Векторы, вершины и кватернионыVectors, vertices, and quaternions

В Direct3D вершины описывают положение и ориентацию.Throughout Direct3D, vertices describe position and orientation. Каждая вершина в примитиве описывается вектором, который сообщает ее положение, цвет, координаты текстуры, и вектором нормали, который позволяет узнать ее ориентацию.Each vertex in a primitive is described by a vector that gives its position, color, texture coordinates, and a normal vector that gives its orientation.

Кватернионы добавить четвертый элемент [x, y, z] значения, которые определяют три вектора компонента.Quaternions add a fourth element to the [x, y, z] values that define a three-component-vector. Кватернионы представляют собой альтернативу матричным методам, обычно используемым для 3D-вращения.Quaternions are an alternative to the matrix methods that are typically used for 3D rotations. Кватернион представляет ось в 3D-пространстве и поворот вокруг этой оси.A quaternion represents an axis in 3D space and a rotation around that axis. Например, кватернион может представлять ось (1,1,2) и поворот на 1 радиан.For example, a quaternion might represent a (1,1,2) axis and a rotation of 1 radian. Кватернионы содержат полезную информацию, однако их истинная ценность заключается в двух операциях, которые можно выполнять над ними: композиции и интерполяции.Quaternions carry valuable information, but their true power comes from the two operations that you can perform on them: composition and interpolation.

Выполнение композиции над кватернионами аналогично их объединению.Performing composition on quaternions is similar to combining them. Записывается композиция двух кватернионов так, как показано на следующем рисунке.The composition of two quaternions is notated like the following illustration.

иллюстрация записи кватернионов

Композиция двух кватернионов, применяемая к геометрии, означает "повернуть геометрию вокруг оси₂ на поворот₂, затем повернуть ее вокруг оси₁ на поворот₁".The composition of two quaternions applied to a geometry means "rotate the geometry around axis₂ by rotation₂, then rotate it around axis₁ by rotation₁." В данном случае Q представляет поворот вокруг одной оси, который является результатом применения q₂ и затем q₁ к геометрии.In this case, Q represents a rotation around a single axis that is the result of applying q₂, then q₁ to the geometry.

С помощью интерполяции кватернионов приложение может рассчитать плавный и рациональный путь от одной оси и ориентации к другой.Using quaternion interpolation, an application can calculate a smooth and reasonable path from one axis and orientation to another. Таким образом, интерполяция между q₁ и q₂ — это простой способ анимировать движение от одной ориентации к другой.Therefore, interpolation between q₁ and q₂ provides a simple way to animate from one orientation to another.

При совместном использовании композиция и интерполяция дают возможность без труда манипулировать геометрией так, что манипуляции будут казаться сложными.When you use composition and interpolation together, they provide you with a simple way to manipulate a geometry in a manner that appears complex. Например, предположим, что у вас есть геометрия, которую вы хотите повернуть для придания ей определенной ориентации.For example, imagine that you have a geometry that you want to rotate to a given orientation. Вам известно, что нужно повернуть ее на r₂ градусов вокруг оси₂, а затем на r₁ градусов вокруг оси₁, однако окончательный кватернион вам не известен.You know that you want to rotate it r₂ degrees around axis₂, then rotate it r₁ degrees around axis₁, but you don't know the final quaternion. Используя композицию, вы можете объединить два поворота применительно к геометрии и получить один кватернион, который будет представлять собой результат.By using composition, you could combine the two rotations on the geometry to get a single quaternion that is the result. Затем можно выполнить интерполяцию из исходного кватерниона в составной для получения плавного перехода от одного к другому.Then, you could interpolate from the original to the composed quaternion to achieve a smooth transition from one to the other.

Связанные разделыRelated topics

Системы координат и геометрияCoordinate systems and geometry