Träna avvikelseidentifieringsmodell

Träna en avvikelseidentifieringsmodell på en träningsuppsättning

Kategori: Machine Learning/träna

Anteckning

Gäller för: Machine Learning Studio (klassisk)

Det här innehållet gäller endast Studio (klassisk). Liknande dra-och släpp moduler har lagts till i Azure Machine Learning designer. Mer information i den här artikeln är att jämföra de två versionerna.

Modulöversikt

I den här artikeln beskrivs hur du använder modulen Träna avvikelseidentifieringsmodell i Azure Machine Learning för att skapa en tränad avvikelseidentifieringsmodell.

Modulen tar som indata en uppsättning modellparametrar för avvikelseidentifieringsmodellen, till exempel den som skapas av modulen One-Class Support Vector Machine och en omärkt datauppsättning. Den returnerar en tränad avvikelseidentifieringsmodell tillsammans med en uppsättning etiketter för träningsdata.

Mer information om algoritmerna för avvikelseidentifiering som finns i Azure Machine Learning finns i följande avsnitt:

Så här konfigurerar du Train Anomaly Detection Model (Träna avvikelseidentifieringsmodell)

  1. Lägg till modulen Train Anomaly Detection Model (Träna avvikelseidentifieringsmodell) i experimentet i Studio (klassisk). Du hittar modulen under Machine Learning i kategorin Träna.

  2. Anslut en av modulerna som är utformade för avvikelseidentifiering, till exempel PCA-baserad avvikelseidentifiering eller one-class support vector machine.

    Andra typer av modeller stöds inte. när du kör experimentet får du felet: Alla modeller måste ha samma typ av elever.

  3. Konfigurera modulen för avvikelseidentifiering genom att välja etikettkolumnen och ange andra parametrar som är specifika för algoritmen.

  4. Bifoga en träningsdatamängd till höger indata för Train Anomaly Detection Model (Träna avvikelseidentifieringsmodell).

  5. Kör experimentet.

Resultat

När träningen är klar:

  • Om du vill visa modellens parametrar högerklickar du på modulen och väljer Visualisera.

  • Om du vill skapa förutsägelser använder du Poängmodell med nya indata.

  • Om du vill spara en ögonblicksbild av den tränade modellen högerklickar du på utdata för tränad modell och väljer Spara som.

Exempel

Ett exempel på hur avvikelseidentifiering implementeras i Azure Machine Learning finns i Azure AI Gallery:

Förväntade indata

Namn Typ Description
Ej tränad modell ILearner-gränssnitt Ej tränad avvikelseidentifieringsmodell
Datamängd Datatabell Indatakälla

Utdata

Namn Typ Description
Tränad modell ILearner-gränssnitt Tränad avvikelseidentifieringsmodell

Undantag

Undantag Description
Fel 0003 Undantag inträffar om en eller flera indata är null eller tomma.

En lista över fel som är specifika för Studio-moduler (klassisk) finns i Machine Learning felkoder.

En lista över API-undantag finns i Machine Learning REST API felkoder.

Se även

Tåg
Avvikelseidentifiering