Databricks Runtime 7.0 ML (stöds inte)

Databricks släppte den här bilden i juni 2020.

Databricks Runtime 7.0 för Machine Learning en färdig miljö för maskininlärning och datavetenskap som baseras på Databricks Runtime 7.0 (stöds inte). Databricks Runtime ML innehåller många populära maskininlärningsbibliotek, inklusive TensorFlow, PyTorch och XGBoost. Det stöder även distribuerad djupinlärningsträning med Horovod.

Mer information, inklusive anvisningar för att skapa ett Databricks Runtime ML-kluster, finns i Databricks Runtime för Machine Learning.

Nya funktioner och större ändringar

Databricks Runtime 7.0 ML bygger på Databricks Runtime 7.0. Information om vad som är nytt i Databricks Runtime 7.0, inklusive Apache Spark MLlib och SparkR, finns i viktig information Databricks Runtime 7.0 (stöds inte).

GPU-medveten schemaläggning

Databricks Runtime 7.0 ML stöder GPU-medveten schemaläggning från Apache Spark 3.0. Azure Databricks konfigurerar den automatiskt åt dig. Se GPU-schemaläggning.

Större ändringar i ML Python-miljön

I det här avsnittet beskrivs de större ändringarna i den förinstallerade ML Python-miljön jämfört med Databricks Runtime 6.6 ML (stöds inte). Du bör också granska de större ändringarna i python-basmiljön i Databricks Runtime 7.0 (stöds inte). En fullständig lista över installerade Python-paket och deras versioner finns i Python-bibliotek.

Python-paket har uppgraderats

  • tensorflow 1.15.0 -> 2.2.0
  • tensorboard 1.15.0 -> 2.2.2
  • pytorch 1.4.0 -> 1.5.0
  • xgboost 0.90 -> 1.1.1
  • sparkdl 1.6.0-db1 -> 2.1.0-db1
  • hyperopt 0.2.2.db1 -> 0.2.4.db1

Python-paket har lagts till

  • lightgbm: 2.3.0
  • nltk: 3.4.5
  • petastorm: 0.9.2
  • plotly: 4.5.2

Python-paket har tagits bort

  • Argparse
  • boto (använd i boto3 stället)
  • Colorama
  • Deprecated
  • et-xmlfile
  • fusepy
  • html5lib
  • jdcal
  • keras (använd i tensorflow.keras stället)
  • keras-applications (använd tensorflow.keras.applications i stället)
  • llvmlite
  • Lxml
  • Näsa
  • nose-exclude
  • n nce
  • openpyxl
  • pathlib2
  • Ply
  • pymongo
  • singlepatich
  • tensorboardX (använd torch.utils.tensorboard i stället)
  • Virtualenv
  • webencodings

Större ändringar i ML R-miljön

Databricks Runtime 7.0 ML innehåller en oförändrad version av RStudio Server Open Source v1.2.5033 som källkoden finns i GitHub för. Läs mer om RStudio Server på Azure Databricks.

Ändringar i ML Spark-paket, Java- och Scala-bibliotek

Följande paket uppgraderas. Vissa har uppgraderats till SNAPSHOT versioner som är kompatibla med Apache Spark 3.0:

  • graphframes: 0.7.0-db1-spark2.4 -> 0.8.0-db2-spark3.0
  • spark-tensorflow-connector: 1.15.0 (Scala 2.11) -> 1.15.0 (Scala 2.12)
  • xgboost4j och xgboost4j-spark: 0,90 -> 1.0.0
  • mleap-databricks-runtime: 0.17.0-4882dc3 (SNAPSHOT)

Följande paket tas bort:

  • TensorFlow (Java)
  • TensorFrames
  • Deep Learning Pipelines för Apache Spark (HorovodRunner är tillgängligt i Python)

Conda- och pip-kommandon har lagts till för stöd för Python-bibliotek med notebook-omfång (offentlig förhandsversion)

Från och Databricks Runtime 7.0 ML kan du använda kommandona och för att hantera %pip %conda Python-bibliotek som är installerade i en notebook-session. Du kan också använda dessa kommandon för att skapa en anpassad miljö för en notebook-dator och för att återskapa den här miljön mellan notebook-datorer. Om du vill aktivera den här funktionen anger du Spark-konfigurationen i klusterinställningarna. spark.databricks.conda.condaMagic.enabled true Mer information finns i Python-bibliotek med notebook-omfång.

Utfasningar och funktioner som inte stöds

Databricks Runtime 7.0 ML stöder inte åtkomstkontroll för tabeller. Om du behöver åtkomstkontroll för tabeller rekommenderar vi att du använder Databricks Runtime 7.0.

Kända problem

  • Att skicka argumentet till för att logga en MLlib-modell i mleap-format misslyckas med ett AttributeError på grund av sample_input en ändring av mlflow.spark.log_model mleap-API:et. Uppgradera till MLflow 1.9.0 som en lösning. Du kan installera MLflow 1.9.0 med Python-bibliotek med notebook-omfång eller arbetsytebibliotek

Systemmiljö

Systemmiljön i Databricks Runtime 7.0 ML skiljer sig från Databricks Runtime 7.0 enligt följande:

Bibliotek

I följande avsnitt listas de bibliotek som ingår i Databricks Runtime 7.0 ML som skiljer sig från de som ingår i Databricks Runtime 7.0.

I det här avsnittet:

Bibliotek på toppnivå

Databricks Runtime 7.0 ML innehåller följande bibliotek på den översta nivån:

Python-bibliotek

Databricks Runtime 7.0 ML använder Conda för Python-pakethantering och innehåller många populära ML-paket. I följande avsnitt beskrivs Conda-miljön för Databricks Runtime 7.0 ML.

Python på CPU-kluster

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_1
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2020.1.1=0
  - cachetools=4.1.0=py_1
  - certifi=2020.4.5.1=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.3.0=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.8=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb2=2.0.6=py_0
  - gitpython=3.0.5=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jedi=0.14.1=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.9.4=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_0
  - ninja=1.9.0=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1g=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.5.2=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.5.2=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py37_0
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_0
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.5.0=py3.7_cpu_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_0
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.6.0=py37_cpu
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - databricks-cli==0.11.0
    - diskcache==4.1.0
    - docker==4.2.1
    - gorilla==0.3.0
    - horovod==0.19.1
    - hyperopt==0.2.4.db1
    - keras-preprocessing==1.1.2
    - mleap==0.16.0
    - mlflow==1.8.0
    - opt-einsum==3.2.1
    - petastorm==0.9.2
    - pyarrow==0.15.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - sparkdl==2.1.0-db1
    - tensorboard==2.2.2
    - tensorboard-plugin-wit==1.6.0.post3
    - tensorflow-cpu==2.2.0
    - tensorflow-estimator==2.2.0
    - termcolor==1.1.0
    - xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml

Python på GPU-kluster

name: databricks-ml-gpu
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_1
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2020.1.1=0
  - cachetools=4.1.0=py_1
  - certifi=2020.4.5.2=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.3.0=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.8=py37h1ba5d50_0
  - cudatoolkit=10.1.243=h6bb024c_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb2=2.0.6=py_0
  - gitpython=3.0.5=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jedi=0.14.1=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.9.4=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_0
  - ninja=1.9.0=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1g=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.5.2=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.5.2=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py37_0
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_0
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.5.0=py3.7_cuda10.1.243_cudnn7.6.3_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_0
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.6.0=py37_cu101
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - databricks-cli==0.11.0
    - diskcache==4.1.0
    - docker==4.2.1
    - gorilla==0.3.0
    - horovod==0.19.1
    - hyperopt==0.2.4.db1
    - keras-preprocessing==1.1.2
    - mleap==0.16.0
    - mlflow==1.8.0
    - opt-einsum==3.2.1
    - petastorm==0.9.2
    - pyarrow==0.15.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - sparkdl==2.1.0-db1
    - tensorboard==2.2.2
    - tensorboard-plugin-wit==1.6.0.post3
    - tensorflow-estimator==2.2.0
    - tensorflow-gpu==2.2.0
    - termcolor==1.1.0
    - xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu

Spark-paket som innehåller Python-moduler

Spark-paket Python-modul Version
graphframes graphframes 0.8.0-db2-spark3.0

R-bibliotek

R-biblioteken är identiska med R-biblioteken i Databricks Runtime 7.0 Beta.

Java- och Scala-bibliotek (Scala 2.12-kluster)

Förutom Java- och Scala-biblioteken i Databricks Runtime 7.0 innehåller Databricks Runtime 7.0 ML följande JAR:er:

Grupp-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.0.0
ml.dmlc xgboost4j_2.12 1.0.0
org.mlflow mlflow-client 1.8.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0