Обучение модели кластеризации

Обучает модели кластеризации и назначает данные из обучающего набора кластерам

Категория: машинное обучение/обучение

Примечание

Применимо к: машинное обучение Studio (классическая модель)

Это содержимое относится только к Studio (классическая модель). Аналогичные модули перетаскивания были добавлены в конструктор Машинное обучение Azure. Дополнительные сведения см. в статье сравнение двух версий.

Обзор модуля

В этой статье описывается использование модуля обучение модели кластеризации в машинное обучение Azure Studio (классическая модель) для обучения модели кластеризации.

Модуль принимает несмоделированную модель кластеризации, которая уже настроена с помощью модуля кластеризации K-средних , и обучает модель с помощью помеченного или непомеченного набора данных. Модуль создает как обученную модель, которую можно использовать для прогнозирования, так и набор назначений кластеров для каждого варианта в обучающих данных.

Примечание

Модель кластеризации не может быть обучена с помощью модуля обучение модели , который является универсальным модулем для создания моделей машинного обучения. Это связано с тем, что обучение модели работает только с защищенными алгоритмами обучения. K-средние и другие алгоритмы кластеризации допускают неконтролируемое обучение. Это означает, что алгоритм может изучать непомеченные данные.

Как использовать модель кластеризации для обучения

  1. Добавьте модуль обучение модели кластеризации в эксперимент в студии (классическая модель). Модуль можно найти в разделе модули машинное обучениев категории обучение .

  2. Добавьте модуль кластеризации K-средних или другой настраиваемый модуль, который создает совместимую модель кластеризации, и задайте параметры модели кластеризации.

  3. Прикрепите набор данных для обучения к правому вводу для обучения модели кластеризации.

  4. В наборе столбцов выберите столбцы из набора данных для использования при построении кластеров. Не забудьте выбрать столбцы, которые являются хорошими компонентами: например, не используйте идентификаторы или другие столбцы, имеющие уникальные значения, или столбцы с одинаковыми значениями.

    Если метка доступна, можно использовать ее как компонент или оставить ее.

  5. Выберите параметр проверять только добавление или снять флажок только для результатов, если требуется выводить обучающие данные вместе с новой меткой кластера.

    Если отменить выбор этого параметра, будут выводиться только назначения кластера.

  6. Запустите эксперимент или щелкните модуль обучение модели кластеризации и выберите Выполнить выбранное.

Результаты

После завершения обучения:

  • Чтобы просмотреть кластер и их разделение в графе, щелкните правой кнопкой мыши выходные данные результирующего набора данных и выберите команду визуализировать.

    Граф представляет основные компоненты кластера, а не фактические значения. Дополнительные сведения см. в разделе анализ основных компонентов .

  • Чтобы просмотреть значения в наборе данных, добавьте экземпляр модуля Convert to DataSet и подключите его к выходным данным результирующего набора данных . Запустите модуль Convert to DataSet (преобразовать в набор данных ), чтобы получить копию данных, которые можно просмотреть или скачать.

  • Чтобы сохранить обученную модель для последующего повторного использования, щелкните модуль правой кнопкой мыши, выберите обученная модель и нажмите кнопку Сохранить как обученную модель.

  • Чтобы создать оценки на основе модели, используйте назначение данных кластерам.

Примеры

Пример использования кластеризации в машинном обучении см. в Коллекция решений ии Azure:

Ожидаемые входные данные

Имя Type Описание
Необученная модель Интерфейс ICluster Необученная модель кластеризации
Набор данных Таблица данных Источник входных данных

Параметры модуля

Имя Диапазон Тип По умолчанию Описание
Набор столбцов any Выбор столбцов Шаблон выбора столбцов
Установите флажок для добавления входных данных или снимите флажок для вывода только результатов any Логическое Да Определяет, должен ли набор данных на выходе содержать входной набор данных с добавлением столбца назначений (флажок установлен) или только столбец назначений (флажок снят)

Выходные данные

Имя Type Описание
Обученная модель Интерфейс ICluster Обученная модель кластеризации
Набор данных результатов Таблица данных Входной набор данных с добавлением столбца назначений или только столбец назначений

Исключения

Исключение Описание
Ошибка 0003 Исключение возникает, если один или несколько входных аргументов имеют значение NULL или пусты.

Список ошибок, относящихся к модулям студии (классическая версия), см. в разделе машинное обучение коды ошибок.

Список исключений API см. в разделе Машинное обучение REST API коды ошибок.

См. также раздел

Список модулей A – Z
Распознавани
Назначение данных кластерам
Кластеризация методом K-средних