Databricks Runtime 7,4 для Машинное обучение (не поддерживается)

Выпустил этот образ в ноябре 2020 ноября.

Databricks Runtime 7,4 для Машинное обучение предоставляет готовую среду для машинного обучения и обработки и анализа данных на основе Databricks Runtime 7,4 (не поддерживается). Databricks Runtime ML содержит множество популярных библиотек машинного обучения, включая TensorFlow, PyTorch и XGBoost. Он также поддерживает распределенное обучение глубокого обучения с помощью хоровод.

Дополнительные сведения, включая инструкции по созданию кластера Databricks Runtime ML, см. в разделе Databricks Runtime for машинное обучение.

Новые функции и основные изменения

Databricks Runtime 7,4 ML построена на основе Databricks Runtime 7,4. Сведения о новых возможностях Databricks Runtime 7,4, включая Apache Spark MLlib и Spark, см. в заметках о выпуске Databricks Runtime 7,4 (не поддерживается) .

Основные изменения в среде Databricks Runtime Scala ML

XGBoost обновлен до 1.2.0. Эта версия позволяет XGBoost использовать GPU в кластерах Spark для повышения скорости обучения. Существует несколько других изменений, включая некоторые критические изменения. Дополнительные сведения см. в заметках о выпуске XGBoost 1.2.0 .

В частности, на кластерах ЦП xgboost4j_2.12 и xgboost4j-spark_2.12 обновляется с версии 1.0.0 до 1.2.0. В кластерах GPU эти пакеты удаляются, а вместо них устанавливается версия 1.2.0 xgboost4j-gpu_2.12 и xgboost4j-spark-gpu_2.12 .

Граффрамес обновляется с 0.8.0-DB2-Spark 3.0 до 0.8.1-DB1-Spark 3.0.

Основные изменения в среде Databricks Runtime ML Python

Основные изменения в среде Databricks Runtime Python см. в разделе Databricks Runtime 7,4 (не поддерживается) . Полный список установленных пакетов Python и их версий см. в разделе библиотеки Python.

Пакеты Python обновлены

  • клаудпиккле 1.3.0 — > 1.4.1
  • кирпичи (интерфейс командной строки) — CLI 0.11.0-> 0.13.0
  • Хоровод 0.19.5 — > 0.20.3
  • петасторм 0.9.5 — > 0.9.6
  • график 4.9.0-> 4.10.0
  • спаркдл 2.1.0-DB1-> 2.1.0-DB2
  • tensorflow 2.3.0-> 2.3.1
  • xgboost 1.1.1-> 1.2.0

Улучшения

Системная среда

Системная среда в Databricks Runtime 7,4 ML отличается от Databricks Runtime 7,4 следующим образом:

Библиотеки

В следующих разделах перечислены библиотеки, входящие в состав Databricks Runtime 7,4 ML, отличающиеся от тех, которые входят в Databricks Runtime 7,4.

В этом разделе рассматриваются следующие вопросы.

Библиотеки верхнего уровня

Databricks Runtime 7,4 ML включает следующие библиотекивысшего уровня:

Библиотеки Python

Databricks Runtime 7,4 ML использует Conda для управления пакетами Python и включает множество популярных пакетов машинного обучения.

В дополнение к пакетам, указанным в средах Conda в следующих разделах, Databricks Runtime 7,4 ML также устанавливает следующие пакеты:

  • хиперопт 0.2.4. DB2
  • спаркдл 2.1.0-DB2

Библиотеки Python в кластерах ЦП

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_1
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.2.0=py37h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.16.1=h7b6447c_0
  - ca-certificates=2020.7.22=0
  - cachetools=4.1.1=py_0
  - certifi=2020.6.20=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.4.1=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.8=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb=4.0.5=py_0
  - gitpython=3.1.0=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py37_0
  - jedi=0.17.2=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.10.0=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hf484d3e_1007
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h14c3975_1
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_1
  - ninja=1.10.1=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1h=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_1
  - pickleshare=0.7.5=py37_1001
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.10.0=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py_1
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_1
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.6.0=py3.7_cpu_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_1
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap=3.0.4=py_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tenacity=6.2.0=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.7.0=py37_cpu
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.8.2
    - azure-storage-blob==12.5.0
    - databricks-cli==0.13.0
    - diskcache==5.0.3
    - docker==4.3.1
    - gorilla==0.3.0
    - horovod==0.20.3
    - joblibspark==0.2.0
    - keras-preprocessing==1.1.2
    - koalas==1.3.0
    - mleap==0.16.1
    - mlflow==1.11.0
    - msrest==0.6.19
    - opt-einsum==3.3.0
    - petastorm==0.9.6
    - pyarrow==1.0.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - spark-tensorflow-distributor==0.1.0
    - tensorboard==2.3.0
    - tensorboard-plugin-wit==1.7.0
    - tensorflow-cpu==2.3.1
    - tensorflow-estimator==2.3.0
    - termcolor==1.1.0
    - xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml

Библиотеки Python на кластерах GPU

name: databricks-ml-gpu
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_1
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.2.0=py37h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.16.1=h7b6447c_0
  - ca-certificates=2020.7.22=0
  - cachetools=4.1.1=py_0
  - certifi=2020.6.20=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.4.1=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.8=py37h1ba5d50_0
  - cudatoolkit=10.1.243=h6bb024c_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb=4.0.5=py_0
  - gitpython=3.1.0=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py37_0
  - jedi=0.17.2=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.10.0=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hf484d3e_1007
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h14c3975_1
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_1
  - ninja=1.10.1=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1h=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_1
  - pickleshare=0.7.5=py37_1001
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.10.0=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py_1
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_1
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.6.0=py3.7_cuda10.1.243_cudnn7.6.3_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_1
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap=3.0.4=py_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tenacity=6.2.0=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.7.0=py37_cu101
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.8.2
    - azure-storage-blob==12.5.0
    - databricks-cli==0.13.0
    - diskcache==5.0.3
    - docker==4.3.1
    - gorilla==0.3.0
    - horovod==0.20.3
    - joblibspark==0.2.0
    - keras-preprocessing==1.1.2
    - koalas==1.3.0
    - mleap==0.16.1
    - mlflow==1.11.0
    - msrest==0.6.19
    - opt-einsum==3.3.0
    - petastorm==0.9.6
    - pyarrow==1.0.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - spark-tensorflow-distributor==0.1.0
    - tensorboard==2.3.0
    - tensorboard-plugin-wit==1.7.0
    - tensorflow==2.3.1
    - tensorflow-estimator==2.3.0
    - termcolor==1.1.0
    - xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml-gpu

Пакеты Spark, содержащие модули Python

Пакет Spark Модуль Python Version
граффрамес граффрамес 0.8.1-DB1-Spark 3.0

Библиотеки R

Библиотеки R идентичны библиотекам r в Databricks Runtime 7,4.

Библиотеки Java и Scala (кластер Scala 2,12)

Помимо библиотек Java и Scala в Databricks Runtime 7,4, Databricks Runtime 7,4 ML содержит следующие JAR:

Кластеры ЦП

Идентификатор группы. Идентификатор артефакта Version
com. типесафе. Akka Streams Akka Streams-actor_2.12 2.5.23
ML. комбуст. млеап млеап-кирпичы-runtime_2.12 0.17.3 — 4882dc3
ML. дмлк xgboost4j-spark_2.12 1.2.0
ML. дмлк xgboost4j_2.12 1.2.0
org. млфлов млфлов — клиент 1.11.0
org. Scala-lang. modules Scala-java8-compat_2.12 0.8.0
org. tensorflow Spark-tensorflow-connector_2.12 1.15.0

Кластеры GPU

Идентификатор группы. Идентификатор артефакта Version
com. типесафе. Akka Streams Akka Streams-actor_2.12 2.5.23
ML. комбуст. млеап млеап-кирпичы-runtime_2.12 0.17.3 — 4882dc3
ML. дмлк xgboost4j-Spark-gpu_2.12 1.2.0
ML. дмлк xgboost4j-gpu_2.12 1.2.0
org. млфлов млфлов — клиент 1.11.0
org. Scala-lang. modules Scala-java8-compat_2.12 0.8.0
org. tensorflow Spark-tensorflow-connector_2.12 1.15.0