Поделиться через


Метки времени пакетов

Введение

Многие сетевые карты (сетевые адаптеры или сетевые адаптеры) могут создавать метку времени в своем оборудовании при получении или передаче пакета. Метка времени создается с помощью собственных аппаратных часов сетевой карты. Эта функция используется, в частности, протоколом точного времени (PTP), который является протоколом синхронизации времени. PTP подготавливает для использования таких аппаратных меток времени в самом протоколе.

Метки времени можно, например, использовать для вычисления времени, затрачиваемого пакетом в сетевом стеке компьютера перед отправкой или получением по проводу. Затем эти вычисления могут использоваться PTP для повышения точности синхронизации времени. Поддержка меток времени пакетов сетевых адаптеров иногда ориентирована специально на протокол PTP. В других случаях предоставляется более общая поддержка.

API меток времени позволяют Windows поддерживать аппаратные метки времени сетевых адаптеров для протокола PTP версии 2. В целом эти функции включают в себя предоставление драйверам сетевых адаптеров возможности поддерживать метки времени, а приложения пользовательского режима могут использовать метки времени, связанные с пакетами, через сокеты Windows (см. раздел Метка времени Winsock). Кроме того, доступна возможность создания программных меток времени, что позволяет сетевому драйверу создавать метки времени в программном обеспечении. Такие программные метки времени создаются драйверами сетевого адаптера с использованием эквивалента QueryPerformanceCounter (QPC) в режиме ядра. Однако одновременное включение аппаратных и программных меток времени не поддерживается.

В частности, API-интерфейсы пакетной метки времени вспомогательного протокола Интернета (IP Helper), описанные в этом разделе, предоставляют приложениям пользовательского режима возможность определять возможности меток времени сетевого адаптера и запрашивать метки времени из сетевого адаптера в виде перекрестных меток времени (описано ниже).

Поддержка протокола точного времени версии 2

Как уже упоминалось, main целью поддержки меток времени в Windows является поддержка протокола точного времени версии 2 (PTPv2). В PTPv2 не всем сообщениям требуется метка времени. В частности, сообщения о событиях PTP используют метки времени. В настоящее время поддержка ограничена протоколом PTPv2 по протоколу UDP. PTP через raw Ethernet не поддерживается.

Метка времени поддерживается для PTPv2, работающего в двухшаговом режиме. Шаг 2 относится к режиму, в котором фактические метки времени в пакетах PTP не создаются на лету в оборудовании, а вместо этого извлекаются из оборудования и передаются в виде отдельных сообщений (например, с помощью последующего сообщения).

Таким образом, вы можете использовать API-интерфейсы метки времени пакетов вспомогательного ip-протокола (IP Helper) вместе с поддержкой меток времени Winsock в приложении PTPv2, чтобы повысить точность синхронизации времени.

Получение возможностей меток времени сетевого адаптера

Приложению, такому как служба синхронизации времени PTP, необходимо определить возможность метки времени сетевого адаптера. С помощью полученных возможностей приложение может решить, следует ли использовать метки времени.

Даже если сетевой адаптер поддерживает метки времени, необходимо сохранить возможность отключенной по умолчанию. Адаптер включает метки времени при указании на это. Windows предоставляет API для приложения для получения возможностей оборудования, а также включенных возможностей.

Чтобы получить поддерживаемые возможности меток времени сетевого адаптера, вызовите функцию GetInterfaceSupportedTimestampCapabilities , предоставляя локально уникальный идентификатор (LUID) сетевого адаптера и возвращая в ответ поддерживаемые возможности метки времени в виде объекта INTERFACE_TIMESTAMP_CAPABILITIES .

Код, возвращенный командлетом GetInterfaceSupportedTimestampCapabilities , указывает, успешно ли выполнен вызов и было ли получено заполненное значение INTERFACE_TIMESTAMP_CAPABILITIES .

Чтобы получить включенные в настоящее время возможности меток времени сетевого адаптера, вызовите функцию GetInterfaceActiveTimestampCapabilities , указав локально уникальный идентификатор (LUID) сетевого адаптера и в ответ извлекая включенные возможности метки времени в виде объекта INTERFACE_TIMESTAMP_CAPABILITIES .

Опять же, код, возвращенный из GetInterfaceActiveTimestampCapabilities , указывает на успешное или неудачное получение допустимого значения INTERFACE_TIMESTAMP_CAPABILITIES .

Сетевые адаптеры могут поддерживать различные возможности меток времени. Например, некоторые адаптеры могут добавлять метки времени для каждого пакета во время отправки и получения, а другие поддерживают только пакеты PTPv2. Структура INTERFACE_TIMESTAMP_CAPABILITIES описывает точные возможности, поддерживаемые сетевым адаптером.

Получение перекрестных меток времени из сетевого адаптера

При использовании аппаратных меток времени приложение PTP должно установить связь (например, с помощью соответствующих математических методов) между аппаратными часами сетевого адаптера и системными часами. Это необходимо, чтобы значение, представляющее время в единице одного часа, можно было преобразовать в единицу других часов. Для этой цели предоставляются перекрестные метки времени, и приложение может периодически выполнять выборку перекрестных меток времени, чтобы установить такую связь.

Для этого вызовите функцию CaptureInterfaceHardwareCrossTimestamp , указав локально уникальный идентификатор (LUID) сетевого адаптера и в ответ извлекая метку времени из сетевого адаптера в виде объекта INTERFACE_HARDWARE_CROSSTIMESTAMP .

Уведомления об изменении возможности метки времени

Чтобы получать уведомления при изменении возможностей меток времени для сетевого адаптера, вызовите функцию RegisterInterfaceTimestampConfigChange , указав указатель на реализованную функцию обратного вызова вместе с дополнительным контекстом, выделенным вызывающим объектом.

RegisterInterfaceTimestampConfigChange возвращает дескриптор, который впоследствии можно передать в UnregisterInterfaceTimestampConfigChange , чтобы отменить регистрацию функции обратного вызова.

Пример кода 1. Получение возможностей меток времени и перекрестных меток времени

// main.cpp in a Console App project.

#include <stdio.h>
#include <winsock2.h>
#include <iphlpapi.h>
#pragma comment(lib, "Iphlpapi")

BOOL
IsPTPv2HardwareTimestampingSupportedForIPv4(PINTERFACE_TIMESTAMP_CAPABILITIES timestampCapabilities)
{
    // Supported if both receive and transmit side support is present
    if (((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4EventMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4AllMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.AllReceive))
         &&
        ((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4EventMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4AllMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.TaggedTransmit) ||
         (timestampCapabilities->HardwareCapabilities.AllTransmit)))
    {
        return TRUE;
    }

    return FALSE;
}

BOOL
IsPTPv2HardwareTimestampingSupportedForIPv6(PINTERFACE_TIMESTAMP_CAPABILITIES timestampCapabilities)
{
    // Supported if both receive and transmit side support is present
    if (((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6EventMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6AllMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.AllReceive))
         &&
        ((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6EventMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6AllMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.TaggedTransmit) ||
         (timestampCapabilities->HardwareCapabilities.AllTransmit)))
    {
        return TRUE;
    }

    return FALSE;
}

enum SupportedTimestampType
{
    TimestampTypeNone = 0,
    TimestampTypeSoftware = 1,
    TimestampTypeHardware = 2
};

// This function checks and returns the supported timestamp capabilities for an interface for
// a PTPv2 application
SupportedTimestampType
CheckActiveTimestampCapabilitiesForPtpv2(NET_LUID interfaceLuid)
{
    DWORD result = NO_ERROR;
    INTERFACE_TIMESTAMP_CAPABILITIES timestampCapabilities;
    SupportedTimestampType supportedType = TimestampTypeNone;

    result = GetInterfaceActiveTimestampCapabilities(
                 &interfaceLuid,
                 &timestampCapabilities);
    if (result != NO_ERROR)
    {
        printf("Error retrieving hardware timestamp capabilities: %d\n", result);
        goto Exit;
    }

    if (IsPTPv2HardwareTimestampingSupportedForIPv4(&timestampCapabilities) &&
        IsPTPv2HardwareTimestampingSupportedForIPv6(&timestampCapabilities))
    {
        supportedType = TimestampTypeHardware;
        goto Exit;
    }
    else
    {
        if ((timestampCapabilities.SoftwareCapabilities.AllReceive) &&
            ((timestampCapabilities.SoftwareCapabilities.AllTransmit) ||
             (timestampCapabilities.SoftwareCapabilities.TaggedTransmit)))
        {
            supportedType = TimestampTypeSoftware;
        }
    }

Exit:
    return supportedType;
}

// Helper function which does the correlation between hardware and system clock
// using mathematical techniques
void ComputeCorrelationOfHardwareAndSystemTimestamps(INTERFACE_HARDWARE_CROSSTIMESTAMP *crossTimestamp);

// An application would call this function periodically to gather a set 
// of matching timestamps for use in converting hardware timestamps to
// system timestamps
DWORD
RetrieveAndProcessCrossTimestamp(NET_LUID interfaceLuid)
{
    DWORD result = NO_ERROR;
    INTERFACE_HARDWARE_CROSSTIMESTAMP crossTimestamp;

    result = CaptureInterfaceHardwareCrossTimestamp(
                 &interfaceLuid,
                 &crossTimestamp);
    if (result != NO_ERROR)
    {
        printf("Error retrieving cross timestamp for the interface: %d\n", result);
        goto Exit;
    }

    // Process crossTimestamp further to create a relation between the hardware clock
    // of the NIC and the QPC values using appropriate mathematical techniques
    ComputeCorrelationOfHardwareAndSystemTimestamps(&crossTimestamp);

Exit:
    return result;
}

int main()
{
}

Пример кода 2. Регистрация уведомлений об изменении возможностей метки времени

В этом примере показано, как приложение может использовать сквозные метки времени.

// main.cpp in a Console App project.

#include <stdlib.h>
#include <stdio.h>
#include <winsock2.h>
#include <mswsock.h>
#include <iphlpapi.h>
#include <mstcpip.h>
#pragma comment(lib, "Ws2_32")
#pragma comment(lib, "Iphlpapi")

// Globals and function declarations used by the application.
// The sample functions and skeletons demonstrate:
// - Checking timestamp configuration for an interface to determine if timestamping can be used
// - If timestamping is enabled, starts tracking changes in timestamp configuration
// - Performing correlation between hardware and system timestamps using cross timestamps
//   on a separate thread depending on the timestamp type configured
// - Receiving a packet and computing the latency between when the timestamp
//   was generated on packet reception, and when the packet was received by
//   the application through the socket
// The sample tries to demonstrate how an application could use timestamps. It is not thread safe 
// and does not do exhaustive error checking.
// Lot of the functions are provided as skeletons, or only declared and invoked
// but are not defined. It is up to
// the application to implement these suitably.

// An application could use the functions below by e.g.
// - Call InitializeTimestampingForInterface for the interface it wants to track for timestamping capability.
// - Call EstimateReceiveLatency to estimate the receive latency of a packet depending on the timestamp 
//   type configured for the interface.

enum SupportedTimestampType
{
    TimestampTypeNone = 0,
    TimestampTypeSoftware = 1,
    TimestampTypeHardware = 2
};

// interfaceBeingTracked is the interface the PTPv2 application
// intends to use for timestamping purpose.
wchar_t* interfaceBeingTracked;

// The active timestamping type determined for
// interfaceBeingTracked.
SupportedTimestampType timestampTypeEnabledForInterface;

HANDLE correlationThread;
HANDLE threadStopEvent;
HIFTIMESTAMPCHANGE TimestampChangeNotificationHandle = NULL;

// Function from sample above to check if an interface supports timestamping for PTPv2.
SupportedTimestampType CheckActiveTimestampCapabilitiesForPtpv2(NET_LUID interfaceLuid);

// Function from sample above to retrieve cross timestamps and process them further.
DWORD RetrieveAndProcessCrossTimestamp(NET_LUID interfaceLuid);

// Helper function which registers for timestamp configuration changes.
DWORD RegisterTimestampChangeNotifications();

// Callback function which is invoked when timestamp configuration changes
// for some network interface.
INTERFACE_TIMESTAMP_CONFIG_CHANGE_CALLBACK TimestampConfigChangeCallback;

// Function which does the correlation between hardware and system clock
// using mathematical techniques. It is periodically invoked and provided
// a sample of cross timestamp to compute a correlation.
void ComputeCorrelationOfHardwareAndSystemTimestamps(INTERFACE_HARDWARE_CROSSTIMESTAMP *crossTimestamp);

// Helper function which converts a hardware timestamp from the NIC clock
// to system timestamp (QPC) values. It is assumed that this works together
// with the ComputeCorrelationOfHardwareAndSystemTimestamps function
// to derive the correlation.
ULONG64 ConvertHardwareTimestampToQpc(ULONG64 HardwareTimestamp);

// Start function of thread which periodically samples
// cross timestamps to correlate hardware and software timestamps.
DWORD WINAPI CorrelateHardwareAndSystemTimestamps(LPVOID);

// Helper function which starts a new thread at CorrelateHardwareAndSystemTimestamps.
DWORD StartCorrelatingHardwareAndSytemTimestamps();

// Helper function which restarts correlation when some change is detected.
DWORD RestartCorrelatingHardwareAndSystemTimestamps();

// Stops the correlation thread.
DWORD StopCorrelatingHardwareAndSystemTimestamps();

DWORD
FindInterfaceFromFriendlyName(wchar_t* friendlyName, NET_LUID* interfaceLuid)
{
    DWORD result = 0;
    ULONG flags = 0;
    ULONG outBufLen = 0;
    PIP_ADAPTER_ADDRESSES pAddresses = NULL;
    PIP_ADAPTER_ADDRESSES currentAddresses = NULL;

    result = GetAdaptersAddresses(0,
        flags,
        NULL,
        pAddresses,
        &outBufLen);
    if (result == ERROR_BUFFER_OVERFLOW)
    {
        pAddresses = (PIP_ADAPTER_ADDRESSES)malloc(outBufLen);

        result = GetAdaptersAddresses(0,
            flags,
            NULL,
            pAddresses,
            &outBufLen);
        if (result != NO_ERROR)
        {
            goto Done;
        }
    }
    else if (result != NO_ERROR)
    {
        goto Done;
    }

    currentAddresses = pAddresses;
    while (currentAddresses != NULL)
    {
        if (wcscmp(friendlyName, currentAddresses->FriendlyName) == 0)
        {
            result = ConvertInterfaceIndexToLuid(currentAddresses->IfIndex, interfaceLuid);
            goto Done;
        }

        currentAddresses = currentAddresses->Next;
    }

    result = ERROR_NOT_FOUND;

Done:

    if (pAddresses != NULL)
    {
        free(pAddresses);
    }

    return result;
}

// This function checks if an interface is suitable for
// timestamping for PTPv2. If so, it registers for timestamp
// configuration changes and initializes some globals.
// If hardware  timestamping is enabled it also starts
// correlation thread.
DWORD
InitializeTimestampingForInterface(wchar_t* friendlyName)
{
    DWORD error;
    SupportedTimestampType supportedType = TimestampTypeNone;

    NET_LUID interfaceLuid;

    error = FindInterfaceFromFriendlyName(friendlyName, &interfaceLuid);
    if (error != 0)
    {
        return error;
    }

    supportedType = CheckActiveTimestampCapabilitiesForPtpv2(interfaceLuid);

    if (supportedType != TimestampTypeNone)
    {
        error = RegisterTimestampChangeNotifications();
        if (error != NO_ERROR)
        {
            return error;
        }

        if (supportedType == TimestampTypeHardware)
        {
            threadStopEvent = CreateEvent(
                NULL,
                FALSE,
                FALSE,
                NULL
            );
            if (threadStopEvent == NULL)
            {
                return GetLastError();
            }            

            error = StartCorrelatingHardwareAndSytemTimestamps();
            if (error != 0)
            {
                return error;
            }
        }

        interfaceBeingTracked = friendlyName;
        timestampTypeEnabledForInterface = supportedType;

        return error;
    }

    return ERROR_NOT_SUPPORTED;
}

DWORD
RegisterTimestampChangeNotifications()
{
    DWORD retcode = NO_ERROR;

    // Register with NULL context
    retcode = RegisterInterfaceTimestampConfigChange(TimestampConfigChangeCallback, NULL, &TimestampChangeNotificationHandle);
    if (retcode != NO_ERROR)
    {
        printf("Error when calling RegisterIfTimestampConfigChange %d\n", retcode);
    }

    return retcode;
}

// The callback invoked when change in some interface’s timestamping configuration
// happens. The callback takes appropriate action based on the new capability of the
// interface. The callback assumes that there is only 1 NIC. If multiple NICs are being
// tracked for timestamping then the application would need to check all of them.
VOID
WINAPI
TimestampConfigChangeCallback(
    _In_ PVOID /*CallerContext*/
    )
{
    SupportedTimestampType supportedType;

    NET_LUID interfaceLuid;
    DWORD error;

    error = FindInterfaceFromFriendlyName(interfaceBeingTracked, &interfaceLuid);
    if (error != NO_ERROR)
    {
        if (timestampTypeEnabledForInterface == TimestampTypeHardware)
        {
            StopCorrelatingHardwareAndSystemTimestamps();
            timestampTypeEnabledForInterface = TimestampTypeNone;
        }
        return;
    }

    supportedType = CheckActiveTimestampCapabilitiesForPtpv2(interfaceLuid);

    if ((supportedType == TimestampTypeHardware) &&
        (timestampTypeEnabledForInterface == TimestampTypeHardware))
    {
        // NIC could have been restarted, restart the correlation between hardware and 
        // system timestamps.
        RestartCorrelatingHardwareAndSystemTimestamps();
    }
    else if (supportedType == TimestampTypeHardware)
    {
        // Start thread correlating hardware and software timestamps
        StartCorrelatingHardwareAndSytemTimestamps();
    }
    else if (supportedType != TimestampTypeHardware)
    {
        // Hardware timestamps are not enabled, stop correlation
        StopCorrelatingHardwareAndSystemTimestamps();
    }

    timestampTypeEnabledForInterface = supportedType;
}

DWORD 
StartCorrelatingHardwareAndSytemTimestamps()
{
    // Create a new thread which starts at CorrelateHardwareAndSoftwareTimestamps
    correlationThread = CreateThread(
        NULL,
        0,
        CorrelateHardwareAndSystemTimestamps,
        NULL,
        0,
        NULL); 

    if (correlationThread == NULL)
    {
        return GetLastError();
    }
}

// Thread which periodically invokes functions to 
// sample cross timestamps and use them to compute
// correlation between hardware and system timestamps.
DWORD WINAPI
CorrelateHardwareAndSystemTimestamps(LPVOID /*lpParameter*/)
{
    DWORD error;
    NET_LUID interfaceLuid;
    DWORD result;

    result = FindInterfaceFromFriendlyName(interfaceBeingTracked, &interfaceLuid);
    if (result != 0)
    {
        return result;
    }

    while (TRUE)
    {
        error = RetrieveAndProcessCrossTimestamp(interfaceLuid);

        // Sleep and repeat till the thread gets a signal to stop
        result = WaitForSingleObject(threadStopEvent, 5000);
        if (result != WAIT_TIMEOUT)
        {
            if (result == WAIT_OBJECT_0)
            {
                return 0;
            }
            else if (result == WAIT_FAILED)            
            {
                return GetLastError();
            }

            return result;
        }
    }
}

DWORD
StopCorrelatingHardwareAndSystemTimestamps()
{
    SetEvent(threadStopEvent);
    return 0;
}

// Function which receives a packet and estimates the latency between the 
// point at which receive timestamp (of appropriate type) was generated
// and when the packet was received in the app through the socket.
// The sample assumes that there is only 1 NIC in the system. This is the NIC which is tracked through
// interfaceBeingTracked for correlation purpose, and through which packets are being
// received by the socket.
// The recvmsg parameter is of type LPFN_WSARECVMSG and an application can
// retrieve it by issuing WSAIoctl
// with SIO_GET_EXTENSION_FUNCTION_POINTER control
// and WSAID_WSARECVMSG. Please refer to msdn.
void EstimateReceiveLatency(SOCKET sock, LPFN_WSARECVMSG recvmsg)
{
    DWORD numBytes;
    INT error;
    CHAR data[512];
    CHAR control[WSA_CMSG_SPACE(sizeof(UINT64))] = { 0 };
    WSABUF dataBuf;
    WSABUF controlBuf;
    WSAMSG wsaMsg;
    UINT64 socketTimestamp = 0;
    ULONG64 appLevelTimestamp;
    ULONG64 packetReceivedTimestamp;

    dataBuf.buf = data;
    dataBuf.len = sizeof(data);
    controlBuf.buf = control;
    controlBuf.len = sizeof(control);
    wsaMsg.name = NULL;
    wsaMsg.namelen = 0;
    wsaMsg.lpBuffers = &dataBuf;
    wsaMsg.dwBufferCount = 1;
    wsaMsg.Control = controlBuf;
    wsaMsg.dwFlags = 0;

    // Configure rx timestamp reception.
    TIMESTAMPING_CONFIG config = { 0 };
    config.Flags |= TIMESTAMPING_FLAG_RX;
    error =
        WSAIoctl(
            sock,
            SIO_TIMESTAMPING,
            &config,
            sizeof(config),
            NULL,
            0,
            &numBytes,
            NULL,
            NULL);
    if (error == SOCKET_ERROR)
    {
        printf("WSAIoctl failed %d\n", WSAGetLastError());
        return;
    }

    error =
        recvmsg(
            sock,
            &wsaMsg,
            &numBytes,
            NULL,
            NULL);
    if (error == SOCKET_ERROR)
    {
        printf("recvmsg failed %d\n", WSAGetLastError());
        return;
    }

    if (timestampTypeEnabledForInterface != TimestampTypeNone)
    {
        // Capture system timestamp (QPC) upon message reception.
        LARGE_INTEGER t1;
        QueryPerformanceCounter(&t1);
        appLevelTimestamp = t1.QuadPart;

        printf("received packet\n");

        // Look for socket rx timestamp returned via control message.
        BOOLEAN retrievedTimestamp = FALSE;
        PCMSGHDR cmsg = WSA_CMSG_FIRSTHDR(&wsaMsg);
        while (cmsg != NULL)
        {
            if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_TIMESTAMP)
            {
                socketTimestamp = *(PUINT64)WSA_CMSG_DATA(cmsg);
                retrievedTimestamp = TRUE;
                break;
            }
            cmsg = WSA_CMSG_NXTHDR(&wsaMsg, cmsg);
        }

        if (retrievedTimestamp)
        {
            // Compute socket receive path latency.
            LARGE_INTEGER clockFrequency;
            ULONG64 elapsedMicroseconds;

            if (timestampTypeEnabledForInterface == TimestampTypeHardware)
            {
                packetReceivedTimestamp = ConvertHardwareTimestampToQpc(socketTimestamp);
            }
            else
            {
                packetReceivedTimestamp = socketTimestamp;
            }
        
            QueryPerformanceFrequency(&clockFrequency);

            // Compute socket receive path latency.
            elapsedMicroseconds = appLevelTimestamp - packetReceivedTimestamp;
            elapsedMicroseconds *= 1000000;
            elapsedMicroseconds /= clockFrequency.QuadPart;
            printf("RX latency estimation: %lld microseconds\n",
                 elapsedMicroseconds);
        }
        else
        {
            printf("failed to retrieve RX timestamp\n");
        }
    }
}

int main()
{
}