This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Working with
Computed Columns

Introduction

Microsoft SQL Server allows for computed columns, which are columns whose values are calculated from an
expression that usually references the values from other columns in the same table. As an example, a time tracking
data model might have a table named ServiceLog with columns including ServicePerformed, EmployeelD,
Rate, and Duration, among others. While the amount due per service item (being the rate multiplied by the
duration) could be calculated through a web page or other programmatic interface, it might be handy to include a
column in the ServiceLog table named AmountDue that reported this information. This column could be created as
a normal column, but it would need to be updated anytime the Rate or Duration column values changed. A better
approach would be to make the AmountDue column a computed column using the expression Rate * Duration.
Doing so would cause SQL Server to automatically calculate the AmountDue column value whenever it was
referenced in a query.

Since a computed column’s value is determined by an expression, such columns are read-only and therefore cannot
have values assigned to them in INSERT or UPDATE statements. However, when computed columns are part of the
main query for a TableAdapter that uses ad-hoc SQL statements, they are automatically included in the auto-
generated INSERT and UPDATE statements. Consequently, the TableAdapter’s INSERT and UPDATE queries and
InsertCommand and UpdateCommand properties must be updated to remove references to any computed columns.

One challenge of using computed columns with a TableAdapter that uses ad-hoc SQL statements is that the
TableAdapter’s INSERT and UPDATE queries are automatically regenerated any time the TableAdapter
Configuration wizard is completed. Therefore, the computed columns manually removed from the INSERT and
UPDATE queries will reappear if the wizard is re-run. Although TableAdapters that use stored procedures don’t
suffer from this brittleness, they do have their own quirks that we will address in Step 3.

In this tutorial we will add a computed column to the suppliers table in the Northwind database and then create a
corresponding TableAdapter to work with this table and its computed column. We will have our TableAdapter use
stored procedures instead of ad-hoc SQL statements so that our customizations aren’t lost when the TableAdapter
Configuration wizard is used.

Let’s get started!

Step 1: Adding a Computed Column to the suppliers Table

The Northwind database does not have any computed columns so we will need to add one ourselves. For this
tutorial let’s add a computed column to the suppliers table called FullContactName that returns the contact’s
name, title, and the company they work for in the following format: “contactName (ContactTitle,
companyName)”. This computed column might be used in reports when displaying information about suppliers.

Start by opening the suppliers table definition by right-clicking on the Suppliers table in the Server Explorer
and choosing Open Table Definition from the context-menu. This will display the columns of the table and their
properties, such as their data type, whether they allow NULLs, and so forth. To add a computed column, start by
typing in the name of the column into the table definition. Next, enter its expression into the (Formula) textbox
under the Computed Column Specification section in the Column Properties window (see Figure 1). Name the

1of 17

computed column FullContactName and use the following expression:

ContactName + ' (' + CASE WHEN ContactTitle IS NOT NULL THEN
ContactTitle + ', ' ELSE '' END + CompanyName + ')'

Note that strings can be concatenated in SQL using the + operator. The CASE statement can be used like a
conditional in a traditional programming language. In the above expression the CASE statement can be read as: If
ContactTitle is not NULL then output the ContactTitle value concatenated with a comma, otherwise emit
nothing. For more on the usefulness of the CAsE statement, see The Power of SQL cAsE Statements.

Note: Instead of using a CASE statement here, we could have alternatively used ISNULL

(ContactTitle, '').ISNULL (checkExpression, replacementValue) returns checkExpression if it 1s
non-NULL, otherwise it returns replacementValue. While either ISNULL or CASE will work in this instance,
there are more intricate scenarios where the flexibility of the CASE statement cannot be matched by ISNULL.

After adding this computed column your screen should look like the screen shot in Figure 1.

T ASPNET Data_Tutorial_T1_CS - Microsofl Visual Studie
Fl= Edt ‘iew Project Budd Debog Dita Table Designer Jools Window Communty Help Addine

L i el & s B3 L 3 [# March 31s i
B S d AR,
» dbo.Supplcrs.. DR THWRDMDF)Y® | w» 3 | Server Explorer > 0
g Cobhimn Mame Diaka Type Rl Nl [#] e
g .Y Supslert - O = [Data Connections -
Comparndiams rivarchar{400) |_| = [NORTHWMND . MOF
Contactams revasrchiar(300 [B & ?::am CHagrams
= L
Conkact Tiles rivarchar(30) 2 i 35
Bddress revarchar{E0) & [Cbegrins
Gty rrvarchar{15) = 3] CusteemenCustoemsiismo
Region revarchar(15) = * ﬂtm«mmmmmMa
+ i i
PostalCode revarchar(L0} [+ & Ce il
Courkyy rrvanchac(15y ® [EnployesTerkerias
Phone: revarchar24) * J Order Detals
Fant rrvarchar{24) = ®] Orders
HameF, et = : &= mts
{ » | Fubcontacttiame I | = ;
a =

T ContactTile
inl4] 7] Address
: 1.. _:Iﬂh'

1] Regon
2] Postaiode
J Coankry
1 Frone
j Fax

I Patstd T 4] HomeFage

bl (7] supphers_fsphlar SofCacheblo

{Forrmula) # (2] Terrkories
- L Views

< — ’
GRSelutia. .. |“HProperties |58 Sarver ... EERClass Yiew
gy Error Lt | [T] Chitput i Find Resuits 1|] Command Window

Figure 1: Add a Computed Column Named FullContactName to the Ssuppliers Table

20f 17

After naming the computed column and entering its expression, save the changes to the table by clicking the Save
icon in the toolbar, by hitting Ctrl+S, or by going to the File menu and choosing Save suppliers.

Saving the table should refresh the Server Explorer, including the just-added column in the suppliers table’s
column list. Furthermore, the expression entered into the (Formula) textbox will automatically adjust to an
equivalent expression that strips unnecessary whitespace, surrounds column names with brackets (1), and includes
parentheses to more explicitly show the order of operations:

(((([ContactName]+' (')+case when [ContactTitle] IS NOT NULL
then [ContactTitle]+', ' else '' end)+[CompanyName])+')")

For more information on computed columns in Microsoft SQL Server, refer to the technical documentation. Also
check out the How to: Specify Computed Columns for a step-by-step walkthrough of creating computed columns.

Note: By default, computed columns are not physically stored in the table but are instead recalculated each
time they are referenced in a query. By checking the “Is Persisted” checkbox, however, you can instruct SQL
Server to physically store the computed column in the table. Doing so allows an index to be created on the
computed column, which can improve the performance of queries that use the computed column value in
their WwHERE clauses. See Creating Indexes on Computed Columns for more information.

Step 2: Viewing the Computed Column’s Values

Before we start work on the Data Access Layer, let’s take a minute to view the FullContactName values. From the
Server Explorer, right-click on the suppliers table name and choose New Query from the context-menu. This will
bring up a Query window that prompts us to choose what tables to include in the query. Add the Suppliers table
and click Close. Next, check the CompanyName, ContactName, ContactTitle, and FullContactName columns
from the Suppliers table. Finally, click the red exclamation point icon in the Toolbar to execute the query and view
the results.

As Figure 2 shows, the results include FullContactName, which lists the CompanyName, ContactName, and
ContactTitle columns using the format ldquo;contactName (ContactTitle, CompanyName)”.

3of17

% ASPMET _Data_Tuterial 71 _CS - Microsafl Visual Studio

Ele Edt Wiews Project fuld Debug Dats QuepyDesigrer Jook Window Cemmundy Help fAddns
@ -pE gk Cailia- B Merch 3z il
Bl E I N W=
S QuEryl: Quer. ORTHWND.MDE)* = x5
2 =lIE
kg
_?;
i
5§
(v /rucontactriame] x| <&
4 * i1-
Cinhafifi f Tabls Dippt Sock Types Siork Cirdder Filtar .. Or # ‘h
v [Companytieme Supphers = B
Conkscthisme Supphers ¥
ConkactTitle Supphars)
FuliConk scthsms Supplere [# =
g i ¥
SELECT Cosmpanyhlame, Contacthiame, Contact Tite, PuliContactiame
PR Spphers
ComparyMame Contadame | ContactThle | FulConkacthiame =
L m Chaddotbe Coopsy Purchadag Man, .. | Chadctbe Coopes (Purchasang Manager, Exobid Liguids)
Mew Orleans Ca)... Sheliey Burke Oeder Admnistr, .. sl (Dwder Administraton, New Orleans Cajun Debghts)
Grandma Kelly's ... Fisgina Hurphy Sales Aepresent ... | Begina Murphy (Ssles Repres v, Erandoes Kelhy's Homestesd)
Ty Triasdenrs Yirihn Nagaie Marksting Manager] Yosre Negass (Marketing Manager, Tokyo Trades)
Cooperativa de ... Antonio ded Valle,.. Export Administr.., | Artonio ded Valle Saavedra (Export Administrator, Cooperatrea de Cuesos Las
PMaynard's i o Markating Repre.., | M b Fapresaritatnes, Manuim's)
Parviorea, Lid, [an Durvhing Maiketing Manager] [an Davin knting Manager, Paviovs, Lid,)
Speciaty Bsout.. . Peter Wilson Salps Bepresent... L= eber Wison (Sales Representative, Specisty Bsouts, Ltd.) Ll
i .
1 ofds |k Mk
g Exrior List 2 Cutput i'. ned Fiesults | 7] Cammand Window
!bu:rds:lSmd - - . .

Figure 2: The FullContactName Uses the Format “contactName (ContactTitle, CompanyName)”

Step 3: Adding the suppliersTableadapter to the Data Access Layer

In order to work with the supplier information in our application we need to first create a TableAdapter and
DataTable in our DAL. Ideally, this would be accomplished using the same straightforward steps examined in
earlier tutorials. However, working with computed columns introduces a few wrinkles that merit discussion.

If you are using a TableAdapter that uses ad-hoc SQL statements, you can simply include the computed column in
the TableAdapter’s main query via the TableAdapter Configuration wizard. This, however, will auto-generate
INSERT and UPDATE statements that include the computed column. If you attempt to execute one of these methods,
a sqlException with the message “The column ‘ColumnName’ cannot be modified because it is either a computed
column or is the result of a UNION operator” will be thrown. While the INSERT and UPDATE statement can be
manually adjusted through the TableAdapter’s InsertCommand and UpdateCommand properties, these
customizations will be lost whenever the TableAdapter Configuration wizard is re-run.

4 of 17

Due to the brittleness of TableAdapters that use ad-hoc SQL statements, it is recommended that we use stored
procedures when working with computed columns. If you are using existing stored procedures, simply configure
the TableAdapter as discussed in the Using Existing Stored Procedures for the Typed DataSet’s TableAdapters
tutorial. If you have the TableAdapter wizard create the stored procedures for you, however, it is important to
initially omit any computed columns from the main query. If you include a computed column in the main query,
the TableAdapter Configuration wizard will inform you, upon completion, that it cannot create the corresponding
stored procedures. In short, we need to initially configure the TableAdapter using a computed column-free main
query and then manually update the corresponding stored procedure and the TableAdapter’s SelectCommand to
include the computed column. This approach is similar to the one used in the Updating the TableAdapter to Use
JOINs tutorial.

For this tutorial, let’s add a new TableAdapter and have it automatically create the stored procedures for us.
Consequently, we will need to initially omit the FullContactName computed column from the main query.

Start by opening the NorthwindwithSprocs DataSet in the ~/App_Code/DAL folder. Right-click in the Designer
and, from the context-menu, choose to add a new TableAdapter. This will launch the Table Adapter Configuration
wizard. Specify the database to query data from (NORTHWNDConnectionString from Web.config) and click Next.
Since we have not yet created any stored procedures for querying or modifying the Suppliers table, select the
“Create new stored procedures” option so that the wizard will create them for us and click Next.

TableAdapter Configuration Wizard

Choose a Command Type =
The Tableadapter uses SOL statements or stored procedures.

How should the TableAdapter access the database?
() Use SQL statements

Specy a S0L skatement, IF you provide a single-table SELECT statement, the wizard can oenerate INSERT,
UPDATE, and DELETE statemeants For you,

(%) iCreate new stored procedures |

Speciy a 501 statement and the wizard will create a new stored procedure, IF you provide a single-table
SELECT statement, the wizard can generate INSERT, UPDATE, and DELETE stored procedures For wou,

! Use existing stored procedures
Choose an existing stored procedure for each command (SELECT, INSERT, IWPDATE, and DELETE).

[‘:Erf.vicuus Jl Blext =] Finisr

Figure 3: Choose the “Create new stored procedures” Option

The subsequent step prompts us for the main query. Enter the following query, which returns the SupplierID,
CompanyName, ContactName, and ContactTitle columns for each supplier. Note that this query purposefully
omits the computed column (FullContactName); we will update the corresponding stored procedure to include this
column in Step 4.

50f17

SELECT SupplierID, CompanyName, ContactName, ContactTitle
FROM Suppliers

After entering the main query and clicking Next, the wizard allows us to name the four stored procedures it will
generate. Name these stored procedures Suppliers Select, Suppliers Insert, Suppliers Update, and
Suppliers Delete, as Figure 4 illustrates.

TableAdapter Configuration Wizard

Create the Stored Procedures ol |

———

Specify how you would like the stored procedures created, A o 4 |

What do you want bo name the new stored procedures?
Select: :
Suppliers_Selsct |

Insert:
Suppliers_Insert |
Lipdate:

Suppliers_Update |

Delete: .
Suppliers_Delete |

You can preview the S0L script used ko generate stored procedures and optionally copy it For your awn
procedures,

| Preview SQL Seript...

[< Previous “_Liext:b H Einish ” Cancel

Figure 4: Customize the Names of the Auto-Generated Stored Procedures

The next wizard step allows us to name the TableAdapter’s methods and specify the patterns used to access and
update data. Leave all three checkboxes checked, but rename the GetData method to GetSuppliers. Click Finish
to complete the wizard.

60f17

TableAdapter Configuration Wizard

The Tableadapter methods bad and save data between your application and the

Choose Methods to Generate B s
= |
database, F

¥hich methods do you want to add to the TableAdapter?
Fill a DataTable

Creakes a method that takes a DataTable or DataSet as a parameker and execustes the SOL stakement or
SELECT stored procedure enterad an the previous pane.

Method name: |Fill

Return a DataTable

Creates a method that returns a new DataTable Filled with the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetSuppliers

[] Create methods to send updates directly to the database (GenerateDBDirectMethods)

Creates Insert, Update, and Delete methods that can be called to send individual row changes directly to the
database.

[<= Previous]L_Eext:b H Einish ” Cancel

Figure 5: Rename the GetData Method to GetSuppliers

Upon clicking Finish, the wizard will create the four stored procedures and add the TableAdapter and
corresponding DataTable to the Typed DataSet.

Step 4: Including the Computed Column in the TableAdapter’s Main
Query

We now need to update the TableAdapter and DataTable created in Step 3 to include the FullContactName
computed column. This involves two steps:

1. Updating the Suppliers_select stored procedure to return the FullContactName computed column, and
2. Updating the DataTable to include a corresponding FullContactName column.

Start by navigating to the Server Explorer and drilling down into the Stored Procedures folder. Open the
Suppliers Select stored procedure and update the SELECT query to include the FullContactName computed
column:

SELECT SupplierID, CompanyName, ContactName, ContactTitle, FullContactName
FROM Suppliers

Save the changes to the stored procedure by clicking the Save icon in the Toolbar, by hitting Ctrl+S, or by
choosing the Save Suppliers_Select option from the File menu.

7o0f 17

Next, return to the DataSet Designer, right-click on the suppliersTableAdapter, and choose Configure from the
context-menu. Note that the Suppliers Select column now includes the FullContactName column in its Data
Columns collection.

TableAdapter Configuration Wizard E”EJ E| @

Bind Commands to Existing Stored Procedures “x lic
Choose the stored procedures to call and specify any required parameters, |l . =il

Sebect the stored procedure For each operation. IF the procedure requires parameters, specify which colurmn
in the data raw contains the parameter value,

Set Select procedure parameters:
Sebect:

2) Diata Column
Suppliers_Select) w i B
Supplier]D

) Companyhame
~| Contactiame
ContactTitle

w | FullContacthame

v

| <previous || mext> || fnsh | [cancel]

Figure 6: Run the TableAdapter’s Configuration Wizard to Update the DataTable’s Columns

Click Finish to complete the wizard. This will automatically add a corresponding column to the
SuppliersDataTable. The TableAdapter wizard is smart enough to detect that the FullContactName column is a
computed column and therefore read-only. Consequently, it sets the column’s Readonly property to true. To
verify this, select the column from the suppliersbataTable and then go to the Properties window (see Figure 7).
Note that the FullContactName column’s DataType and MaxLength properties are also set accordingly.

8of17

% ASPNET Data_Tutorial _71_CS - Microsoft Visual Studio =M=
File Edt Miew ‘Website Buidd [ebug Dgta Tooks ‘Window Community Help Addins

@ - -l & -2 & - [4 [March 31st o
% “App_Code/DAL/.ithSprocs.uxsd 5 X | Properties *~ 1 X
.ECI L:l]‘ oyeesTableAdapter |2 “ | FullContactMame Column -
:f 2 Fill GetEmplayees () By [

AllowDENul True
AwtoInorement False
N, Suppliers Aurolncrementseed 0
: . AutolnorementSiep 1
SupplierICk Caption FullContacthame
COTRp ATy (DataType Syskem. String |
Splsioly DateTimetiode Unspectied_ocal
i ad (bl Defaultvalue <DBNLE>
_Ful..nrta-:n.ﬂr : Expresson
'8 SuppliersTableAdapter =] @;ngth 105 l
53] Fill, GetSupphers () Pz FullContactrame
1 FileySupplierlD, GetSupplierBySupplier D (@SupclierID) Hl alue iThrow exception)
{ ReadOrly True |
Source FullContackMane
Uniiguee: False
Mame
Indicabes the name used to look up this column in
the Colurnns collection of a DataTable.
W
< > st |Prop... (SMSery... [Class,
;j Ervor List | [Z] Cutput % Firnd Results 1 {j] Command Window
Ready

Figure 7: The FullcontactName Column is Marked as Read-Only

Step 5: Adding a GetsupplierBysupplierid Method to the TableAdapter

For this tutorial we will create an ASP.NET page that displays the suppliers in an updateable grid. In past tutorials
we have updated a single record from the Business Logic Layer by retrieving that particular record from the DAL
as a strongly-typed DataTable, updating its properties, and then sending the updated DataTable back to the DAL to
propagate the changes to the database. To accomplish this first step - retrieving the record being updated from the
DAL - we need to first add a GetSupplierBySupplierID (supplieriD) method to the DAL.

Right-click on the SuppliersTableadapter in the DataSet Design and choose the Add Query option from the
context-menu. As we did in Step 3, let the wizard generate a new stored procedure for us by selecting the “Create
new stored procedure” option (refer back to Figure 3 for a screenshot of this wizard step). Since this method will
return a record with multiple columns, indicate that we want to use a SQL query that is a “SELECT which returns
rows” and click Next.

90of 17

TableAdapter Query Configuration Wizard

Choose a Query Type A ey
Choose the bype of query to be generated | -= _.-J-i
u like to use?

What e of SOL query would

(5)SELECT which returns rows :

ELUFNS ONE OF Many rowWs oF Colmns.
{_) SELECT which returns a single value
Returns & single value (For example, Sum, Count, or any other aggregate function),

) UPDATE
Changes existing data in a table.

() DELETE

Removes rows From a table,
() INSERT

Adds a new row bo a table.

[< Previous Ji Blext =] Finish

Figure 8: Choose the “SELECT which returns rows” Option

The subsequent step prompts us for the query to use for this method. Enter the following, which returns the same
data fields as the main query but for a particular supplier.

SELECT SupplierID, CompanyName, ContactName, ContactTitle, FullContactName

FROM Suppliers
WHERE SupplierID = @SupplierID

The next screen asks us to name the stored procedure that will be auto-generated. Name this stored procedure
Suppliers SelectBySupplierID and click Next.

10 of 17

TableAdapter Query Configuration Wizard

Create the Stored Procedure e,
Specify how you would ke the stored procedure created. e

What do you want to name the new stored procedure?
Suppliers_SelectBySupplierlD

You can preview the SOL soript used ko generake the stored procedure and optionally copy it For wour own
procedure,

[Presaew SOL Script... I

[{Eravimls JI blext = ||_ Einish I[Caee J

Figure 9: Name the Stored Procedure suppliers SelectBySupplierID

Lastly, the wizard prompts us for the data access patterns and method names to use for the TableAdapter. Leave
both checkboxes checked, but rename the Fi11By and GetDataBy methods to FillBySupplierID and
GetSupplierBySupplierID, respectively.

11o0f 17

TableAdapter Query Configuration Wizard

Choose Methods to Generate B |

The TableAdapter methods bad and save data between your application and the L) —-'_
database. r

¥hich methods do you want to add ko the TableAdapter?
Fill a DataTable

Creakes a method that takes a DataTable or DataSet as a parameker and execustes the SOL stakement or
SELECT stored procedure enterad an the previous page.

Method nare: FiIIBﬁuﬁp&ef’ilﬂr
Return a DataTable

Creates a method that returns a new DataTable Filled wikh the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: | GetSupplierBySupplierID

[<= Previous][_ﬂext:b H Finish ” Cance

Figure 10: Name the TableAdapter Methods Fil1BySupplierID and GetSupplierBySupplierID

Click Finish to complete the wizard.

Step 6: Creating the Business Logic Layer

Before we create an ASP.NET page that uses the computed column created in Step 1, we first need to add the
corresponding methods in the BLL. Our ASP.NET page, which we will create in Step 7, will allow users to view
and edit suppliers. Therefore, we need our BLL to provide, at minimum, a method to get all of the suppliers and
another to update a particular supplier.

Create a new class file named suppliersBLLWithSprocs in the ~/App Code/BLL folder and add the following
code:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using NorthwindWithSprocsTableAdapters;

[System.ComponentModel.DataObject]

12 of 17

public class SuppliersBLLWithSprocs
{
private SuppliersTableAdapter suppliersAdapter = null;
protected SuppliersTableAdapter Adapter
{
get
{
if (_suppliersAdapter == null)
_suppliersAdapter = new SuppliersTableAdapter();

return suppliersAdapter;

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, true)]
public NorthwindWithSprocs.SuppliersDataTable GetSuppliers()
{
return Adapter.GetSuppliers();

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Update, true)]
public bool UpdateSupplier (string companyName, string contactName,

string contactTitle, int supplierID)

NorthwindWithSprocs.SuppliersDataTable suppliers =
Adapter.GetSupplierBySupplierID(supplierID);
if (suppliers.Count == 0)
// no matching record found, return false
return false;

NorthwindWithSprocs.SuppliersRow supplier = suppliers[0];

supplier.CompanyName = companyName;
if (contactName == null)
supplier.SetContactNameNull () ;
else
supplier.ContactName = contactName;
if (contactTitle == null)
supplier.SetContactTitleNull () ;
else
supplier.ContactTitle = contactTitle;

// Update the product record
int rowsAffected = Adapter.Update (supplier);

// Return true if precisely one row was updated, otherwise false
return rowsAffected == 1;

Like the other BLL classes, SuppliersBLLWithSprocs has a protected Adapter property that returns an instance
of the suppliersTableAdapter class along with two public methods: GetSuppliers and UpdateSupplier. The
GetSuppliers method calls and returns the suppliersbDataTable returned by the corresponding GetSupplier

method in the Data Access Layer. The UpdateSupplier method retrieves information about the particular supplier

13 0f 17

being updated via a call to the DAL’s GetSupplierBySupplierID (supplierID) method. It then updates the
CategoryName, ContactName, and ContactTitle properties and commits these changes to the database by calling
the Data Access Layer’s Update method, passing in the modified SuppliersRow object.

Note: Except for SupplierID and CompanyName, all columns in the Suppliers table allow NULL values.
Therefore, if the passed-in contactName or contactTitle parameters are null we need to set the
corresponding ContactName and ContactTitle properties to a NULL database value using the
SetContactNameNull and SetContactTitleNull methods, respectively.

Step 7: Working with the Computed Column from the Presentation
Layer

With the computed column added to the suppliers table and the DAL and BLL updated accordingly, we are ready
to build an ASP.NET page that works with the FullcontactName computed column. Start by opening the
ComputedColumns.aspx page in the AdvancedDAL folder and drag a GridView from the Toolbox onto the
Designer. Set the GridView’s ID property to Suppliers and, from its smart tag, bind it to a new ObjectDataSource

named SuppliersDataSource. Configure the ObjectDataSource to use the SuppliersBLLWithSprocs class we
added back in Step 6 and click Next.

Configure Data Source - SuppliersDataSource

| Choose a Business Object

Select a business object that can be used ko refriewe or update data (for example, an object defined in the Bin
or App_Code directory for this application].

Choose your business objact:
| SuppbersBLLWIthSprocs w Show only data components

MorthwvindWithSpracsTableadapters, SuppiiersTablafdapter ~
ProductsBLL
ProducksBLLWERSpracs
PraducksCL
ProducksOptimisticConcurmencyBLL
StaticCache
SuppliersBLL

SuppliersBLLiERSprocs

e R .

Figure 11: Configure the ObjectDataSource to Use the SuppliersBLLWithSprocs Class

There are only two methods defined in the SuppliersBLLWithSprocs class: GetSuppliers and UpdateSupplier.

Ensure that these two methods are specified in the SELECT and UPDATE tabs, respectively, and click Finish to
complete the configuration of the ObjectDataSource.

14 of 17

Upon completion of the Data Source Configuration wizard, Visual Studio will add a BoundField for each of the
data fields returned. Remove the supplierID BoundField and change the HeaderText properties of the
CompanyName, ContactName, ContactTitle, and FullContactName BoundFields to “Company”, “Contact
Name”, “Title”, and “Full Contact Name”, respectively. From the smart tag, check the “Enable Editing” checkbox
to turn on the GridView’s built-in editing capabilities.

In addition to adding BoundFields to the GridView, completion of the Data Source Wizard also causes Visual
Studio to set the ObjectDataSource’s OldvaluesParameterFormatString property to “original {0}”. Revert this
setting back to its default value, “{0}”.

After making these edits to the GridView and ObjectDataSource, their declarative markup should look similar to
the following:

<asp:GridView ID="Suppliers" runat="server" AutoGenerateColumns="False"
DataKeyNames="SupplierID" DataSourceID="SuppliersDataSource">
<Columns>
<asp:CommandField ShowEditButton="True" />
<asp:BoundField DataField="CompanyName"
HeaderText="Company"
SortExpression="CompanyName" />
<asp:BoundField DataField="ContactName"
HeaderText="Contact Name"
SortExpression="ContactName" />
<asp:BoundField DataField="ContactTitle"
HeaderText="Title"
SortExpression="ContactTitle" />
<asp:BoundField DataField="FullContactName"
HeaderText="Full Contact Name"
SortExpression="FullContactName"
ReadOnly="True" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="SuppliersDataSource" runat="server"
SelectMethod="GetSuppliers" TypeName="SuppliersBLLWithSprocs"
UpdateMethod="UpdateSupplier">
<UpdateParameters>
<asp:Parameter Name="companyName" Type="String" />
<asp:Parameter Name="contactName" Type="String" />
<asp:Parameter Name="contactTitle" Type="String" />
<asp:Parameter Name="supplierID" Type="Int32" />
</UpdateParameters>
</asp:0bjectDataSource>

Next, visit this page through a browser. As Figure 12 shows, each supplier is listed in a grid that includes the
FullContactName column, whose value is simply the concatenation of the other three columns formatted as
“ContactName(ContactTitle,CompanyNameYi

150f 17

2 Untitled Page - Bicrosefl Internel Explarer
s Edt Yeew Fgeorfes Tooks Help

I @l 0 S seanch doFeede 8 3= 0] - RN
e |) hetpefocalhent 1 FEEASPET Data_Tutoral T1_C5iAanoedlu jCompat i ol g ¥ =
Working with Data Tutorials Home > A4¢3nced DAL Scsnarios > Warking with Computed
clumns

Working with Computed Columns

Sirrple Display Company 1'_-;,.:!7..:.;,: Full Contact Mame

Bredarative - Charlotte Cooper

Fi'ﬂ'i'ﬂmgt?ﬁ Edit Exatic Liquids ;;;gfstt :,:‘;f:;f;ng (Furchasing Manager, Exobic

Rt ¢ : Liquids
CeRaNg M Shalley Burke (Order
Ll Ed :NE* Lrieans: Cajun Shitlley il Administrator, New Orleans
Dralighits Burke Adrmirestrates 4
FilbeEnng Reponts Cajun Delights)
. Redina Murphy (Sales
B s N e R cram
B ¥ P " Kely's Homestead)
Migster-Catals- Yogh Marketing Yioshi Magase (Marketing
Ditals Edit Tokya Traders Magase Manager Manager, Tokyo Traders)
Antores del Waks Saavedra
Mast Arros Aritorio del A
StErDekal = e COCERrAYE de Guesos b = Export {(Export Administrator,
Twia Pages K, 3 ‘alle /
Las Cabras Saavedra Admirestrator Codperativa de Quesos ‘Las
Detaks of Selected b i Cabras")
Faw Mayumi Marketing Mayurni Ohno (Marketing
EdIf Mayumi's ik, Darearantabiie B amear amtathna blaus imedel M

8] Done N Liocad intraned

Figure 12: Each Supplier is Listed in the Grid

Clicking the Edit button for a particular supplier causes a postback and has that row rendered in its editing interface
(see Figure 13). The first three columns render in their default editing interface - a TextBox control whose Text
property is set to the value of the data field. The FullContactName column, however, remains as text. When the
BoundFields were added to the GridView at the completion of the Data Source Configuration wizard, the
FullContactName BoundField’s ReadOnly property was set to true because the corresponding FullContactName
column in the SuppliersDataTable has its ReadOnly property set to true. As noted in Step 4, the
FullContactName’s ReadOnly property was set to true because the TableAdapter detected that the column was a
computed column.

I Untitied Page - Mictoselt Inlarnel Explaser
Bl [Vo= Fpeordei [Help

O = CRE R S Paorter 4P - B v B ExnB
A bt ocalhont: | TESYATMET Dubs_Tuboral_T1_CoiRchiancadDed foament sdColmi s L &
F:
Wgrking with Data Tutorials Home * Advanced DAL Scenariss > Weorking with Computed ¢olumns

Working with Computed Columns

L el R TR Conlast Nan Full Contact Wanng
Charlotte Coopar
Uadate Canoel Exctic Liguids Chariatte Coopar Purchasng Manager | (Purchassng Mansger,
Exotic Ligueds}

Shelley Burke (Order

Eds Dm:#?:“ AN Sheley Burke Order fdmiristrator Admenstraber, Hew
Crisans Capn Ghghts)
Bapra Murphy (Saet
o Grandma Kally's e e b s einsimine PADPEEHATYE -
"
ol Ll intrarat

Figure 13: The FullContactName Column is Not Editable

16 of 17

Go ahead and update the value of one or more of the editable columns and click Update. Note how the
FullContactName’s value is automatically updated to reflect the change.

Note: The GridView currently uses BoundFields for the editable fields, resulting in the default editing
interface. Since the CompanyName field is required, it should be converted into a TemplateField that includes
a RequiredFieldValidator. I leave this as an exercise for the interested reader. Consult the Adding Validation
Controls to the Editing and Inserting Interfaces tutorial for step-by-step instructions on converting a
BoundField to a TemplateField and adding validation controls.

Summary

When defining the schema for a table, Microsoft SQL Server allows the inclusion of computed columns. These are
columns whose values are calculated from an expression that usually references the values from other columns in
the same record. Since the values for computed columns are based on an expression, they are read-only and cannot
be assigned a value in an INSERT or UPDATE statement. This introduces challenges when using a computed column
in the main query of a TableAdapter that tries to automatically generate corresponding INSERT, UPDATE, and
DELETE statements.

In this tutorial we discussed techniques for circumventing the challenges posed by computed columns. In
particular, we used stored procedures in our TableAdapter to overcome the brittleness inherent in TableAdapters
that use ad-hoc SQL statements. When having the TableAdapter wizard create new stored procedures, it is
important that we have the main query initially omit any computed columns because their presence prevents the
data modification stored procedures from being generated. After the TableAdapter has been initially configured, its
SelectCommand stored procedure can be retooled to include any computed columns.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Hilton Geisenow
and Teresa Murphy. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

17 of 17

