This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Using the
FormView's Templates

Introduction

In the last two tutorials we saw how to customize the GridView and DetailsView controls' outputs using
TemplateFields. TemplateFields allow for the contents for a specific field to be highly customized, but in the
end both the GridView and DetailsView have a rather boxy, grid-like appearance. For many scenarios such a
grid-like layout is ideal, but at times a more fluid, less rigid display is needed. When displaying a single record,
such a fluid layout is possible using the FormView control.

Unlike the DetailsView, the FormView is not composed of fields. You can't add a BoundField or TemplateField
to a FormView. Instead, the FormView is rendered using templates. Think of the FormView as a DetailsView
control that contains a single TemplateField. The FormView supports the following templates:

ItemTemplate — used to render the particular record displayed in the FormView

HeaderTemplate — used to specify an optional header row

FooterTemplate — used to specify an optional footer row

EmptyDataTemplate — When the FormView's batasource lacks any records, the EmptyDataTemplate i
used in place of the TtemTemplate for rendering the control's markup

PagerTemplate — can be used to customize the paging interface for FormViews that have paging enabled
e EditItemTemplate/ InsertItemTemplate — used to customize the editing interface or inserting
interface for FormViews that support such functionality

In this tutorial we'll examine using the FormView control to present a less rigid display of products. Rather than
having fields for the name, category, supplier, and so on, the FormView's TtemTemplate will show these values
using a combination of a header element and a <table> (see Figure 1).

3 Untitled Page - Micressft Internet Eaplorer

Y Sk [- b - C ol B]
8 ity ocsihost | 152 Code Tt temsstting R pomiews, o X =
,
Wﬂrkiﬂg with Data Tutorials ':'I.E:m -Li;tls!lo-m::ﬂj aifmatting * Custem Content in
3 Farmiiaw
Creating a Fluid Display with the
FormView
Chai
Category: Beyersges Supplisr: Ezotic Liouds
Prica: F10.00 Units b Stock: 19
Limits On Grdar: O Reordar Laveal: 10
Qty fUnlt 10 bowes x 20 bags Discontlmeed:
Master/Detall Aoross
Twa Peges 12345670210,
- + b
1) S ooyl inbranet

1of5

Figure 1: The FormView Breaks Out of the Grid-Like Layout Seen in the DetailsView

Step 1: Binding the Data to the FormView

Open the Formview.aspx page and drag a FormView from the Toolbox onto the Designer. When first adding
the FormView it appears as a gray box, instructing us that an ItemTemplate is needed.

T Cade - Mizroualt Visual Studia

B Pt Yms Wetdts Buld [ebug Fams Lypost Took Windes Cosrandty Help Ridee
e =g N Y b s
0 4 1 =
+ R | o - x_[Bbc .o
i A | Eam e
| = Data P A Code P
K Foinbar ‘ 1l Aep_Cada
! & Y g Dk
Lo : : Al fop_Thares
B Dataiks Cembant = Content] [Custom) & [Bieporting
[T - - = CestirdFonyaling
- Creating a Fluid Display b Bl it s
|1 = 2 - - Dafdk. amps

with the FormView

: Fagastn | DtV Tt nl il &
| SosminSounce ® Framiis p

jr soeslEaSnaTe
& OtemoDabutionrds

R i a3 e Tenplatberiok] o
v [SurwarDataliFoots a6
= Py

ahiSaurinl
g ek or chosrse she B Templabss task ba eddt fenplale

i
A SRR LR % [UnerControl
2, TPl e F (] Dbl snpe
B R ‘et feraplate b recared. P o L M

Vabdstms, | 4] sencs
N oo RN ;
2 RemeedFekiiad.. * € g 2

"7 Rargaialidator w | 1) ey | ot contenifcontenti s | dp | CaeborrssTorrreel > | Poel.. A |y)
e |

Lo
<ot

[

Figure 2: The FormView Cannot be Rendered in the Designer Until an ItemTemplate is Provided

The 1temTemplate can be created by hand (through the declarative syntax) or can be auto-created by binding
the FormView to a data source control through the Designer. This auto-created ItemTemplate contains HTML
that lists the name of each field and a Label control whose Text property is bound to the field's value. This
approach also auto-creates an InsertItemTemplate and EditItemTemplate, both of which are populated with
input controls for each of the data fields returned by the data source control.

If you want to auto-create the template, from the FormView's smart tag add a new ObjectDataSource control
that invokes the productsBLL class's GetProducts () method. This will create a FormView with an
ItemTemplate, InsertItemTemplate, and EditItemTemplate. From the Source view, remove the
InsertItemTemplate and EditItemTemplate since we're not interested in creating a FormView that supports
editing or inserting yet. Next, clear out the markup within the TtemTemplate so that we have a clean slate to
work from.

If you'd rather build up the TtemTemplate manually, you can add and configure the ObjectDataSource by
dragging it from the Toolbox onto the Designer. However, don't set the FormView's data source from the
Designer. Instead, go to the Source view and manually set the FormView's batasourceID property to the 1D
value of the ObjectDataSource. Next, manually add the TtemTemplate.

Regardless of what approach you decided to take, at this point your FormView's declarative markup should look
like:

<asp:FormView ID="FormViewl" runat="server" DataSourcelID="ObjectDataSourcel">
<ItemTemplate>

</ItemTemplate>
</asp:FormView>

20of 5

Take a moment to check the Enable Paging checkbox in the FormView's smart tag; this will add the
AllowPaging="True" attribute to the FormView's declarative syntax. Also, set the EnableviewState property
to False.

Step 2: Defining the ItemTemplate's Markup

With the FormView bound to the ObjectDataSource control and configured to support paging we're ready to
specify the content for the TtemTemplate. For this tutorial, let's have the product's name displayed in an <h3>
heading. Following that, let's use an HTML <table> to display the remaining product properties in a four-
column table where the first and third columns list the property names and the second and fourth list their
values.

This markup can be entered in through the FormView's template editing interface in the Designer or entered
manually through the declarative syntax. When working with templates I typically find it quicker to work
directly with the declarative syntax, but feel free to use whatever technique you're most comfortable with.

The following markup shows the FormView declarative markup after the TtemTemplate's structure has been
completed:

<asp:FormView ID="FormViewl" runat="server" DataSourcelID="ObjectDataSourcel"
AllowPaging="True" EnableViewState="False">
<ItemTemplate>
<hr />
<h3><%# Eval ("ProductName") %$></h3>
<table border="0">
<tr>
<td class="ProductPropertyLabel">Category:</td>
<td class="ProductPropertyValue">
<%# Eval ("CategoryName") %$></td>
<td class="ProductPropertyLabel">Supplier:</td>
<td class="ProductPropertyValue">
<%# Eval ("SupplierName")%></td>
</tr>
<tr>
<td class="ProductPropertyLabel">Price:</td>
<td class="ProductPropertyValue"><%$# Eval ("UnitPrice",
"{0:C}I") S></td>
<td class="ProductPropertyLabel">Units In Stock:</td>
<td class="ProductPropertyValue">
<%# Eval ("UnitsInStock")$></td>
</tr>
<tr>
<td class="ProductPropertyLabel">Units On Order:</td>
<td class="ProductPropertyValue">
<%# Eval ("UnitsOnOrder") $%></td>
<td class="ProductPropertyLabel">Reorder Level:</td>
<td class="ProductPropertyValue">
<%# Eval ("ReorderLevel") %$></td>
</tr>
<tr>
<td class="ProductPropertyLabel">Qty/Unit</td>
<td class="ProductPropertyValue">
<%# Eval ("QuantityPerUnit") %></td>
<td class="ProductPropertyLabel">Discontinued:</td>
<td class="ProductPropertyValue">
<asp:CheckBox runat="server" Enabled="false"
Checked="'<%# Eval ("Discontinued") %>' />
</td>
</tr>
</table>

30of5

<hr />
</ItemTemplate>
</asp:FormView>

Notice that the databinding syntax - <¢# Eval ("ProductName") $%>, for example — can be injected directly into
the template's output. That is, it need not be assigned to a Label control's Text property. For example, we have
the ProductName value displayed in an <h3> element using <h3><%# Eval ("ProductName") $></h3>, which
for the product Chai will render as <h3>Chai</h3>.

The ProductPropertyLabel and ProductPropertyvalue CSS classes are used for specifying the style of the
product property names and values in the <table>. These CSS classes are defined in styles.css and cause the
property names to be bold and right-aligned and add a right padding to the property values.

Since there are no CheckBoxFields available with the FormView, in order to show the Discontinued value as
a checkbox we must add our own CheckBox control. The Enabled property is set to False, making it read-only,
and the CheckBox's checked property is bound to the value of the piscontinued data field.

With the 1temTemplate complete, the product information is displayed in a much more fluid manner. Compare
the DetailsView output from the last tutorial (Figure 3) with the output generated by the FormView in this
tutorial (Figure 4).

=
1 Unftithed Page - Micresafi Internel Luplerar
Ee Ed& ‘ww Fipoes [ook Help

o (@ & Seanch Favortes & - i -

Working with Data Tutorials ~ Heme> custemized Formaring >

Custom Content in a DetallsView

Custom Formatting with a
TemplateField

T]
Bevarages
Exobic Liquids
10 boxes x 20 bags
e e ol T 4] §418.00
IR AR AN (In Stock / On Order: 35 / 0)

Figure 3: The Rigid DetailsView Output

4 of 5

3 Untitled Page - Micressft Internet Eaplorer r:rEFE!
flm Bk Ve Fpeoites ook Hep i

) Sk Fasidm &5 - o N]

o Pty | g sthont | 35 Cods Koustone tamastting P omiess s w BY e

-

Wﬂrking with Data Tutorials Home > Customited Formatting > Custem ontent in

3 Farmiiaw

Creating a Fluid Display with the

FormView
Chai
Catagory: Bsyersgss Supplier: Exotic Ligusds

Price: F10.00 Linits D STock: 19

Limits O Gedas: O Ranrdar Laval: 10
Qty fUnlt 10 bowes x 20 bags Discontlmeed:
12145670210,
L

S ooyl inbranet

Figure 4: The Fluid FormView Output

Summary

While the GridView and DetailsView controls can have their output customized using TemplateFields, both still
present their data in a grid-like, boxy format. For those times when a single record needs to be shown using a
less rigid layout, the FormView is an ideal choice. Like the DetailsView, the FormView renders a single record
from its DataSource, but unlike the DetailsView it is composed just of templates and does not support fields.

As we saw in this tutorial, the FormView allows for a more flexible layout when displaying a single record. In
future tutorials we'll examine the DataList and Repeater controls, which provide the same level of flexibility as
the FormsView, but are able to display multiple records (like the GridView).

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was E.R. Gilmore.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

50f5

