ILGenerator.Emit Метод

Определение

Помещает инструкцию в поток языка MSIL для JIT-компилятора.

Перегрузки

Emit(OpCode, LocalBuilder)

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует индекс заданной локальной переменной.

Emit(OpCode, Type)

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует маркер метаданных для указанного типа.

Emit(OpCode, String)

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует маркер метаданных указанной строки.

Emit(OpCode, Single)

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

Emit(OpCode, SByte)

Помещает заданную инструкцию и символьный аргумент в поток инструкций языка MSIL.

Emit(OpCode, MethodInfo)

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует маркер метаданных указанного метода.

Emit(OpCode, SignatureHelper)

Помещает заданную инструкцию и токен подписи в поток инструкций языка MSIL.

Emit(OpCode, Label[])

Помещает указанную инструкцию в поток инструкций языка MSIL и оставляет место, чтобы после того, как будут произведены необходимые настройки, можно было включить метку.

Emit(OpCode, FieldInfo)

Помещает заданную инструкцию и маркер метаданных указанного поля в поток инструкций языка MSIL.

Emit(OpCode, ConstructorInfo)

Помещает заданную инструкцию и маркер метаданных указанного конструктора в поток инструкций языка MSIL.

Emit(OpCode, Int64)

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

Emit(OpCode, Int32)

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

Emit(OpCode, Int16)

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

Emit(OpCode, Double)

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

Emit(OpCode, Byte)

Помещает заданную инструкцию и символьный аргумент в поток инструкций языка MSIL.

Emit(OpCode)

Помещает указанную инструкцию в поток инструкций.

Emit(OpCode, Label)

Помещает указанную инструкцию в поток инструкций языка MSIL и оставляет место, чтобы после того, как будут произведены необходимые настройки, можно было включить метку.

Emit(OpCode, LocalBuilder)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует индекс заданной локальной переменной.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::Emit::LocalBuilder ^ local);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::Emit::LocalBuilder ^ local);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.LocalBuilder local);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.LocalBuilder local);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.LocalBuilder -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.LocalBuilder -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.LocalBuilder -> unit
Public Overridable Sub Emit (opcode As OpCode, local As LocalBuilder)
Public MustOverride Sub Emit (opcode As OpCode, local As LocalBuilder)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

local
LocalBuilder

Локальная переменная.

Исключения

Родительский метод параметра local не соответствует методу, связанному с объектом ILGenerator.

local имеет значение null.

opcode представляет собой 1-байтную инструкцию, а local представляет локальную переменную с индексом большим, чем значение Byte.MaxValue.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, Type)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует маркер метаданных для указанного типа.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, Type ^ cls);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, Type ^ cls);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, Type cls);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, Type cls);
abstract member Emit : System.Reflection.Emit.OpCode * Type -> unit
override this.Emit : System.Reflection.Emit.OpCode * Type -> unit
abstract member Emit : System.Reflection.Emit.OpCode * Type -> unit
Public Overridable Sub Emit (opcode As OpCode, cls As Type)
Public MustOverride Sub Emit (opcode As OpCode, cls As Type)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток.

cls
Type

Объект Type.

Исключения

cls имеет значение null.

Комментарии

Значения инструкций определяются в перечислении OpCodes . Расположение cls записывается, чтобы при необходимости можно было исправить маркер при сохранении модуля в переносимом исполняемом файле (PE).

Применяется к

Emit(OpCode, String)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует маркер метаданных указанной строки.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::String ^ str);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::String ^ str);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, string str);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, string str);
abstract member Emit : System.Reflection.Emit.OpCode * string -> unit
override this.Emit : System.Reflection.Emit.OpCode * string -> unit
abstract member Emit : System.Reflection.Emit.OpCode * string -> unit
Public Overridable Sub Emit (opcode As OpCode, str As String)
Public MustOverride Sub Emit (opcode As OpCode, str As String)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

str
String

Объект String, который подлежит выпуску.

Комментарии

Значения инструкций определяются в перечислении OpCodes . Расположение записывается для будущих исправлений str , если модуль сохраняется в переносимом исполняемом файле (PE).

Применяется к

Emit(OpCode, Single)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, float arg);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, float arg);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, float arg);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, float arg);
abstract member Emit : System.Reflection.Emit.OpCode * single -> unit
override this.Emit : System.Reflection.Emit.OpCode * single -> unit
abstract member Emit : System.Reflection.Emit.OpCode * single -> unit
Public Overridable Sub Emit (opcode As OpCode, arg As Single)
Public MustOverride Sub Emit (opcode As OpCode, arg As Single)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток.

arg
Single

Аргумент типа Single, помещаемый в поток сразу после инструкции.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, SByte)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Важно!

Этот API несовместим с CLS.

Помещает заданную инструкцию и символьный аргумент в поток инструкций языка MSIL.

public:
 void Emit(System::Reflection::Emit::OpCode opcode, System::SByte arg);
[System.CLSCompliant(false)]
public void Emit (System.Reflection.Emit.OpCode opcode, sbyte arg);
[<System.CLSCompliant(false)>]
member this.Emit : System.Reflection.Emit.OpCode * sbyte -> unit
Public Sub Emit (opcode As OpCode, arg As SByte)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток.

arg
SByte

Аргумент типа character, помещаемый в поток сразу после инструкции.

Атрибуты

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, MethodInfo)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает в поток инструкций языка MSIL заданную инструкцию, за которой следует маркер метаданных указанного метода.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::MethodInfo ^ meth);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::MethodInfo ^ meth);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.MethodInfo meth);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.MethodInfo meth);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.MethodInfo -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.MethodInfo -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.MethodInfo -> unit
Public Overridable Sub Emit (opcode As OpCode, meth As MethodInfo)
Public MustOverride Sub Emit (opcode As OpCode, meth As MethodInfo)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

meth
MethodInfo

Объект MethodInfo, предоставляющий метод.

Исключения

meth имеет значение null.

meth является универсальным методом, для которого значение свойства IsGenericMethodDefinition равно false.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Расположение записывается, чтобы при необходимости можно было исправить поток инструкций meth при сохранении модуля в переносимом исполняемом файле (PE).

Если meth представляет универсальный метод, он должен быть определением универсального метода. То есть свойство MethodInfo.IsGenericMethodDefinition должно иметь значение true.

Применяется к

Emit(OpCode, SignatureHelper)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и токен подписи в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::Emit::SignatureHelper ^ signature);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::Emit::SignatureHelper ^ signature);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.SignatureHelper signature);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.SignatureHelper signature);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.SignatureHelper -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.SignatureHelper -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.SignatureHelper -> unit
Public Overridable Sub Emit (opcode As OpCode, signature As SignatureHelper)
Public MustOverride Sub Emit (opcode As OpCode, signature As SignatureHelper)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

signature
SignatureHelper

Вспомогательный класс для конструирования токена подписи.

Исключения

signature имеет значение null.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, Label[])

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает указанную инструкцию в поток инструкций языка MSIL и оставляет место, чтобы после того, как будут произведены необходимые настройки, можно было включить метку.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, cli::array <System::Reflection::Emit::Label> ^ labels);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, cli::array <System::Reflection::Emit::Label> ^ labels);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.Label[] labels);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.Label[] labels);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.Label[] -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.Label[] -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.Label[] -> unit
Public Overridable Sub Emit (opcode As OpCode, labels As Label())
Public MustOverride Sub Emit (opcode As OpCode, labels As Label())

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

labels
Label[]

Массив объектов меток, на которые следует осуществлять переход из данного места. Задействуются все метки.

Исключения

con имеет значение null. Это исключение является новым в платформа .NET Framework 4.

Примеры

В приведенном ниже примере кода показано создание динамического метода с таблицей перехода. Таблица переходов создается с помощью массива Label.

using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ BuildMyType()
{
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "MyDynamicAssembly";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::Run );
   ModuleBuilder^ myModBuilder = myAsmBuilder->DefineDynamicModule( "MyJumpTableDemo" );
   TypeBuilder^ myTypeBuilder = myModBuilder->DefineType( "JumpTableDemo", TypeAttributes::Public );
   array<Type^>^temp0 = {int::typeid};
   MethodBuilder^ myMthdBuilder = myTypeBuilder->DefineMethod( "SwitchMe", static_cast<MethodAttributes>(MethodAttributes::Public | MethodAttributes::Static), String::typeid, temp0 );
   ILGenerator^ myIL = myMthdBuilder->GetILGenerator();
   Label defaultCase = myIL->DefineLabel();
   Label endOfMethod = myIL->DefineLabel();
   
   // We are initializing our jump table. Note that the labels
   // will be placed later using the MarkLabel method.
   array<Label>^jumpTable = gcnew array<Label>(5);
   jumpTable[ 0 ] = myIL->DefineLabel();
   jumpTable[ 1 ] = myIL->DefineLabel();
   jumpTable[ 2 ] = myIL->DefineLabel();
   jumpTable[ 3 ] = myIL->DefineLabel();
   jumpTable[ 4 ] = myIL->DefineLabel();
   
   // arg0, the number we passed, is pushed onto the stack.
   // In this case, due to the design of the code sample,
   // the value pushed onto the stack happens to match the
   // index of the label (in IL terms, the index of the offset
   // in the jump table). If this is not the case, such as
   // when switching based on non-integer values, rules for the correspondence
   // between the possible case values and each index of the offsets
   // must be established outside of the ILGenerator::Emit calls,
   // much as a compiler would.
   myIL->Emit( OpCodes::Ldarg_0 );
   myIL->Emit( OpCodes::Switch, jumpTable );
   
   // Branch on default case
   myIL->Emit( OpCodes::Br_S, defaultCase );
   
   // Case arg0 = 0
   myIL->MarkLabel( jumpTable[ 0 ] );
   myIL->Emit( OpCodes::Ldstr, "are no bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 1
   myIL->MarkLabel( jumpTable[ 1 ] );
   myIL->Emit( OpCodes::Ldstr, "is one banana" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 2
   myIL->MarkLabel( jumpTable[ 2 ] );
   myIL->Emit( OpCodes::Ldstr, "are two bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 3
   myIL->MarkLabel( jumpTable[ 3 ] );
   myIL->Emit( OpCodes::Ldstr, "are three bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 4
   myIL->MarkLabel( jumpTable[ 4 ] );
   myIL->Emit( OpCodes::Ldstr, "are four bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Default case
   myIL->MarkLabel( defaultCase );
   myIL->Emit( OpCodes::Ldstr, "are many bananas" );
   myIL->MarkLabel( endOfMethod );
   myIL->Emit( OpCodes::Ret );
   return myTypeBuilder->CreateType();
}

int main()
{
   Type^ myType = BuildMyType();
   Console::Write( "Enter an integer between 0 and 5: " );
   int theValue = Convert::ToInt32( Console::ReadLine() );
   Console::WriteLine( "---" );
   Object^ myInstance = Activator::CreateInstance( myType, gcnew array<Object^>(0) );
   array<Object^>^temp1 = {theValue};
   Console::WriteLine( "Yes, there {0} today!", myType->InvokeMember( "SwitchMe", BindingFlags::InvokeMethod, nullptr, myInstance, temp1 ) );
}
using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;

class DynamicJumpTableDemo
{
   public static Type BuildMyType()
   {
    AppDomain myDomain = Thread.GetDomain();
    AssemblyName myAsmName = new AssemblyName();
    myAsmName.Name = "MyDynamicAssembly";

    AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
                        myAsmName,
                        AssemblyBuilderAccess.Run);
    ModuleBuilder myModBuilder = myAsmBuilder.DefineDynamicModule(
                        "MyJumpTableDemo");

    TypeBuilder myTypeBuilder = myModBuilder.DefineType("JumpTableDemo",
                            TypeAttributes.Public);
    MethodBuilder myMthdBuilder = myTypeBuilder.DefineMethod("SwitchMe",
                             MethodAttributes.Public |
                             MethodAttributes.Static,
                                             typeof(string),
                                             new Type[] {typeof(int)});

    ILGenerator myIL = myMthdBuilder.GetILGenerator();

    Label defaultCase = myIL.DefineLabel();	
    Label endOfMethod = myIL.DefineLabel();	

    // We are initializing our jump table. Note that the labels
    // will be placed later using the MarkLabel method.

    Label[] jumpTable = new Label[] { myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel() };

    // arg0, the number we passed, is pushed onto the stack.
    // In this case, due to the design of the code sample,
    // the value pushed onto the stack happens to match the
    // index of the label (in IL terms, the index of the offset
    // in the jump table). If this is not the case, such as
    // when switching based on non-integer values, rules for the correspondence
    // between the possible case values and each index of the offsets
    // must be established outside of the ILGenerator.Emit calls,
    // much as a compiler would.

    myIL.Emit(OpCodes.Ldarg_0);
    myIL.Emit(OpCodes.Switch, jumpTable);
    
    // Branch on default case
    myIL.Emit(OpCodes.Br_S, defaultCase);

    // Case arg0 = 0
    myIL.MarkLabel(jumpTable[0]);
    myIL.Emit(OpCodes.Ldstr, "are no bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 1
    myIL.MarkLabel(jumpTable[1]);
    myIL.Emit(OpCodes.Ldstr, "is one banana");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 2
    myIL.MarkLabel(jumpTable[2]);
    myIL.Emit(OpCodes.Ldstr, "are two bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 3
    myIL.MarkLabel(jumpTable[3]);
    myIL.Emit(OpCodes.Ldstr, "are three bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 4
    myIL.MarkLabel(jumpTable[4]);
    myIL.Emit(OpCodes.Ldstr, "are four bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Default case
    myIL.MarkLabel(defaultCase);
    myIL.Emit(OpCodes.Ldstr, "are many bananas");

    myIL.MarkLabel(endOfMethod);
    myIL.Emit(OpCodes.Ret);
    
    return myTypeBuilder.CreateType();
   }

   public static void Main()
   {
    Type myType = BuildMyType();
    
    Console.Write("Enter an integer between 0 and 5: ");
    int theValue = Convert.ToInt32(Console.ReadLine());

    Console.WriteLine("---");
    Object myInstance = Activator.CreateInstance(myType, new object[0]);	
    Console.WriteLine("Yes, there {0} today!", myType.InvokeMember("SwitchMe",
                               BindingFlags.InvokeMethod,
                               null,
                               myInstance,
                               new object[] {theValue}));
   }
}

Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _

Class DynamicJumpTableDemo
   
   Public Shared Function BuildMyType() As Type

      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "MyDynamicAssembly"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly(myAsmName, _
                            AssemblyBuilderAccess.Run)
      Dim myModBuilder As ModuleBuilder = myAsmBuilder.DefineDynamicModule("MyJumpTableDemo")
      
      Dim myTypeBuilder As TypeBuilder = myModBuilder.DefineType("JumpTableDemo", _
                                 TypeAttributes.Public)
      Dim myMthdBuilder As MethodBuilder = myTypeBuilder.DefineMethod("SwitchMe", _
                        MethodAttributes.Public Or MethodAttributes.Static, _
                        GetType(String), New Type() {GetType(Integer)})
      
      Dim myIL As ILGenerator = myMthdBuilder.GetILGenerator()
      
      Dim defaultCase As Label = myIL.DefineLabel()
      Dim endOfMethod As Label = myIL.DefineLabel()
      
      ' We are initializing our jump table. Note that the labels
      ' will be placed later using the MarkLabel method. 

      Dim jumpTable() As Label = {myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel()}
      
      ' arg0, the number we passed, is pushed onto the stack.
      ' In this case, due to the design of the code sample,
      ' the value pushed onto the stack happens to match the
      ' index of the label (in IL terms, the index of the offset
      ' in the jump table). If this is not the case, such as
      ' when switching based on non-integer values, rules for the correspondence
      ' between the possible case values and each index of the offsets
      ' must be established outside of the ILGenerator.Emit calls,
      ' much as a compiler would.

      myIL.Emit(OpCodes.Ldarg_0)
      myIL.Emit(OpCodes.Switch, jumpTable)
      
      ' Branch on default case
      myIL.Emit(OpCodes.Br_S, defaultCase)
      
      ' Case arg0 = 0
      myIL.MarkLabel(jumpTable(0))
      myIL.Emit(OpCodes.Ldstr, "are no bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 1
      myIL.MarkLabel(jumpTable(1))
      myIL.Emit(OpCodes.Ldstr, "is one banana")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 2
      myIL.MarkLabel(jumpTable(2))
      myIL.Emit(OpCodes.Ldstr, "are two bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 3
      myIL.MarkLabel(jumpTable(3))
      myIL.Emit(OpCodes.Ldstr, "are three bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 4
      myIL.MarkLabel(jumpTable(4))
      myIL.Emit(OpCodes.Ldstr, "are four bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Default case
      myIL.MarkLabel(defaultCase)
      myIL.Emit(OpCodes.Ldstr, "are many bananas")
      
      myIL.MarkLabel(endOfMethod)
      myIL.Emit(OpCodes.Ret)
      
      Return myTypeBuilder.CreateType()

   End Function 'BuildMyType
    
   
   Public Shared Sub Main()

      Dim myType As Type = BuildMyType()
      
      Console.Write("Enter an integer between 0 and 5: ")
      Dim theValue As Integer = Convert.ToInt32(Console.ReadLine())
      
      Console.WriteLine("---")
      Dim myInstance As [Object] = Activator.CreateInstance(myType, New Object() {})
      Console.WriteLine("Yes, there {0} today!", myType.InvokeMember("SwitchMe", _
                         BindingFlags.InvokeMethod, Nothing, _
                             myInstance, New Object() {theValue}))

   End Sub

End Class

Комментарии

Создает таблицу переключателей.

Значения инструкций определяются в перечислении OpCodes .

Метки создаются с помощью , DefineLabel а их расположение в потоке фиксируется с помощью MarkLabel. Если используется однобайтовая инструкция, метка может представлять скачок не более 127 байт в потоке. opcode должен представлять инструкцию ветви. Так как ветви являются относительными инструкциями, label в процессе исправления они будут заменены правильным смещением в ветвь.

Применяется к

Emit(OpCode, FieldInfo)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и маркер метаданных указанного поля в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::FieldInfo ^ field);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::FieldInfo ^ field);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.FieldInfo field);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.FieldInfo field);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.FieldInfo -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.FieldInfo -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.FieldInfo -> unit
Public Overridable Sub Emit (opcode As OpCode, field As FieldInfo)
Public MustOverride Sub Emit (opcode As OpCode, field As FieldInfo)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

field
FieldInfo

Объект FieldInfo, представляющий поле.

Комментарии

Значения инструкций определяются в перечислении OpCodes . Расположение записывается, чтобы при необходимости можно было исправить поток инструкций field при сохранении модуля в переносимом исполняемом файле (PE).

Применяется к

Emit(OpCode, ConstructorInfo)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и маркер метаданных указанного конструктора в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::ConstructorInfo ^ con);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::ConstructorInfo ^ con);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.ConstructorInfo con);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.ConstructorInfo con);
[System.Runtime.InteropServices.ComVisible(true)]
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.ConstructorInfo con);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.ConstructorInfo -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.ConstructorInfo -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.ConstructorInfo -> unit
[<System.Runtime.InteropServices.ComVisible(true)>]
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.ConstructorInfo -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.ConstructorInfo -> unit
Public Overridable Sub Emit (opcode As OpCode, con As ConstructorInfo)
Public MustOverride Sub Emit (opcode As OpCode, con As ConstructorInfo)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

con
ConstructorInfo

Объект ConstructorInfo, представляющий конструктор.

Атрибуты

Исключения

con имеет значение null. Это исключение является новым в платформа .NET Framework 4.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Расположение con записывается, чтобы при необходимости можно было исправить поток инструкций при сохранении модуля в переносимом исполняемом файле (PE).

Применяется к

Emit(OpCode, Int64)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, long arg);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, long arg);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, long arg);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, long arg);
abstract member Emit : System.Reflection.Emit.OpCode * int64 -> unit
override this.Emit : System.Reflection.Emit.OpCode * int64 -> unit
abstract member Emit : System.Reflection.Emit.OpCode * int64 -> unit
Public Overridable Sub Emit (opcode As OpCode, arg As Long)
Public MustOverride Sub Emit (opcode As OpCode, arg As Long)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток.

arg
Int64

Числовой аргумент, помещаемый в поток сразу после инструкции.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, Int32)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, int arg);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, int arg);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, int arg);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, int arg);
abstract member Emit : System.Reflection.Emit.OpCode * int -> unit
override this.Emit : System.Reflection.Emit.OpCode * int -> unit
abstract member Emit : System.Reflection.Emit.OpCode * int -> unit
Public Overridable Sub Emit (opcode As OpCode, arg As Integer)
Public MustOverride Sub Emit (opcode As OpCode, arg As Integer)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток.

arg
Int32

Числовой аргумент, помещаемый в поток сразу после инструкции.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, Int16)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, short arg);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, short arg);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, short arg);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, short arg);
abstract member Emit : System.Reflection.Emit.OpCode * int16 -> unit
override this.Emit : System.Reflection.Emit.OpCode * int16 -> unit
abstract member Emit : System.Reflection.Emit.OpCode * int16 -> unit
Public Overridable Sub Emit (opcode As OpCode, arg As Short)
Public MustOverride Sub Emit (opcode As OpCode, arg As Short)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

arg
Int16

Аргумент типа Int, помещаемый в поток сразу после инструкции.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, Double)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и числовой аргумент в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, double arg);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, double arg);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, double arg);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, double arg);
abstract member Emit : System.Reflection.Emit.OpCode * double -> unit
override this.Emit : System.Reflection.Emit.OpCode * double -> unit
abstract member Emit : System.Reflection.Emit.OpCode * double -> unit
Public Overridable Sub Emit (opcode As OpCode, arg As Double)
Public MustOverride Sub Emit (opcode As OpCode, arg As Double)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток. Определена в перечислении OpCodes.

arg
Double

Числовой аргумент, помещаемый в поток сразу после инструкции.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode, Byte)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает заданную инструкцию и символьный аргумент в поток инструкций языка MSIL.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Byte arg);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Byte arg);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, byte arg);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, byte arg);
abstract member Emit : System.Reflection.Emit.OpCode * byte -> unit
override this.Emit : System.Reflection.Emit.OpCode * byte -> unit
abstract member Emit : System.Reflection.Emit.OpCode * byte -> unit
Public Overridable Sub Emit (opcode As OpCode, arg As Byte)
Public MustOverride Sub Emit (opcode As OpCode, arg As Byte)

Параметры

opcode
OpCode

Инструкция MSIL, помещаемая в поток.

arg
Byte

Аргумент типа character, помещаемый в поток сразу после инструкции.

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Применяется к

Emit(OpCode)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает указанную инструкцию в поток инструкций.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode);
public virtual void Emit (System.Reflection.Emit.OpCode opcode);
public abstract void Emit (System.Reflection.Emit.OpCode opcode);
abstract member Emit : System.Reflection.Emit.OpCode -> unit
override this.Emit : System.Reflection.Emit.OpCode -> unit
abstract member Emit : System.Reflection.Emit.OpCode -> unit
Public Overridable Sub Emit (opcode As OpCode)
Public MustOverride Sub Emit (opcode As OpCode)

Параметры

opcode
OpCode

Инструкция языка MSIL, помещаемая в поток.

Примеры

В приведенном ниже примере кода показано использование для создания выходных Emit данных MSIL с помощью экземпляра ILGenerator.

using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ BuildMyType()
{
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "MyDynamicAssembly";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::Run );
   ModuleBuilder^ myModBuilder = myAsmBuilder->DefineDynamicModule( "MyJumpTableDemo" );
   TypeBuilder^ myTypeBuilder = myModBuilder->DefineType( "JumpTableDemo", TypeAttributes::Public );
   array<Type^>^temp0 = {int::typeid};
   MethodBuilder^ myMthdBuilder = myTypeBuilder->DefineMethod( "SwitchMe", static_cast<MethodAttributes>(MethodAttributes::Public | MethodAttributes::Static), String::typeid, temp0 );
   ILGenerator^ myIL = myMthdBuilder->GetILGenerator();
   Label defaultCase = myIL->DefineLabel();
   Label endOfMethod = myIL->DefineLabel();
   
   // We are initializing our jump table. Note that the labels
   // will be placed later using the MarkLabel method.
   array<Label>^jumpTable = gcnew array<Label>(5);
   jumpTable[ 0 ] = myIL->DefineLabel();
   jumpTable[ 1 ] = myIL->DefineLabel();
   jumpTable[ 2 ] = myIL->DefineLabel();
   jumpTable[ 3 ] = myIL->DefineLabel();
   jumpTable[ 4 ] = myIL->DefineLabel();
   
   // arg0, the number we passed, is pushed onto the stack.
   // In this case, due to the design of the code sample,
   // the value pushed onto the stack happens to match the
   // index of the label (in IL terms, the index of the offset
   // in the jump table). If this is not the case, such as
   // when switching based on non-integer values, rules for the correspondence
   // between the possible case values and each index of the offsets
   // must be established outside of the ILGenerator::Emit calls,
   // much as a compiler would.
   myIL->Emit( OpCodes::Ldarg_0 );
   myIL->Emit( OpCodes::Switch, jumpTable );
   
   // Branch on default case
   myIL->Emit( OpCodes::Br_S, defaultCase );
   
   // Case arg0 = 0
   myIL->MarkLabel( jumpTable[ 0 ] );
   myIL->Emit( OpCodes::Ldstr, "are no bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 1
   myIL->MarkLabel( jumpTable[ 1 ] );
   myIL->Emit( OpCodes::Ldstr, "is one banana" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 2
   myIL->MarkLabel( jumpTable[ 2 ] );
   myIL->Emit( OpCodes::Ldstr, "are two bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 3
   myIL->MarkLabel( jumpTable[ 3 ] );
   myIL->Emit( OpCodes::Ldstr, "are three bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 4
   myIL->MarkLabel( jumpTable[ 4 ] );
   myIL->Emit( OpCodes::Ldstr, "are four bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Default case
   myIL->MarkLabel( defaultCase );
   myIL->Emit( OpCodes::Ldstr, "are many bananas" );
   myIL->MarkLabel( endOfMethod );
   myIL->Emit( OpCodes::Ret );
   return myTypeBuilder->CreateType();
}

int main()
{
   Type^ myType = BuildMyType();
   Console::Write( "Enter an integer between 0 and 5: " );
   int theValue = Convert::ToInt32( Console::ReadLine() );
   Console::WriteLine( "---" );
   Object^ myInstance = Activator::CreateInstance( myType, gcnew array<Object^>(0) );
   array<Object^>^temp1 = {theValue};
   Console::WriteLine( "Yes, there {0} today!", myType->InvokeMember( "SwitchMe", BindingFlags::InvokeMethod, nullptr, myInstance, temp1 ) );
}
using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;

class DynamicJumpTableDemo
{
   public static Type BuildMyType()
   {
    AppDomain myDomain = Thread.GetDomain();
    AssemblyName myAsmName = new AssemblyName();
    myAsmName.Name = "MyDynamicAssembly";

    AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
                        myAsmName,
                        AssemblyBuilderAccess.Run);
    ModuleBuilder myModBuilder = myAsmBuilder.DefineDynamicModule(
                        "MyJumpTableDemo");

    TypeBuilder myTypeBuilder = myModBuilder.DefineType("JumpTableDemo",
                            TypeAttributes.Public);
    MethodBuilder myMthdBuilder = myTypeBuilder.DefineMethod("SwitchMe",
                             MethodAttributes.Public |
                             MethodAttributes.Static,
                                             typeof(string),
                                             new Type[] {typeof(int)});

    ILGenerator myIL = myMthdBuilder.GetILGenerator();

    Label defaultCase = myIL.DefineLabel();	
    Label endOfMethod = myIL.DefineLabel();	

    // We are initializing our jump table. Note that the labels
    // will be placed later using the MarkLabel method.

    Label[] jumpTable = new Label[] { myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel() };

    // arg0, the number we passed, is pushed onto the stack.
    // In this case, due to the design of the code sample,
    // the value pushed onto the stack happens to match the
    // index of the label (in IL terms, the index of the offset
    // in the jump table). If this is not the case, such as
    // when switching based on non-integer values, rules for the correspondence
    // between the possible case values and each index of the offsets
    // must be established outside of the ILGenerator.Emit calls,
    // much as a compiler would.

    myIL.Emit(OpCodes.Ldarg_0);
    myIL.Emit(OpCodes.Switch, jumpTable);
    
    // Branch on default case
    myIL.Emit(OpCodes.Br_S, defaultCase);

    // Case arg0 = 0
    myIL.MarkLabel(jumpTable[0]);
    myIL.Emit(OpCodes.Ldstr, "are no bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 1
    myIL.MarkLabel(jumpTable[1]);
    myIL.Emit(OpCodes.Ldstr, "is one banana");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 2
    myIL.MarkLabel(jumpTable[2]);
    myIL.Emit(OpCodes.Ldstr, "are two bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 3
    myIL.MarkLabel(jumpTable[3]);
    myIL.Emit(OpCodes.Ldstr, "are three bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 4
    myIL.MarkLabel(jumpTable[4]);
    myIL.Emit(OpCodes.Ldstr, "are four bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Default case
    myIL.MarkLabel(defaultCase);
    myIL.Emit(OpCodes.Ldstr, "are many bananas");

    myIL.MarkLabel(endOfMethod);
    myIL.Emit(OpCodes.Ret);
    
    return myTypeBuilder.CreateType();
   }

   public static void Main()
   {
    Type myType = BuildMyType();
    
    Console.Write("Enter an integer between 0 and 5: ");
    int theValue = Convert.ToInt32(Console.ReadLine());

    Console.WriteLine("---");
    Object myInstance = Activator.CreateInstance(myType, new object[0]);	
    Console.WriteLine("Yes, there {0} today!", myType.InvokeMember("SwitchMe",
                               BindingFlags.InvokeMethod,
                               null,
                               myInstance,
                               new object[] {theValue}));
   }
}

Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _

Class DynamicJumpTableDemo
   
   Public Shared Function BuildMyType() As Type

      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "MyDynamicAssembly"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly(myAsmName, _
                            AssemblyBuilderAccess.Run)
      Dim myModBuilder As ModuleBuilder = myAsmBuilder.DefineDynamicModule("MyJumpTableDemo")
      
      Dim myTypeBuilder As TypeBuilder = myModBuilder.DefineType("JumpTableDemo", _
                                 TypeAttributes.Public)
      Dim myMthdBuilder As MethodBuilder = myTypeBuilder.DefineMethod("SwitchMe", _
                        MethodAttributes.Public Or MethodAttributes.Static, _
                        GetType(String), New Type() {GetType(Integer)})
      
      Dim myIL As ILGenerator = myMthdBuilder.GetILGenerator()
      
      Dim defaultCase As Label = myIL.DefineLabel()
      Dim endOfMethod As Label = myIL.DefineLabel()
      
      ' We are initializing our jump table. Note that the labels
      ' will be placed later using the MarkLabel method. 

      Dim jumpTable() As Label = {myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel()}
      
      ' arg0, the number we passed, is pushed onto the stack.
      ' In this case, due to the design of the code sample,
      ' the value pushed onto the stack happens to match the
      ' index of the label (in IL terms, the index of the offset
      ' in the jump table). If this is not the case, such as
      ' when switching based on non-integer values, rules for the correspondence
      ' between the possible case values and each index of the offsets
      ' must be established outside of the ILGenerator.Emit calls,
      ' much as a compiler would.

      myIL.Emit(OpCodes.Ldarg_0)
      myIL.Emit(OpCodes.Switch, jumpTable)
      
      ' Branch on default case
      myIL.Emit(OpCodes.Br_S, defaultCase)
      
      ' Case arg0 = 0
      myIL.MarkLabel(jumpTable(0))
      myIL.Emit(OpCodes.Ldstr, "are no bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 1
      myIL.MarkLabel(jumpTable(1))
      myIL.Emit(OpCodes.Ldstr, "is one banana")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 2
      myIL.MarkLabel(jumpTable(2))
      myIL.Emit(OpCodes.Ldstr, "are two bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 3
      myIL.MarkLabel(jumpTable(3))
      myIL.Emit(OpCodes.Ldstr, "are three bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 4
      myIL.MarkLabel(jumpTable(4))
      myIL.Emit(OpCodes.Ldstr, "are four bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Default case
      myIL.MarkLabel(defaultCase)
      myIL.Emit(OpCodes.Ldstr, "are many bananas")
      
      myIL.MarkLabel(endOfMethod)
      myIL.Emit(OpCodes.Ret)
      
      Return myTypeBuilder.CreateType()

   End Function 'BuildMyType
    
   
   Public Shared Sub Main()

      Dim myType As Type = BuildMyType()
      
      Console.Write("Enter an integer between 0 and 5: ")
      Dim theValue As Integer = Convert.ToInt32(Console.ReadLine())
      
      Console.WriteLine("---")
      Dim myInstance As [Object] = Activator.CreateInstance(myType, New Object() {})
      Console.WriteLine("Yes, there {0} today!", myType.InvokeMember("SwitchMe", _
                         BindingFlags.InvokeMethod, Nothing, _
                             myInstance, New Object() {theValue}))

   End Sub

End Class

Комментарии

opcode Если параметр требует аргумента, вызывающий объект должен убедиться, что длина аргумента совпадает с длиной объявленного параметра. В противном случае результаты будут непредсказуемыми. Например, если для инструкции Emit требуется 2-байтовый операнд, а вызывающий объект предоставляет 4-байтовый операнд, среда выполнения выдаст два дополнительных байта в поток инструкций. Эти дополнительные байты будут Nop инструкциями.

Значения инструкций определяются в OpCodes.

Применяется к

Emit(OpCode, Label)

Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs
Исходный код:
ILGenerator.cs

Помещает указанную инструкцию в поток инструкций языка MSIL и оставляет место, чтобы после того, как будут произведены необходимые настройки, можно было включить метку.

public:
 virtual void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::Emit::Label label);
public:
 abstract void Emit(System::Reflection::Emit::OpCode opcode, System::Reflection::Emit::Label label);
public virtual void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.Label label);
public abstract void Emit (System.Reflection.Emit.OpCode opcode, System.Reflection.Emit.Label label);
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.Label -> unit
override this.Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.Label -> unit
abstract member Emit : System.Reflection.Emit.OpCode * System.Reflection.Emit.Label -> unit
Public Overridable Sub Emit (opcode As OpCode, label As Label)
Public MustOverride Sub Emit (opcode As OpCode, label As Label)

Параметры

opcode
OpCode

Инструкция языка MSIL, которую следует включить в поток.

label
Label

Метка, на которую следует осуществить переход из данного места.

Примеры

В приведенном ниже примере кода показано создание динамического метода с таблицей переходов. Таблица переходов создается с помощью массива Label.

using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ BuildMyType()
{
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "MyDynamicAssembly";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::Run );
   ModuleBuilder^ myModBuilder = myAsmBuilder->DefineDynamicModule( "MyJumpTableDemo" );
   TypeBuilder^ myTypeBuilder = myModBuilder->DefineType( "JumpTableDemo", TypeAttributes::Public );
   array<Type^>^temp0 = {int::typeid};
   MethodBuilder^ myMthdBuilder = myTypeBuilder->DefineMethod( "SwitchMe", static_cast<MethodAttributes>(MethodAttributes::Public | MethodAttributes::Static), String::typeid, temp0 );
   ILGenerator^ myIL = myMthdBuilder->GetILGenerator();
   Label defaultCase = myIL->DefineLabel();
   Label endOfMethod = myIL->DefineLabel();
   
   // We are initializing our jump table. Note that the labels
   // will be placed later using the MarkLabel method.
   array<Label>^jumpTable = gcnew array<Label>(5);
   jumpTable[ 0 ] = myIL->DefineLabel();
   jumpTable[ 1 ] = myIL->DefineLabel();
   jumpTable[ 2 ] = myIL->DefineLabel();
   jumpTable[ 3 ] = myIL->DefineLabel();
   jumpTable[ 4 ] = myIL->DefineLabel();
   
   // arg0, the number we passed, is pushed onto the stack.
   // In this case, due to the design of the code sample,
   // the value pushed onto the stack happens to match the
   // index of the label (in IL terms, the index of the offset
   // in the jump table). If this is not the case, such as
   // when switching based on non-integer values, rules for the correspondence
   // between the possible case values and each index of the offsets
   // must be established outside of the ILGenerator::Emit calls,
   // much as a compiler would.
   myIL->Emit( OpCodes::Ldarg_0 );
   myIL->Emit( OpCodes::Switch, jumpTable );
   
   // Branch on default case
   myIL->Emit( OpCodes::Br_S, defaultCase );
   
   // Case arg0 = 0
   myIL->MarkLabel( jumpTable[ 0 ] );
   myIL->Emit( OpCodes::Ldstr, "are no bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 1
   myIL->MarkLabel( jumpTable[ 1 ] );
   myIL->Emit( OpCodes::Ldstr, "is one banana" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 2
   myIL->MarkLabel( jumpTable[ 2 ] );
   myIL->Emit( OpCodes::Ldstr, "are two bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 3
   myIL->MarkLabel( jumpTable[ 3 ] );
   myIL->Emit( OpCodes::Ldstr, "are three bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Case arg0 = 4
   myIL->MarkLabel( jumpTable[ 4 ] );
   myIL->Emit( OpCodes::Ldstr, "are four bananas" );
   myIL->Emit( OpCodes::Br_S, endOfMethod );
   
   // Default case
   myIL->MarkLabel( defaultCase );
   myIL->Emit( OpCodes::Ldstr, "are many bananas" );
   myIL->MarkLabel( endOfMethod );
   myIL->Emit( OpCodes::Ret );
   return myTypeBuilder->CreateType();
}

int main()
{
   Type^ myType = BuildMyType();
   Console::Write( "Enter an integer between 0 and 5: " );
   int theValue = Convert::ToInt32( Console::ReadLine() );
   Console::WriteLine( "---" );
   Object^ myInstance = Activator::CreateInstance( myType, gcnew array<Object^>(0) );
   array<Object^>^temp1 = {theValue};
   Console::WriteLine( "Yes, there {0} today!", myType->InvokeMember( "SwitchMe", BindingFlags::InvokeMethod, nullptr, myInstance, temp1 ) );
}
using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;

class DynamicJumpTableDemo
{
   public static Type BuildMyType()
   {
    AppDomain myDomain = Thread.GetDomain();
    AssemblyName myAsmName = new AssemblyName();
    myAsmName.Name = "MyDynamicAssembly";

    AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
                        myAsmName,
                        AssemblyBuilderAccess.Run);
    ModuleBuilder myModBuilder = myAsmBuilder.DefineDynamicModule(
                        "MyJumpTableDemo");

    TypeBuilder myTypeBuilder = myModBuilder.DefineType("JumpTableDemo",
                            TypeAttributes.Public);
    MethodBuilder myMthdBuilder = myTypeBuilder.DefineMethod("SwitchMe",
                             MethodAttributes.Public |
                             MethodAttributes.Static,
                                             typeof(string),
                                             new Type[] {typeof(int)});

    ILGenerator myIL = myMthdBuilder.GetILGenerator();

    Label defaultCase = myIL.DefineLabel();	
    Label endOfMethod = myIL.DefineLabel();	

    // We are initializing our jump table. Note that the labels
    // will be placed later using the MarkLabel method.

    Label[] jumpTable = new Label[] { myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel(),
                      myIL.DefineLabel() };

    // arg0, the number we passed, is pushed onto the stack.
    // In this case, due to the design of the code sample,
    // the value pushed onto the stack happens to match the
    // index of the label (in IL terms, the index of the offset
    // in the jump table). If this is not the case, such as
    // when switching based on non-integer values, rules for the correspondence
    // between the possible case values and each index of the offsets
    // must be established outside of the ILGenerator.Emit calls,
    // much as a compiler would.

    myIL.Emit(OpCodes.Ldarg_0);
    myIL.Emit(OpCodes.Switch, jumpTable);
    
    // Branch on default case
    myIL.Emit(OpCodes.Br_S, defaultCase);

    // Case arg0 = 0
    myIL.MarkLabel(jumpTable[0]);
    myIL.Emit(OpCodes.Ldstr, "are no bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 1
    myIL.MarkLabel(jumpTable[1]);
    myIL.Emit(OpCodes.Ldstr, "is one banana");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 2
    myIL.MarkLabel(jumpTable[2]);
    myIL.Emit(OpCodes.Ldstr, "are two bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 3
    myIL.MarkLabel(jumpTable[3]);
    myIL.Emit(OpCodes.Ldstr, "are three bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Case arg0 = 4
    myIL.MarkLabel(jumpTable[4]);
    myIL.Emit(OpCodes.Ldstr, "are four bananas");
    myIL.Emit(OpCodes.Br_S, endOfMethod);

    // Default case
    myIL.MarkLabel(defaultCase);
    myIL.Emit(OpCodes.Ldstr, "are many bananas");

    myIL.MarkLabel(endOfMethod);
    myIL.Emit(OpCodes.Ret);
    
    return myTypeBuilder.CreateType();
   }

   public static void Main()
   {
    Type myType = BuildMyType();
    
    Console.Write("Enter an integer between 0 and 5: ");
    int theValue = Convert.ToInt32(Console.ReadLine());

    Console.WriteLine("---");
    Object myInstance = Activator.CreateInstance(myType, new object[0]);	
    Console.WriteLine("Yes, there {0} today!", myType.InvokeMember("SwitchMe",
                               BindingFlags.InvokeMethod,
                               null,
                               myInstance,
                               new object[] {theValue}));
   }
}

Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _

Class DynamicJumpTableDemo
   
   Public Shared Function BuildMyType() As Type

      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "MyDynamicAssembly"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly(myAsmName, _
                            AssemblyBuilderAccess.Run)
      Dim myModBuilder As ModuleBuilder = myAsmBuilder.DefineDynamicModule("MyJumpTableDemo")
      
      Dim myTypeBuilder As TypeBuilder = myModBuilder.DefineType("JumpTableDemo", _
                                 TypeAttributes.Public)
      Dim myMthdBuilder As MethodBuilder = myTypeBuilder.DefineMethod("SwitchMe", _
                        MethodAttributes.Public Or MethodAttributes.Static, _
                        GetType(String), New Type() {GetType(Integer)})
      
      Dim myIL As ILGenerator = myMthdBuilder.GetILGenerator()
      
      Dim defaultCase As Label = myIL.DefineLabel()
      Dim endOfMethod As Label = myIL.DefineLabel()
      
      ' We are initializing our jump table. Note that the labels
      ' will be placed later using the MarkLabel method. 

      Dim jumpTable() As Label = {myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel(), _
                  myIL.DefineLabel()}
      
      ' arg0, the number we passed, is pushed onto the stack.
      ' In this case, due to the design of the code sample,
      ' the value pushed onto the stack happens to match the
      ' index of the label (in IL terms, the index of the offset
      ' in the jump table). If this is not the case, such as
      ' when switching based on non-integer values, rules for the correspondence
      ' between the possible case values and each index of the offsets
      ' must be established outside of the ILGenerator.Emit calls,
      ' much as a compiler would.

      myIL.Emit(OpCodes.Ldarg_0)
      myIL.Emit(OpCodes.Switch, jumpTable)
      
      ' Branch on default case
      myIL.Emit(OpCodes.Br_S, defaultCase)
      
      ' Case arg0 = 0
      myIL.MarkLabel(jumpTable(0))
      myIL.Emit(OpCodes.Ldstr, "are no bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 1
      myIL.MarkLabel(jumpTable(1))
      myIL.Emit(OpCodes.Ldstr, "is one banana")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 2
      myIL.MarkLabel(jumpTable(2))
      myIL.Emit(OpCodes.Ldstr, "are two bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 3
      myIL.MarkLabel(jumpTable(3))
      myIL.Emit(OpCodes.Ldstr, "are three bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Case arg0 = 4
      myIL.MarkLabel(jumpTable(4))
      myIL.Emit(OpCodes.Ldstr, "are four bananas")
      myIL.Emit(OpCodes.Br_S, endOfMethod)
      
      ' Default case
      myIL.MarkLabel(defaultCase)
      myIL.Emit(OpCodes.Ldstr, "are many bananas")
      
      myIL.MarkLabel(endOfMethod)
      myIL.Emit(OpCodes.Ret)
      
      Return myTypeBuilder.CreateType()

   End Function 'BuildMyType
    
   
   Public Shared Sub Main()

      Dim myType As Type = BuildMyType()
      
      Console.Write("Enter an integer between 0 and 5: ")
      Dim theValue As Integer = Convert.ToInt32(Console.ReadLine())
      
      Console.WriteLine("---")
      Dim myInstance As [Object] = Activator.CreateInstance(myType, New Object() {})
      Console.WriteLine("Yes, there {0} today!", myType.InvokeMember("SwitchMe", _
                         BindingFlags.InvokeMethod, Nothing, _
                             myInstance, New Object() {theValue}))

   End Sub

End Class

Комментарии

Значения инструкций определяются в перечислении OpCodes .

Метки создаются с помощью DefineLabel, а их расположение в потоке фиксируется с помощью MarkLabel. Если используется однобайтовая инструкция, метка может представлять скачок не более 127 байт в потоке. opcode должен представлять ветвь инструкции. Так как ветви являются относительными инструкциями, label они будут заменены правильным смещением в ветвь в процессе исправления.

Применяется к