajności, B1 i B0 są odpowiadające im AverageBase wartości, a F to liczba taktów na sekundę.AverageTimer32: ((N1 - N0)/F)/(B1 - B0), where N1 and N0 are performance counter readings, B1 and B0 are their corresponding AverageBase values, and F is the number of ticks per second. Wartość F jest uwzględniana w równaniu, dzięki czemu wynik może być wyświetlany w sekundach.The value of F is factored into the equation so that the result can be displayed in seconds. W ten sposób licznik reprezentuje liczby taktów liczone podczas ostatniego próbkowania interwału, F reprezentuje częstotliwość taktów, a mianownik reprezentuje liczbę operacji ukończonych podczas ostatniego przykładowego interwału.Thus, the numerator represents the numbers of ticks counted during the last sample interval, F represents the frequency of the ticks, and the denominator represents the number of operations completed during the last sample interval.

  • CounterDelta32: N1-N0, gdzie N1 i N0 są odczytami liczników wydajności.CounterDelta32: N1 - N0, where N1 and N0 are performance counter readings.

  • CounterDelta64: N1-N0, gdzie N1 i N0 są odczytami liczników wydajności.CounterDelta64: N1 - N0, where N1 and N0 are performance counter readings.

  • CounterMultiTimer: ((N1-N0)/(D1-d0)) x 100/B, gdzie N1 i N0 są odczytami licznika wydajności, D1 i d0 są odpowiadające im czas odczytywania czasomierza wydajności systemu, a zmienna B oznacza liczbę bazową monitorowanych składników (przy użyciu podstawowego licznika typu CounterMultiBase ).CounterMultiTimer: ((N1 - N0) / (D1 - D0)) x 100 / B, where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings in ticks of the system performance timer, and the variable B denotes the base count for the monitored components (using a base counter of type CounterMultiBase). W ten sposób licznik reprezentuje fragmenty interwału próbkowania, w których monitorowane składniki były aktywne, a mianownik reprezentuje łączny czas trwania interwału próbkowania.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterMultiTimer100Ns: ((N1-N0)/(D1-d0)) x 100/B, gdzie N1 i N0 to odczyty licznika wydajności, D1 i d0 są odpowiadające im czas odczytu w jednostkach 100-nanosekund, a zmienna B oznacza podstawową liczbę monitorowanych składników (przy użyciu podstawowego licznika typu CounterMultiBase ).CounterMultiTimer100Ns: ((N1 - N0) / (D1 - D0)) x 100 / B, where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings in 100-nanosecond units, and the variable B denotes the base count for the monitored components (using a base counter of type CounterMultiBase). W ten sposób licznik reprezentuje fragmenty interwału próbkowania, w których monitorowane składniki były aktywne, a mianownik reprezentuje łączny czas trwania interwału próbkowania.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterMultiTimer100NsInverse: (B-((N1-N0)/(D1-d0))) x 100, gdzie mianownik reprezentuje łączny czas trwania interwału próbkowania, licznik reprezentuje czas w interwale, gdy monitorowane składniki były nieaktywne, a B reprezentuje liczbę monitorowanych składników przy użyciu podstawowego licznika typu CounterMultiBase .CounterMultiTimer100NsInverse: (B - ((N1 - N0) / (D1 - D0))) x 100, where the denominator represents the total elapsed time of the sample interval, the numerator represents the time during the interval when monitored components were inactive, and B represents the number of components being monitored, using a base counter of type CounterMultiBase.

  • CounterMultiTimerInverse: (B-((N1-N0)/(D1-d0))) x 100, gdzie mianownik reprezentuje łączny czas trwania interwału próbkowania, licznik reprezentuje czas w interwale, gdy monitorowane składniki były nieaktywne, a B reprezentuje liczbę monitorowanych składników przy użyciu podstawowego licznika typu CounterMultiBase .CounterMultiTimerInverse: (B- ((N1 - N0) / (D1 - D0))) x 100, where the denominator represents the total elapsed time of the sample interval, the numerator represents the time during the interval when monitored components were inactive, and B represents the number of components being monitored, using a base counter of type CounterMultiBase.

  • CounterTimer: (N1-N0)/(D1-d0), gdzie N1 i N0 są odczytami liczników wydajności, a D1 i d0 są odpowiednimi odczytanymi czasami.CounterTimer: (N1 - N0) / (D1 - D0), where N1 and N0 are performance counter readings, and D1 and D0 are their corresponding time readings. W ten sposób licznik reprezentuje fragmenty interwału próbkowania, w których monitorowane składniki były aktywne, a mianownik reprezentuje łączny czas trwania interwału próbkowania.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterTimerInverse: (1-((N1-N0)/(D1-d0))) x 100, gdzie licznik reprezentuje czas w interwale, gdy monitorowane składniki były nieaktywne, a mianownik reprezentuje łączny czas trwania interwału próbkowania.CounterTimerInverse: (1- ((N1 - N0) / (D1 - D0))) x 100, where the numerator represents the time during the interval when the monitored components were inactive, and the denominator represents the total elapsed time of the sample interval.

  • CountPerTimeInterval32: (N1-N0)/(D1-d0), gdzie licznik reprezentuje liczbę elementów w kolejce, a mianownik reprezentuje czas, który upłynął podczas ostatniego przykładowego interwału.CountPerTimeInterval32: (N1 - N0) / (D1 - D0), where the numerator represents the number of items in the queue, and the denominator represents the time elapsed during the last sample interval.

  • CountPerTimeInterval64: (N1-N0)/(D1-d0), gdzie licznik reprezentuje liczbę elementów w kolejce, a mianownik reprezentuje czas, który upłynął podczas próbkowania interwału.CountPerTimeInterval64: (N1 - N0) / (D1 - D0), where the numerator represents the number of items in a queue and the denominator represents the time elapsed during the sample interval.

  • ElapsedTime: (D0-N0)/F, gdzie d0 reprezentuje bieżącą godzinę, N0 reprezentuje czas uruchomienia obiektu, a F reprezentuje liczbę jednostek czasu, które upłynęły w jednej sekundzie.ElapsedTime: (D0 - N0) / F, where D0 represents the current time, N0 represents the time the object was started, and F represents the number of time units that elapse in one second. Wartość F jest uwzględniana w równaniu, dzięki czemu wynik może być wyświetlany w sekundach.The value of F is factored into the equation so that the result can be displayed in seconds.

  • NumberOfItems32Dawaj.NumberOfItems32: None. Nie wyświetla średniej, ale wyświetla dane pierwotne w miarę ich zbierania.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItems64Dawaj.NumberOfItems64: None. Nie wyświetla średniej, ale wyświetla dane pierwotne w miarę ich zbierania.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItemsHEX32Dawaj.NumberOfItemsHEX32: None. Nie wyświetla średniej, ale wyświetla dane pierwotne w miarę ich zbierania.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItemsHEX64Dawaj.NumberOfItemsHEX64: None. Nie wyświetla średnika, ale wyświetla nieprzetworzone dane podczas ich zbieraniaDoes not display an average, but shows the raw data as it is collected

  • RateOfCountsPerSecond32: (N1-N0)/((D1-d0)/F), gdzie N1 i N0 to odczyty licznika wydajności, D1 i d0 są odpowiednimi odczytanymi czasami, a F reprezentuje liczbę taktów na sekundę.RateOfCountsPerSecond32: (N1 - N0) / ((D1 - D0) / F), where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings, and F represents the number of ticks per second. W ten sposób licznik reprezentuje liczbę operacji wykonanych w ciągu ostatniego interwału próbkowania, mianownik reprezentuje liczbę taktów, które upłynęły podczas ostatniego interwału próbkowania, a F jest częstotliwością taktów.Thus, the numerator represents the number of operations performed during the last sample interval, the denominator represents the number of ticks elapsed during the last sample interval, and F is the frequency of the ticks. Wartość F jest uwzględniana w równaniu, dzięki czemu wynik może być wyświetlany w sekundach.The value of F is factored into the equation so that the result can be displayed in seconds.

  • RateOfCountsPerSecond64: (N1-N0)/((D1-d0)/F), gdzie N1 i N0 to odczyty licznika wydajności, D1 i d0 są odpowiednimi odczytanymi czasami, a F reprezentuje liczbę taktów na sekundę.RateOfCountsPerSecond64: (N1 - N0) / ((D1 - D0) / F), where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings, and F represents the number of ticks per second. W ten sposób licznik reprezentuje liczbę operacji wykonanych w ciągu ostatniego interwału próbkowania, mianownik reprezentuje liczbę taktów, które upłynęły podczas ostatniego interwału próbkowania, a F jest częstotliwością taktów.Thus, the numerator represents the number of operations performed during the last sample interval, the denominator represents the number of ticks elapsed during the last sample interval, and F is the frequency of the ticks. Wartość F jest uwzględniana w równaniu, dzięki czemu wynik może być wyświetlany w sekundach.The value of F is factored into the equation so that the result can be displayed in seconds.

  • RawFraction: (N0/d0) x 100, gdzie d0 reprezentuje mierzony atrybut (przy użyciu podstawowego licznika typu RawBase ), a N0 reprezentuje jeden składnik tego atrybutu.RawFraction: (N0 / D0) x 100, where D0 represents a measured attribute (using a base counter of type RawBase) and N0 represents one component of that attribute.

  • SampleCounter: (N1-N0)/((D1-d0)/F), gdzie licznik (N) reprezentuje liczbę wykonanych operacji, mianownik (D) reprezentuje czas w jednostkach taktów licznika wydajności systemu, a F reprezentuje liczbę taktów, które upłynęły w jednej sekundzie.SampleCounter: (N1 - N0) / ((D1 - D0) / F), where the numerator (N) represents the number of operations completed, the denominator (D) represents elapsed time in units of ticks of the system performance timer, and F represents the number of ticks that elapse in one second. F jest przypadany na równanie, aby wynik można było wyświetlić w sekundach.F is factored into the equation so that the result can be displayed in seconds.

  • SampleFraction: ((N1-N0)/(D1-d0)) x 100, gdzie licznik reprezentuje liczbę operacji zakończonych powodzeniem w ciągu ostatniego interwału próbkowania, a mianownik reprezentuje zmianę liczby operacji (typu mierzoną) ukończonych podczas próbkowania interwału, przy użyciu liczników typu SampleBase .SampleFraction: ((N1 - N0) / (D1 - D0)) x 100, where the numerator represents the number of successful operations during the last sample interval, and the denominator represents the change in the number of all operations (of the type measured) completed during the sample interval, using counters of type SampleBase.

  • Timer100Ns: (N1-N0)/(D1-d0) x 100, gdzie licznik reprezentuje fragmenty interwału próbkowania, w których monitorowane składniki były aktywne, a mianownik reprezentuje łączny czas trwania interwału próbkowania.Timer100Ns: (N1 - N0) / (D1 - D0) x 100, where the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • Timer100NsInverse: (1-((N1-N0)/(D1-d0))) x 100, gdzie licznik reprezentuje czas w interwale, gdy monitorowane składniki były nieaktywne, a mianownik reprezentuje łączny czas trwania interwału próbkowania.Timer100NsInverse: (1- ((N1 - N0) / (D1 - D0))) x 100, where the numerator represents the time during the interval when the monitored components were inactive, and the denominator represents the total elapsed time of the sample interval.

Dotyczy

Zobacz też