This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Protecting
Connection Strings and Other Configuration
Information

Introduction

Configuration information for ASP.NET applications is commonly stored in an XML file named web.config.
Over the course of these tutorials we have updated the web.config a handful of times. When creating the
Northwind Typed DataSet in the first tutorial, for example, connection string information was automatically added
to Web.config in the <connectionStrings> section. Later, in the Master Pages and Site Navigation tutorial, we
manually updated web.config, adding a <pages> element indicating that all of the ASP.NET pages in our project
should use the DatawWebControls Theme.

Since wWeb.config may contain sensitive data such as connection strings, it is important that the contents of
web.config be kept safe and hidden from unauthorized viewers. By default, any HTTP request to a file with
the . config extension is handled by the ASP.NET engine, which returns the “This type of page is not served”
message shown in Figure 1. This means that visitors cannot view your Web.config file’s contents by simply
entering ’http://www.Y ourServer.com/Web.config’ into their browser’s Address bar.

Fie Edit Yiew Favorites Took Help T

‘2 This type of page is not served. - Microsoft Internet Explorer R|

& Badk = W @ & Pt Favorites &4 -5 3 €5 5 3

s] Fetp:flocalhost: 2003FASPHET Dt Tuborisl 73 C5Web.conk balll = -]
- ! P i)

Server Error in J/ASPNET _Data_Tutorial_73_CS' Application.

This type of page is not served.

Description: The bype of e you s s sted i nol served bacsise | has besn sopbtthy lortidsen. Tha sxdendion ' confiy me ba
incorrect. Plsase review the URL Below and make sure thal § iz speied corectly
Requested URL: /ASPNET_Daba_Tutorinl_73_CSaveb conf

Yersion Information: Microsofl NET Frameweek Wersion 2 0.50727 42, ASPNET Yersion 2.0.50727.210

&) Done 8o Local inbranat

Figure 1: Visiting Wweb.config Through a Browser Returns a “This type of page is not served” Message

But what if an attacker is able to find some other exploit that allows her to view your Web. config file’s contents?
What could an attacker do with this information, and what steps can be taken to further protect the sensitive
information within Web. config? Fortunately, most sections in Web. config do not contain sensitive information.
What harm can an attacker perpetrate if they know the name of the default Theme used by your ASP.NET pages?

Certain Web. config sections, however, contain sensitive information that may include connection strings, user

lof 11

names, passwords, server names, encryption keys, and so forth. This information is typically found in the following
Web.config sections:

<appSettings>
<connectionStrings>
<identity>

<sessionState>

In this tutorial we will look at techniques for protecting such sensitive configuration information. As we will see,
the .NET Framework version 2.0 includes a protected configurations system that makes programmatically
encrypting and decrypting selected configuration sections a breeze.

Note: This tutorial concludes with a look at Microsoft’s recommendations for connecting to a database from
an ASP.NET application. In addition to encrypting your connection strings, you can help harden your system
by ensuring that you are connecting to the database in a secure fashion.

Step 1: Exploring ASP.NET 2.0°s Protected Configuration Options

ASP.NET 2.0 includes a protected configuration system for encrypting and decrypting configuration information.
This includes methods in the .NET Framework that can be used to programmatically encrypt or decrypt
configuration information. The protected configuration system uses the provider model, which allows developers to
choose what cryptographic implementation is used.

The .NET Framework ships with two protected configuration providers:

e RSAProtectedConfigurationProvider - uses the asymmetric RSA algorithm for encryption and
decryption.

e DPAPIProtectedConfigurationProvider - uses the Windows Data Protection API (DPAPI) for encryption
and decryption.

Since the protected configuration system implements the provider design pattern, it is possible to create your own
protected configuration provider and plug it into your application. See Implementing a Protected Configuration
Provider for more information on this process.

The RSA and DPAPI providers use keys for their encryption and decryption routines, and these keys can be stored
at the machine- or user-level. Machine-level keys are ideal for scenarios where the web application runs on its own
dedicated server or if there are multiple applications on a server that need to share encrypted information. User-
level keys are a more secure option in shared hosting environments where other applications on the same server
should not be able to decrypt your application’s protected configuration sections.

In this tutorial our examples will use the DPAPI provider and machine-level keys. Specifically, we will look at
encrypting the <connectionStrings> section in Web.config, although the protected configuration system can be
used to encrypt most any web.config section. For information on using user-level keys or using the RSA provider,
consult the resources in the Further Readings section at the end of this tutorial.

Note: The RsAProtectedConfigurationProvider and DPAPIProtectedConfigurationProvider
providers are registered in the machine.config file with the provider names
RsaProtectedConfigurationProviderandDataProtectionConfigurationProvider,KEpCCﬁde.
When encrypting or decrypting configuration information we will need to supply the appropriate provider
name (RsaProtectedConfigurationProvider or DataProtectionConfigurationProvider) rather than
the actual type name (RSAProtectedConfigurationProvider and
DPAPIProtectedConfigurationProvider). You can find the machine.config file in the
SWINDOWSS$\Microsoft.NET\Framework\ version\CONFIG folder.

20f11

Step 2: Programmatically Encrypting and Decrypting Configuration
Sections

With a few lines of code we can encrypt or decrypt a particular configuration section using a specified provider.
The code, as we will see shortly, simply needs to programmatically reference the appropriate configuration section,
call its ProtectSection or UnprotectSection method, and then call the save method to persist the changes.
Moreover, the .NET Framework includes a helpful command line utility that can encrypt and decrypt configuration
information. We will explore this command line utility in Step 3.

To illustrate programmatically protecting configuration information, let’s create an ASP.NET page that includes
buttons for encrypting and decrypting the <connectionStrings> section in Web.config.

Start by opening the EncryptingConfigSections.aspx page in the AdvancedDAL folder. Drag a TextBox control
from the Toolbox onto the Designer, setting its ID property to WebConfigContents, its TextMode property to
MultiLine, and its width and Rows properties to 95% and 15, respectively. This TextBox control will display the
contents of Web.config allowing us to quickly see if the contents are encrypted or not. Of course, in a real
application you would never want to display the contents of Wweb.config.

Beneath the TextBox, add two Button controls named EncryptConnStrings and DecryptConnStrings. Set their
Text properties to “Encrypt Connection Strings” and “Decrypt Connection Strings”.

At this point your screen should look similar to Figure 2.

= ASPHET Data_Tuterlsl_T3_C5 - Microsofl Yisual Studie

o Edt Wew ‘Webmte fukd Debug Format Lapost Took Window Comewrty bl Addes
- ol- g A k. 2 L, Fdropdown |
B J U

> SRR [ravencema sectonaonn %5

- Shandard o -~
h Peanber I T " .
A Labed
[Tetox
(2] Button Content - Contentl (Custom)
(2] Lrksuition = = = = 'y
(3] Irmagaberten Protecting Cﬂllfll_:[lll’ﬂtlﬂll Sections !
:"& Hyperiink
T DeopDownlist Th texthox balow contang the contants of this application’s configuration filo
b Listliox Weab |:|:|n1'||;|:| You can chck the "Encrypt Connection Stnngs® and "Decryptl
[+ CheckBiox IConnectenn Stangs® buttens to ancrypl and datrypt the contents il
ThackBad st
& BadoButton Wik .config:
FeadoBatonlis B
il Inage

[I Fansl . Encrypt Connisctian Strings | | Decrypt Connechion Strings :

|| <ty | <ampicontmmnscontantl > || p> | capibuttonddesrypeeorest..> |

2 Error Lt | (] Cutpust| S Firdt Bnguty || 7 Commardd e

3of11

Figure 2: Add a TextBox and Two Button Web Controls to the Page

Next, we need to write code that loads and displays the contents of Wweb.config in the WebConfigContents
TextBox when the page is first loaded. Add the following code to the page’s code-behind class. This code adds a
method named DisplayWebConfig and calls it from the Page Load event handler when Page.IsPostBack is

False:

Protected Sub Page Load(sender As Object, e As EventArgs) Handles Me.Load
'On the first page visit, call DisplayWebConfig method
If Not Page.IsPostBack Then
DisplayWebConfig ()
End If
End Sub

Private Sub DisplayWebConfig ()
'Reads in the contents of Web.config and displays them in the TextBox
Dim webConfigStream As StreamReader = _
File.OpenText (Path.Combine (Request.PhysicalApplicationPath, "Web.config"))
Dim configContents As String = webConfigStream.ReadToEnd()
webConfigStream.Close ()

WebConfigContents.Text = configContents
End Sub

The DisplayWebConfig method uses the File class to open the application’s Web.config file, the StreamReader
class to read its contents into a string, and the path class to generate the physical path to the web.config file.
These three classes are all found in the system. 10 namespace. Consequently, you will need to add a Imports
System. I0 statement to the top of the code-behind class or, alternatively, prefix these class names with
“system.I0.”

Next, we need to add event handlers for the two Button controls’ c1ick events and add the necessary code to
encrypt and decrypt the <connectionStrings> section using a machine-level key with the DPAPI provider. From
the Designer, double-click each of the Buttons to add a c1ick event handler in the code-behind class and then add

the following code:

Protected Sub EncryptConnStrings Click(sender As Object, e As EventArgs)
Handles EncryptConnStrings.Click
'Get configuration information about Web.config
Dim config As Configuration = _
WebConfigurationManager.OpenWebConfiguration (Request.ApplicationPath)

' Let's work with the <connectionStrings> section
Dim connectionStrings As ConfigurationSection = _
config.GetSection ("connectionStrings")
If connectionStrings IsNot Nothing Then
' Only encrypt the section if it is not already protected
If Not connectionStrings.SectionInformation.IsProtected Then
' Encrypt the <connectionStrings> section using the
' DataProtectionConfigurationProvider provider
connectionStrings.SectionInformation.ProtectSection(_
"DataProtectionConfigurationProvider")
config.Save ()

' Refresh the Web.config display

4of11

DisplayWebConfig ()
End If
End If
End Sub

Protected Sub DecryptConnStrings Click(sender As Object, e As EventArgs)
Handles DecryptConnStrings.Click
' Get configuration information about Web.config
Dim config As Configuration = _
WebConfigurationManager.OpenWebConfiguration (Request.ApplicationPath)

' Let's work with the <connectionStrings> section
Dim connectionStrings As ConfigurationSection = _
config.GetSection ("connectionStrings")
If connectionStrings IsNot Nothing Then
' Only decrypt the section if it is protected
If connectionStrings.SectionInformation.IsProtected Then
' Decrypt the <connectionStrings> section
connectionStrings.SectionInformation.UnprotectSection ()
config.Save ()

' Refresh the Web.config display
DisplayWebConfig ()
End If
End If
End Sub

The code used in the two event handlers is nearly identical. They both start by getting information about the current
application’s Web. config file via the WebConfigurationManager class’s OpenWebConfiguration method. This
method returns the web configuration file for the specified virtual path. Next, the web.config file’s
<connectionStrings> section is accessed via the Confiquration class’s GetSection (sectionName) method,
which returns a ConfigurationSection object.

The configurationSection object includes a sectionInformation property that provides additional
information and functionality regarding the configuration section. As the code above shows, we can determine
whether the configuration section is encrypted by checking the SectionInformation property’s IsProtected
property. Moreover, the section can be encrypted or decrypted via the SectionInformation property’s
ProtectSection (provider) and UnprotectSection methods.

The ProtectSection (provider) method accepts as input a string specifying the name of the protected
configuration provider to use when encrypting. In the EncryptConnString Button’s event handler we pass
“DataProtectionConfigurationProvider” into the ProtectSection (provider) method so that the DPAPI provider
is used. The UnprotectSection method can determine the provider that was used to encrypt the configuration
section and therefore does not require any input parameters.

After calling the ProtectSection (provider) or UnprotectSection method, you must call the Configuration
object’s save method to persist the changes. Once the configuration information has been encrypted or decrypted
and the changes saved, we call DisplayWebConfig to load the updated web.config contents into the TextBox
control.

Once you have entered the above code, test it by visiting the EncryptingConfigSections.aspx page through a

browser. You should initially see a page that lists the contents of Web . config with the <connectionStrings>
section displayed in plain-text (see Figure 3).

S5of11

B Uintitled Page - Microsoft Internet Explorer

Ble £ Yew Favorkes ook Heb
C}M - & 3 3@ YD cameh Favortes &3 e g W] - (H.,u -:_-'i

Bfbeas) hitp:flocahorst- FoRaTASPRET Diata_Tubonal_ 73 C5[Rdvancediud fEncryptingonfigiactions asp - Gc-

Wnrking w|th Data Tutgﬁa'a Home > Advansed DAL Scenarios > Protected Connection

Strimgs in Web.contig

Protecting Configuration Sections

TE B 5 2 The textbox below containg the contents of this apphcation's configuration file
¥ i {Web.config). You can click the *Encrypt Connection Strngs® and *Decrypt

Dedarative. Connaction Strings” buttons to encrypt and decrypt the contants,

Fararmelers

Setting Parameter
Walues

Wehb.config:

MO T COC T CUMSSICS USUa i Ty Iral el 1
Y ¥indows\ Nicrosofc.Neo) Frameworkive . i Contfig
-
<oont lgurat 1omn:
<appiettings/ >
<Connectionstringss
<add nams=*NORTHUNDConnecE oSt ing™ connectiondtring="lata

Fllter:by Drop-Down
List

Mazter-Cetails- Source=.\SOLEXPRESS ; AstachbbF i lenames | Pacalricectory| \HORTHUND . HEF

Detals sIntegrated Security=Toue:lzer Iastance=Touws"™
peoviderName="System. bata. SgiClienc™ />

Master/Detail Across </ connact iandte ingas

Two Pages <AFAT &, k>

Diétails of Selecked cl== Sar the site-vide Theme --=>

<pages scyleShrerThesa="batalebControla™/»

£lmm

Row

[ar_oossnilarion dahoseTresa? o inearr dehseeced oo

| Encrypt Connection Strngs] L Decrypt Connecton Strngs |

8 Done " Local inkranet

Figure 3: Add a TextBox and Two Button Web Controls to the Page

Now click the “Encrypt Connection Strings” button. If request validation is enabled, the markup posted back from
the webConfigContents TextBox will produce an HttpRequestValidationException, which displays the
message, “A potentially dangerous Request.Form value was detected from the client.” Request validation, which
is enabled by default in ASP.NET 2.0, prohibits postbacks that include un-encoded HTML and is designed to help
prevent script-injection attacks. This check can be disabled at the page- or application-level. To turn it off for this
page, set the validateRequest setting to False in the @page directive. The epage directive is found at the top of
the page’s declarative markup.

o\
Vv

<%@ Page ValidateRequest="False"

For more information on request validation, its purpose, how to disable it at the page- and application-level, as well
as how to HTML encode markup, see Request Validation - Preventing Script Attacks.

After disabling request validation for the page, try clicking the “Encrypt Connection Strings” button again. On
postback, the configuration file will be accessed and its <connectionStrings> section encrypted using the DPAPI
provider. The TextBox is then updated to display the new web.config content. As Figure 4 shows, the
<connectionStrings> information is now encrypted.

60f11

N Untitled Page - Microsoft Internel Explorer

Blo Ed Wew Faeekes Tock el
ek » & - w @ 5 O Seach drPavorbes £ (2 B W] - & % IR

bwin |] hitpiflocathost-TR99TASPNET Dista_Tutonal_7T3_C5 AdvancedDul fEncryptingConfigtectons asp - [~

wUrki ng with Data T utor ia's Home > Advanced DAL Scenarios > Protected Connection

Strings in Web.contig

Protecting Configuration Sections

The textbox below containg the contents of this apphcation's configuration file
{'Whab. con ﬁg:I You can chck the "Encrypt Connection Stangs® and "Decrypt

Siple Display

Dedarative. Connaction Strings”™ buttons 1o encrypt and decrypt the contants.

Fararmeters

Setting Paramaker wab.conflg:

Wl <oont igurat ion> A

"i!!ﬁ:i! IIIIEE" 5
“LEAnnNAcEt ionSEE inge i

configProtectionProvider="hacaProtectiontont igucat ionPravider™>

Eﬂ;:f by Drop-Down cEncryptedhatas

<Ciphaghataz
gigtff43*b'*i' €1 pharvalues ACAAANCHAIEETAER) HoAWE/ L +aBAAAAY YHAZ +40BE 6 T6e Dund le
AOAAARCARARARADEgAAGARRAELLRADKEDI pe L Y pLAWNDOWG=aZ AARRART ARACHR

Haﬂﬂfﬂ:tﬂ BETOSS AAAERARAPNZ T bk TIEGVeF T/ OuY T AGALYSPERa Ry EY ZVUYE T £ Zpe kDR 12 TRE
Two Mbs e ITYOldeoS+EXThAWNT Lah Rk IOFORCDeF L LoR/ Re9f 71 y8VIZTe SDEDwTve A L

y £ lgDATKqoyl2Fo67Hydd 2IxJugee e 5 1SV0Z L0 IL 1F AL/ JKE S v E6FKEHO Za
Detaits of Selactad drd Gdb 7St YSTAPa IOy, S10R Ike v e TT#3 tLy3 evkF pSguldl i 38mGdb TubGTa
Row JOEYACeaGVR pI6dIGEI o 1ol Lo Sh I+ ER) gpEE cdRdx p L BESGFF3CnaEn 1wPZ 7
I._M AdmdwedE 1 KiegW 4 le/ BF JHA T CORE Evb +E g+ R EGhYNRBIYIF e FE2Bavkxpygho ke

I Encrypt Connection Strings ' Dacrypt Connecton Strhngs |

i bone el Local inkranet

Figure 4: Clicking the “Encrypt Connection Strings” Button Encrypts the <connectionString> Section

The encrypted <connectionStrings> section generated on my computer follows, although some of the content in
the <CipherData> element has been removed for brevity:

<connectionStrings
configProtectionProvider="DataProtectionConfigurationProvider">
<EncryptedData>
<CipherData>
<CiphervValue>AQAAANCMnd8BFJERJHOAWE/ . . .zChw==</CipherValue>
</CipherData>
</EncryptedData>
</connectionStrings>

Note: The <connectionStrings> element specifies the provider used to perform the encryption
(DataProtectionConfigurationProvider). This information is used by the UnprotectSection method
when the “Decrypt Connection Strings” button is clicked.

When the connection string information is accessed from web.config - either by code we write, from a
SqlDataSource control, or the auto-generated code from the TableAdapters in our Typed DataSets - it is
automatically decrypted. In short, we do not need to add any extra code or logic to decrypt the encrypted
<connectionString> section. To demonstrate this, visit one of the earlier tutorials at this time, such as the Simple
Display tutorial from the Basic Reporting section (~/BasicReporting/SimpleDisplay.aspx). As Figure 5
shows, the tutorial works exactly as we would expect it, indicating that the encrypted connection string information
is being automatically decrypted by the ASP.NET page.

7of 11

B Untitled Page - Microsolt Internet Explorer [
Eibe Edt Ve Pgeoribes ook Help giz
Qbak =) a3 O sewdh Farieibns £ I ot W] < &Ex i"ﬁ

* B

Home > Basic Reparting > Simple Display

FormView Example

Chai Tea ($19.95)

Declarative)
Parm‘n&ws C-}t‘.‘-'ﬂ:lr‘p' E-B'JIEIF-E';EF-' 'E-«.JE‘D|=E'T Exotic Ligunds

Sétting Parameter

il DetailsView Examle

Filtaring Reports

I:_"I'i'lnl."_]:!l_'!‘_ Chal Tea

Filter by Drop-Down Category Beverages
List Supplier Exabe Liqueds

Price 7
Master-Details- []'f' 22 o $1 9.95
mm ISCOrtiris
Master/Tatall Across 2210
Two Pages
Detais of Selected

GridView Example

Fow

Customized Product | Category Supplier Price |Discontinued
Fanmattng Chai Tea Beversges Exobc Liguids $19.95
Format Colors Chang Beverages Exotic Liquids $19.25
Custom Content In & Arggeed Syrup Condiments Exobc Liquids F10.00
SO e g Condments New Crleans Canin 4566
ELE ELats Chef Anton's Wew Orleans Cajun
Cetaisiyiew Sumbia Ml Condments o $21.35
O SR RS S e : o
< £
£l & Local intrant

Figure 5: The Data Access Layer Automatically Decrypts the Connection String Information

To revert the <connectionStrings> section back to its plain-text representation, click the “Decrypt Connection
Strings” button. On postback you should see the connection strings in Web.config in plain-text. At this point your
screen should look like it did when first visiting this page (see in Figure 3).

Step 3: Encrypting Configuration Sections Using aspnet_regiis.exe

The .NET Framework includes a variety of command line tools in the
SWINDOWSS\Microsoft.NET\Framework\version\ folder. In the Using SQL Cache Dependencies tutorial, for
instance, we looked at using the aspnet regsql.exe command line tool to add the infrastructure necessary for
SQL cache dependencies. Another useful command line tool in this folder is the ASP.NET IIS Registration tool
(aspnet_regiis.exe). As its name implies, the ASP.NET IIS Registration tool is primarily used to register an
ASP.NET 2.0 application with Microsoft’s professional-grade Web server, IIS. In addition to its IIS-related
features, the ASP.NET IIS Registration tool can also be used to encrypt or decrypt specified configuration sections
In Web.config.

The following statement shows the general syntax used to encrypt a configuration section with the
aspnet regiis.exe command line tool:

aspnet_regiis.exe -pef section physical directory —-prov provider

8of 11

section 1s the configuration section to encrypt (like “connectionStrings”), the physical directory is the full,
physical path to the web application’s root directory, and provider is the name of the protected configuration
provider to use (such as “DataProtectionConfigurationProvider”). Alternatively, if the web application is registered
in IIS you can enter the virtual path instead of the physical path using the following syntax:

aspnet_regiis.exe -pe section -app virtual directory -prov provider

The following aspnet regiis.exe example encrypts the <connectionStrings> section using the DPAPI
provider with a machine-level key:

aspnet regiis.exe -pef
"connectionStrings" "C:\Websites\ASPNET Data Tutorial 73 VB"
-prov "DataProtectionConfigurationProvider"

Similarly, the aspnet_regiis.exe command line tool can be used to decrypt configuration sections. Instead of
using the -pef switch, use -pdf (or instead of -pe, use -pd). Also, note that the provider name is not necessary
when decrypting.

aspnet_regiis.exe -pdf section physical directory
-—— or --
aspnet_regiis.exe -pd section -app virtual directory

Note: Since we are using the DPAPI provider, which uses keys specific to the computer, you must run
aspnet_regiis.exe from the same machine from which the web pages are being served. For example, if
you run this command line program from your local development machine and then upload the encrypted
Web.config file to the production server, the production server will not be able to decrypt the connection
string information since it was encrypted using keys specific to your development machine. The RSA
provider does not have this limitation as it is possible to export the RSA keys to another machine.

Understanding Database Authentication Options

Before any application can issue SELECT, INSERT, UPDATE, or DELETE queries to a Microsoft SQL Server database,
the database first must identify the requestor. This process is known as authentication and SQL Server provides
two methods of authentication:

¢ Windows Authentication - the process under which the application is running is used to communicate with
the database. When running an ASP.NET application through Visual Studio 2005’s ASP.NET Development
Server, the ASP.NET application assumes the identity of the currently logged on user. For ASP.NET
applications on Microsoft Internet Information Server (IIS), ASP.NET applications usually assume the
identity of domainName\MachineName Or domainName\NETWORK SERVICE, although this can be customized.

¢ SQL Authentication - a user ID and password values are supplied as credentials for authentication. With
SQL authentication, the user ID and password are provided in the connection string.

Windows authentication is preferred over SQL authentication because it is more secure. With Windows
authentication the connection string is free from a username and password and if the web server and database
server reside on two different machines, the credentials are not sent over the network in plain-text. With SQL
authentication, however, the authentication credentials are hard-coded in the connection string and are transmitted
from the web server to the database server in plain-text.

These tutorials have used Windows authentication. You can tell what authentication mode is being used by
inspecting the connection string. The connection string in Web . config for our tutorials has been:

Data Source=.\SQLEXPRESS; AttachDbFilename=|DataDirectory|\NORTHWND.MDF; Integrated

9o0f11

Security=True; User Instance=True

The “Integrated Security=True” and lack of a username and password indicate that Windows authentication is
being used. In some connection strings the term “Trusted Connection=Yes” or “Integrated Security=SSPI” is used
instead of “Integrated Security=True”, but all three indicate the use of Windows authentication.

The following example shows a connection string that uses SQL authentication. Note the credentials embedded
within the connection string:

Server=serverName; Database=Northwind; uid=userID; pwd=password

Imagine that an attacker is able to view your application’s Web.config file. If you use SQL authentication to
connect to a database that is accessible over the Internet, the attacker can use this connection string to connect to
your database through SQL Management Studio or from ASP.NET pages on their own website. To help mitigate
this threat, encrypt the connection string information in Web . config using the protected configuration system.

Note: For more information on the different types of authentication available in SQL Server, see Building

Secure ASP.NET Applications: Authentication, Authorization, and Secure Communication. For further
connection string examples illustrating the differences between Windows and SQL authentication syntax,

refer to ConnectionStrings.com.

Summary

By default, files with a . config extension in an ASP.NET application cannot be accessed through a browser.
These types of files are not returned because they may contain sensitive information, such as database connection
strings, usernames and passwords, and so on. The protected configuration system in .NET 2.0 helps further protect
sensitive information by allowing specified configuration sections to be encrypted. There are two built-in protected
configuration providers: one that uses the RSA algorithm and one that uses the Windows Data Protection API
(DPAPI).

In this tutorial we looked at how to encrypt and decrypt configuration settings using the DPAPI provider. This can
be accomplished both programmatically, as we saw in Step 2, as well as through the aspnet regiis.exe
command line tool, which was covered in Step 3. For more information on using user-level keys or using the RSA
provider instead, see the resources in the Further Reading section.

Happy Programming!

Further Reading

For more information on the topics discussed in this tutorial, refer to the following resources:

Building Secure ASP.NET Application: Authentication, Authorization, and Secure Communication
Encrypting Configuration Information in ASP.NET 2.0 Applications

Encrypting Web.config Values in ASP.NET 2.0

How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI

How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA

The Configuration API in .NET 2.0
Windows Data Protection

About the Author

10of 11

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Teresa Murphy
and Randy Schmidt. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

11of 11

