This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Using Existing
Stored Procedures for the Typed DataSet’s
TableAdapters

Introduction

In the preceding tutorial we saw how the Typed DataSet’s TableAdapters could be configured to use stored
procedures to access data rather than ad-hoc SQL statements. In particular, we examined how to have the
TableAdapter wizard automatically create these stored procedures. When porting a legacy application to ASP.NET
2.0 or when building an ASP.NET 2.0 website around an existing data model, chances are that the database already
contains the stored procedures we need. Alternatively, you may prefer to create your stored procedures by hand or
through some tool other than the TableAdapter wizard that auto-generates your stored procedures.

In this tutorial we will look at how to configure the TableAdapter to use existing stored procedures. Since the
Northwind database only has a small set of built-in stored procedures, we will also look at the steps needed to
manually add new stored procedures to the database through the Visual Studio environment. Let’s get started!

Note: In the Wrapping Database Modifications within a Transaction tutorial we added methods to the
TableAdapter to support transactions (BeginTransaction, CommitTransaction, and so on). Alternatively,
transactions can be managed entirely within a stored procedure, which requires no modifications to the Data
Access Layer code. In this tutorial we’ll explore the T-SQL commands used to execute a stored procedure’s
statements within the scope of a transaction.

Step 1: Adding Stored Procedures to the Northwind Database

Visual Studio makes it easy to add new stored procedures to a database. Let’s add a new stored procedure to the
Northwind database that returns all columns from the Products table for those that have a particular CategoryID
value. From the Server Explorer window, expand the Northwind database so that its folders - Database Diagrams,
Tables, Views, and so forth - are displayed. As we saw in the preceding tutorial, the Stored Procedures folder
contains the database’s existing stored procedures. To add a new stored procedure, simply right-click the Stored
Procedures folder and choose the Add New Stored Procedure option from the context menu.

1 of 20

P ASPNET Data_Tutorial_68_CS - Microsoft Visual Studio ==

Fi= Edit View Project Buld Debug Data Took Window Community Help Addins
I d d % S G y & [¥ ! 4 blog ElogsTableAdapter - &
T = YN
3~ dbo.StoredPr..NORTHWND MDF) - 3 | Server Explorer >3 %
= =1 | = 5
5 CREJ‘.I-'E FROCEDURE dbo.3toredfrocedurel - j -gj_ ‘E
:.E,, ll:. = |§f Data Connections A
' o : g = Ll MORTHWRHD, MOF
Upazemeteri it = S, # [Database Diagrams
fparameter? datatyps OUTPUT & [Tables
] # [Views
= . R adures
AS| { Add New Stored Procedure qlcacheroling
f* SET NOCOUNT ON v/ - [_SqiCacheuery
7] Ref .
RETURN —*j b | sqiCacheRegist
L:d Properties g:_‘jqicathd_rﬁtc_
) N] Asphet_SqiCachelpdat
@[] CustOrdertist
(L] CustOrdersDetai
% (] CustOrdersCrders
+ L] Emploves Sales by Cour
+- [] GetProducksByCategory e
il - s] . -]
P I ; F
L ¥ cSolu... |PeFrop... | S Serv... SR Clas.,
"o Ervor List| 5] Oukput |5 Find Results |
Resdy Ln g Caol 3 Ch3 NS

Figure 1: Right-Click the Stored Procedures Folder and Add a New Stored Procedure

As Figure 1 shows, selecting the Add New Stored Procedure option opens a script window in Visual Studio with
the outline of the SQL script needed to create the stored procedure. It is our job to flesh out this script and execute
it, at which point the stored procedure will be added to the database.

Enter the following script:

CREATE PROCEDURE dbo.Products SelectByCategoryID

(
@CategoryID int

)
AS

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Products

WHERE CategoryID = @CategoryID

This script, when executed, will add a new stored procedure to the Northwind database named
Products_SelectByCategoryID. This stored procedure accepts a single input parameter (¢CategoryID, of type
int) and it returns all of the fields for those products with a matching categoryID value.

To execute this CREATE PROCEDURE script and add the stored procedure to the database, click the Save icon in the

toolbar or hit Ctrl+S. After doing so, the Stored Procedures folder refreshes, showing the newly created stored

2 of 20

procedure. Also, the script in the window will change subtlety from “CREATE PROCEDURE

dbo.Products SelectProductByCategoryID” to “ALTER PROCEDURE
dbo.Products_SelectProductByCategoryID”. CREATE PROCEDURE adds a new stored procedure to the database,
while ALTER PROCEDURE updates an existing one. Since the start of the script has changed to ALTER PROCEDURE,
changing the stored procedures input parameters or SQL statements and clicking the Save icon will update the
stored procedure with these changes.

Figure 2 shows Visual Studio after the Products SelectByCategoryID stored procedure has been saved.

7% ASPHET _Data_Tutorkal_68_C5 - Micresofi Visual 51udio

B ERt Yew Pokc Bl Debug Dgte Ik Window Commmnky Heb fddes
@ - e & il & - Bl (% blog Plocnlsbinfdapter -

iE iF . al =
dbegProducts,. QR THWSDMOF) w 3 || Server Explorer -0
— i - - rE— | et
ALTER PROCEDURE fdbo.Produces_SelectByCategoryIl r [1 "; 'Q:!.
= Dt Connections: -
L MORTHWHD, MDF

:I¢ 3 [Datsbase Duagr amd
S i Tishing

BCacegoryIDl intc -

3
& [Wews
SELECT FroductlIl, ProductNome, Suppliecll, CacegorylD, = [Stored Brocedures
Cuant ityPecUnie, UpitPrice, UTnitslnSeock, Unitstndrder, 3 :‘ Jizphist_SogktmdrePolrgftoned
Feopderlevel, Discoptinusd [_: Aspiiet SopCacheCasnyRegte
FRON Produsts [Msphist_SqiCachefiegiterTabls
VHEEE CategorylID = @{nteuncqiq [_: Asphiat SqiCacdrelrRegsterTa

. ___'.'j Bsphiet_SoiCachelipdstechang
] CustCrderHist

] Cupt v der sDatd

o) CimstOrder s0rders

] Ermploysa Sabas by Courbry

o GetPraductsPaged

o GetProductsPagedindSonted

Fred
) Procucts SebedrrneCabegoryID
| Prisd PErr b AL

) Prosducts_ Uipdate

] Sk by imar

Lo SabaaBC abegory W

‘ 3 | Eshen. oo Bserer., B

Traen(s) Seaved L 11 Cd3 ChH S

Figure 2: The Stored Procedure Products_SelectByCategoryID Has Been Added to the Database

Step 2: Configuring the TableAdapter to Use an Existing Stored
Procedure

Now that the Products_selectByCategoryID stored procedure has been added to the database, we can concigure
our Data Access Layer to use this stored procedure when one of its methods is invoked. In particular, we will add a
GetProducstByCategoryID (categoryID) method to the ProductsTableAdapter in the NorthwindWithSprocs

Typed DataSet that calls the Products SelectByCategoryID stored procedure we just created.

Start by opening the NorthwindwithSprocs DataSet. Right-click on the ProductsTableAdapter and choose Add
Query to launch the TableAdapter Query Configuration wizard. In the preceding tutorial we opted to have the
TableAdapter create a new stored procedure for us. For this tutorial, however, we want to wire the new
TableAdapter method to the existing Products SelectByCategoryID stored procedure. Therefore, choose the
“Use existing stored procedure” option from the wizard’s first step and then click Next.

3 0f 20

TableAdapter Query Configuration Wizard

Choose a Command Type 4 :
TableAdapter query uses SOL statements or a stored procedure _iy

How should the Tablefdapter query access the database?
() Use SOL statements

Speciy a SELECT statement to load data.

(") Create new stored procedure

Specify a SELECT statement, and the wizard will generate a new stored procedure bo select records.
(%) Use existing stored procedure

Choose an existing stored procedure,

Figure 3: Choose the “Use existing stored procedure” Option

The following screen provides a drop-down list populated with the database’s stored procedures. Selecting a stored

procedure lists its input parameters on the left and the data fields returned (if any) on the right. Choose the
Products_SelectByCategoryID stored procedure from the list and click Next.

4 of 20

TableAdapter Query Configuration Wizard

Choose an existing stored procedure i |
Chonse which stored procedure the DataSource Funckion is supposed ba call. —| —Ii

Select the stored procedure ko call, Parameters and resuls for the selected stored procedure are shown below,

roduck CabegoryID

Parameters; Results:
Parameter Mames Result Columns
@iZategoryID ProductID
Productiane
SupplierID
CategorylD
QuantibyPerlnit
UnitPrice
UmitsInStack.
UnitsOrdrder
Reorderlevel
Discontinued

[< Previous |l_ﬂe><t:=- H Einish ” Cancel]

Figure 4: Pick the Products_SelectByCategoryID Stored Procedure

The next screen asks us what kind of data is returned by the stored procedure and our answer here determines the
type returned by the TableAdapter’s method. For example, if we indicate that tabular data is returned, the method
will return a ProductsDataTable instance populated with the records returned by the stored procedure. In contrast,
if we indicate that this stored procedure returns a single value the TableAdapter will return an object that is
assigned the value in the first column of the first record returned by the stored procedure.

Since the Products_SelectByCategoryID stored procedure returns all products that belong to a particular
category, choose the first answer - “Tabular data” - and click Next.

50f20

TableAdapter Query Configuration Wizard

Choose the shape of data returned by the stored procedure 2 | i

Chonse if the stored procedure returns rows, a single value, or nothing. '

withat should the typed method For this stored procedure return?

[@%Iabdar daka - Fil /Get methods will be generated ko return kabular data From the stored procedure, |

(" A single value - & typed Function will be generated which retums a single valus from the stored procedure.,

(7 Mo value - & typed method will be generated to execute a stored procedure which doesn't return data,

| <previous || mext> | Fmish | [Concel |

Figure 5: Indicate that the Stored Procedure Returns Tabular Data

All that remains is to indicate what method patterns to use followed by the names for these methods. Leave both
the “Fill a DataTable” and “Return a DataTable” options checked, but rename the methods to Fi11ByCategoryID

and GetProductsByCategoryID. Then click Next to review a summary of the tasks the wizard will perform. If
everything looks correct, click Finish.

6 of 20

TableAdapter Query Configuration Wizard

Choose Methods to Generate i
&3 |

The TableAdapter methods bad and save data between your application and the
database.

¥hich methods do you want to add to the TableAdapter?
Fill a DataTable

Creakes a method that takes a DataTable or DataSet as a parameter and executes the SOL stakement or
SELECT stored procedure entered an the previous page.

Method name: |FillEyCategorylD

Return a DataTable

Creates a method that returns a new DataTable Filled wikh the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetProductsByCategorylD)|

[<= Previous “__Eext:b H Finish ” Zance W

Figure 6: Name the Methods FillByCategoryID and GetProductsByCategoryID

Note: The TableAdapter methods we just created, FillByCategoryID and GetProductsByCategoryID,
expect an input parameter of type int. This input parameter value is passed into the stored procedure via its
@categoryID parameter. If you modify the Products SelectByCategory stored procedure’s parameters,
you’ll need to also update the parameters for these TableAdapter methods. As discussed in the previous
tutorial, this can be done in one of two ways: by manually adding or removing parameters from the
parameters collection or by rerunning the TableAdapter wizard.

Step 3: Adding a GetProductsByCategoryID (categoryID) Method to the
BLL

With the GetProductsByCategoryID DAL method complete, the next step is to provide access to this method in
the Business Logic Layer. Open the ProductsBLLWithSprocs class file and add the following method:

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, false)]
public NorthwindWithSprocs.ProductsDataTable GetProductByCategoryID(int categoryID)

{
return Adapter.GetProductsByCategoryID(categoryID);

This BLL method simply returns the ProductsDataTable returned from the ProductsTableAdapter’s
GetProductsByCategoryID method. The DataObjectMethodAttribute attribute provides metadata used by the
ObjectDataSource’s Configure Data Source wizard. In particular, this method will appear in the SELECT tab’s

7 of 20

drop-down list.

Step 4: Displaying Products by Category

To test the newly added Products SelectByCategoryID stored procedure and the corresponding DAL and BLL
methods, let’s create an ASP.NET page that contains a DropDownList and a GridView. The DropDownList will
list all of the categories in the database while the GridView will display the products belonging to the selected
category.

Note: We’ve created master/detail interfaces using DropDownLists in previous tutorials. For a more in-depth
look at implementing such a master/detail report, refer to the Master/Detail Filtering With a DropDownList
tutorial.

Open the ExistingSprocs.aspx page in the AdvancedDAL folder and drag a DropDownlList from the Toolbox
onto the Designer. Set the DropDownList’s ID property to Categories and its AutoPostBack property to true.
Next, from its smart tag, bind the DropDownList to a new ObjectDataSource named CategoriesDataSource.
Configure the ObjectDataSource so that it retrieves its data from the CategoriesBLL class’s GetCategories
method. Set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)”.

Configure Data Source - CategoriesDataSource

j Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daka bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a Dataset,

Choose a method:
| GetCategories(), retums CategoriesDataTable W

GebCateqories(), reburns CategoriesDataTable

Geb”stegoriesAndiumberOFProducts(), returns CategoriesDiataT asble
GetCstegoryByCategory ID(INE3Z categoryID), returns CategoriesDataTable
GebCstegoryWithBinaryDataByCategoryIINE32 cakegoryID), returns CategoriesDatal able

o> |) (et]

Figure 7: Retrieve Data from the categoriesBLL Class’s GetCategories Method

8 0f 20

Configure Data Source - CategoriesDataSource

J Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

[
Chaose & methad of the business objeck to associate wikh the DELETE operation, The methad should

accept a parameter For each primary key for the data object or a sngle parameter which is the data
ohject to delete

Examplas: DeleteProduck(Product p), or DeleteProduct{Int32 produckID)

Chaonse a method:

| {Mone) W

DeleteCategory(Ink 32 categoryID), returns Boolean

ek [Finish J[Cancel

|

Figure 8: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE Tabs to “(None)”

After completing the ObjectDataSource wizard, configure the DropDownList to display the CategoryName data

field and to use the categoryID field as the value for each ListItem.

At this point, the DropDownList and ObjectDataSource’s declarative markup should similar to the following:

<asp:DropDownList ID="Categories" runat="server" AutoPostBack="True"
DataSourcelID="CategoriesDataSource" DataTextField="CategoryName"

DataValueField="CategoryID">
</asp:DropDownList>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

Next, drag a GridView onto the Designer, placing it beneath the DropDownList. Set the GridView’s 1D to
ProductsByCategory and, from its smart tag, bind it to a new ObjectDataSource named
ProductsByCategoryDataSource. Configure the ProductsByCategoryDataSource ObjectDataSource to use the
ProductsBLLWithSprocs class, having it retrieve its data using the GetProductsByCategoryID (categoryID)
method. Since this GridView will only be used to display data, set the drop-down lists in the UPDATE, INSERT,

and DELETE tabs to “(None)” and click Next.

9 of 20

Configure Data Source - ProductsByCategoryDataSource E”E| @JE

Choose a Business Object
L

Select a business object that can be wused ko retriewe or update data (for example, an object defined in the Bin
or App_Code directory for this application).

Chonse your business objact:
ProductsBLLWithSpracs > Show only data components

Morthavind T ableadapters. SuppliersTablaadapter P
MorthwindWithSprocsTableAdapters . ProductsTableAdapter I
ProducksELL

PraducksBLL\WikhSoracs

ProductsCL

ProducksOptimisticConcurrencyBLL

StaticCacha

SuppliersBLL e

g

Cancel

Figure 9: Configure the ObjectDataSource to Use the ProductsBLLWithSprocs Class

10 of 20

Configure Data Source - ProductsByCategoryDataSource @@ Ej@

Define Data Methods

SELECT |UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that rekurns daka bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Choose a method:

EGﬂtPrcrductsByCategmyID{Inﬁz productID), retums Proc

GetProduckEyProductID{Int 32 categoryID), returns ProducksDakaTable
GetProductst), returns ProductsDataTable

[eoses [mee> JI[o

Figure 10: Retrieve Data from the GetProductsByCategoryID (categoryID) Method

The method chosen in the SELECT tab expects a parameter, so the final step of the wizard prompts us for the
parameter’s source. Set the Parameter source drop-down list to Control and choose the categories control from
the ControlID drop-down list. Click Finish to complete the wizard.

11 0f20

Configure Data Source - ProductsByCategoryDataSource @@| E]g|

| Define Parameters

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
reethod, choose & source For the parameter's valoe,

Parameters: Parameter source:
Hlams Yahle | Control w
cakeqorylD Categqovies.Selectedyalus ControlID:
!Cataq-:ries s i

Defaultyalue:
i 1

Show advanced properkies

Method signature:
I zekProducksBy CategoryID(Int 32 categaoryID), returns ProducksDataTable

vi> | (o] (e]

Figure 11: Use the categories DropDownList as the Source of the categoryID Parameter
Upon completing the ObjectDataSource wizard, Visual Studio will add BoundFields and a CheckBoxField for each
of the product data fields. Feel free to customize these fields as you see fit.

Visit the page through a browser. When visiting the page the Beverages category is selected and the corresponding
products listed in the grid. Changing the drop-down list to an alternative category, as Figure 12 shows, causes a
postback and reloads the grid with the products of the newly selected category.

12 of 20

A Untitled Page - Microsaft Internet Explarer E:El E|E|E|
Bl Ed Wy Favorites Tools Help]
L Bk =) o [fa O seach Favorites Ie @ = & Eﬁ

fess @Y hitp:[focaihost: 3T00/ASPNET_Data_Tuboeial 68 _C5[AdvarcedDaL ExistingSpeocs. S LAl = R

Ll

Working with Data Tutorials ~ #eme>advanced DaL scenarios > Using

Existing Stored Procedures for TableAdapters

Using Existing Stored Procedures

Category! FIfI:IL‘AIIJI:E L
ProductTDProductiName| Supplierl D|Category 1D QuantityPerUnit Linity
Dedarative Uncle Bob's
Farameters 7 Organic Dried 3 7 12 - 1lbpkgs. 3000
Settirig Parameter i
walles 14 Tafu g 7 40 - 100 g pkgs. 23.2
Filtaring Raports 28 Al B 7 25 - 925 g cans 45.61
Fiftar by Drop-Down Manjimup =
Lisk 51 Dried Apples) 7 50 - 300 g pkgs. S3.00
4 S ka pka. 10.0
Master-Detas- 74 Langlife Tafu 7 E ka pkg 000
Details
Macbar iatal Amencs it
< »
& Corm el Local intranet

Figure 12: The Products in the Produce Category are Displayed

Step 5: Wrapping a Stored Procedure’s Statements Within the Scope of
a Transaction

In the Wrapping Database Modifications within a Transaction tutorial we discussed techniques for performing a
series of database modification statements within the scope of a transaction. Recall that the modifications
performed under the umbrella of a transaction either all succeed or all fail, guaranteeing atomicity. Techniques for
using transactions include:

e Using the classes in the System. Transactions namespace,
e Having the Data Access Layer use ADO.NET classes like sqlTransaction, and
¢ Adding the T-SQL transaction commands directly within the stored procedure

The Wrapping Database Modifications within a Transaction tutorial used the ADO.NET classes in the DAL. The
remainder of this tutorial examines how to manage a transaction using T-SQL commands from within a stored
procedure.

The three key SQL commands for manually starting, committing, and rolling back a transaction are BEGIN
TRANSACTION, COMMIT TRANSACTION, and ROLLBACK TRANSACTION, respectively. Like with the ADO.NET
approach, when using transactions from within a stored procedure we need to apply the following pattern:

1. Indicate the start of a transaction.

2. Execute the SQL statements that comprise the transaction.

3. [If'there is an error in any one of the statements from Step 2, rollback the transaction
4. 1If all of the statements from Step 2 complete without error, commit the transaction.

This pattern can be implemented in T-SQL syntax using the following template:

13 of 20

BEGIN TRY
BEGIN TRANSACTION -- Start the transaction

Perform the SQL statements that makeup the transaction ...

-— If we reach here, success!
COMMIT TRANSACTION

END TRY

BEGIN CATCH
-—- Whoops, there was an error
ROLLBACK TRANSACTION

-- Raise an error with the

-- details of the exception

DECLARE @ErrMsg nvarchar (4000),
@ErrSeverity int

SELECT @ErrMsg = ERROR MESSAGE (),
@ErrSeverity = ERROR SEVERITY ()

RAISERROR (@ErrMsg, (@ErrSeverity, 1)
END CATCH

The template starts by defining a TRY. . . CATCH block, a construct new to SQL Server 2005. Like with
try...catch blocks in C#, the SQL TRY. . .caTcH block executes the statements in the TRY block. If any statement
raises an error, control is immediately transferred to the caTcu block.

If there are no errors executing the SQL statements that makeup the transaction, the COMMIT TRANSACTION
statement commits the changes and completes the transaction. If, however, one of the statements results in an error,
the ROLLBACK TRANSACTION in the CATCH block returns the database to its state prior to the start of the transaction.
The stored procedure also raises an error using the RAISERROR command, which causes a SqlException to be
raised in the application.

Note: Since the TRY. . .CATCH block is new to SQL Server 2005, the above template will not work if you are
using older versions of Microsoft SQL Server. If you are not using SQL Server 2005, consult Managing
Transactions in SQL Server Stored Procedures for a template that will work with other versions of SQL
Server.

Let’s look at a concrete example. A foreign key constraint exists between the Categories and Products tables,
meaning that each CategoryID field in the Products table must map to a CategoryID value in the Categories
table. Any action that would violate this constraint, such as attempting to delete a category that has associated
products, results in a foreign key constraint violation. To verify this, revisit the Updating and Deleting Existing
Binary Data example in the Working with Binary Data section (~/BinaryData/UpdatingAndDeleting.aspx).
This page lists each category in the system along with Edit and Delete buttons (see Figure 13), but if you attempt to
delete a category that has associated products - such as Beverages - the delete fails due to a foreign key constraint
violation (see Figure 14).

14 of 20

} Lintithed Pago - Micromal® Intornet Explorer

e Edt Vew Favortes Took Wep
Qess = & » (8 [F 0 F sawch Faviries @0 (0= b] v [S0 W
Agcait i!_']Mp:.'.ru-cm:arcq_u.sm1pmjmnru_sa_:s:wq-wm.ghm.q.um ko ﬂﬁh
i i i Home > Working with Binary Data > Updating and Deleting
Warking vls Bt Tuionels: Sl et e iiao
Add a Category with a Picture and
Brochure
Category
Browesa
Brovaia.
Category | Description
Soft drinks, ATk
Edit Crelete Beverages coffess, teas, é‘f_,‘uu
besrs, and ales e
Ewesl and savory
sauces, relishes, \iew
Edif Dsfsts Condiments spreads, and Brodhirs
SEanOnNm
Custom Content in-a L
Gridulew
Cirstom Contant in a
Detalls\hew O ~
&) % Local inkranst

Figure 13: Each Category is Displayed in a GridView with Edit and Delete Buttons

15 of 20

3 The DELETE statement conflicted with the REFERENCE constraint “FK_Products_Categories”. The cof® f13| (= |[E][]

Bls Edb Wew Favokes Tools Help
Qesck - O - @ @ 0 Oseach FrFmvodes £ - B W] - & w0
b Gn

-~

Agddress ‘ﬂ bt e alost: 300 ASPHET_[aba_Tutowisl 65 _CS BineryDut afUpdstingdndDebeting, spo

Server Error in '/ASPNET_Data_Tutorial_68_CS' Application.

The DELETE statement conflicted with the REFERENCE constraint
"FK_Products_Categories'. The conflick occurred in database
"F637BDEID3373721895EC792206EB194 LINE
ARTICLES\DATATUTORIALS\VOLUME 3\CSHARP\G68

\ASPNET _DATA TUTORIAL_ 68 _CS\APP_DATA\NORTHWND,MDF", table
"dbo.Products”, column '‘CategoryID’.

The statement has been terminated.

Dascription: Anunbandsd sxceplion ocurred durng th ececition of the climent whib reqlass] Phkass reveits Thd Slech trace Tor mons
inlormation aboad The error snd winers § originabed in the cods

Exception Details: System Data SoCient SgException: The DELETE siatement confBcted wilh the REFERENCE convetraint
FH_Prochicts_ Cabapories”. The coniich ocourmed i databass "TEITBDETDI373T M SRSECTIC20EEDT 84 _LIME ARTICLES\DATATUTORLAL SWLLIME
ICSHARMESATPHET DATA_TUTORIAL ES CSWPP DATAMORTHAMD MDF®, tabls “dho Products”, cokemn '‘Calegordl’

Thee 2iabeanesnd as beer et ed.
-

¢
% | ocal intraret

] Done

Figure 14: You Cannot Delete a Category that has Existing Products

Imagine, though, that we want to allow categories to be deleted regardless of whether they have associated
products. Should a category with products be deleted, imagine that we want to also delete its existing products
(although another option would be to simply set its products’ CategoryID values to NULL). This functionality could
be implemented through the cascade rules of the foreign key constraint. Alternatively, we could create a stored
procedure that accepts a @CategoryID input parameter and, when invoked, explicitly deletes all of the associated

products and then the specified category.
Our first attempt at such a stored procedure might look like the following:

CREATE PROCEDURE dbo.Categories Delete

(
@CategoryID int

)
AS

-- First, delete the associated products...
DELETE FROM Products
WHERE CategoryID = @CategoryID

-—- Now delete the category
DELETE FROM Categories
WHERE CategoryID = @CategoryID

While this will definitely delete the associated products and category, it does not do so under the umbrella of a
transaction. Imagine that there is some other foreign key constraint on Categories that would prohibit the deletion
of a particular @categoryID value. The problem is that in such a case all of the products will be deleted before we
attempt to delete the category. The net result is that for such a category, this stored procedure would remove all of

16 of 20

its products while the category remained since it still has related records in some other table.

If the stored procedure were wrapped within the scope of a transaction, however, the deletes to the Products table
would be rolled back in the face of a failed delete on Categories. The following stored procedure script uses a
transaction to assure atomicity between the two DELETE statements:

CREATE PROCEDURE dbo.Categories Delete

(
@CategoryID int

)
AS

BEGIN TRY
BEGIN TRANSACTION -- Start the transaction

-- First, delete the associated products...
DELETE FROM Products
WHERE CategoryID = @CategoryID

-—- Now delete the category
DELETE FROM Categories
WHERE CategoryID = @CategoryID

-— If we reach here, success!
COMMIT TRANSACTION

END TRY

BEGIN CATCH
-—- Whoops, there was an error
ROLLBACK TRANSACTION

-- Raise an error with the

-- details of the exception

DECLARE @ErrMsg nvarchar (4000),
@ErrSeverity int

SELECT @ErrMsg = ERROR MESSAGE (),
@ErrSeverity = ERROR SEVERITY ()

RAISERROR (@ErrMsg, @ErrSeverity, 1)
END CATCH

Take a moment to add the Categories_Delete stored procedure to the Northwind database. Refer back to Step 1
for instructions on adding stored procedures to a database.

Step 6: Updating the categoriesTableAdapter

While we’ve added the Categories_bDelete stored procedure to the database, the DAL is currently configured to
use ad-hoc SQL statements to perform the delete. We need to update the CategoriesTableadapter and instruct it
to use the Categories Delete stored procedure instead.

Note: Earlier in this tutorial we were working with the NorthwindwithSprocs DataSet. But that DataSet

only has a single entity, ProductsbataTable, and we need to work with categories. Therefore, for the
remainder of this tutorial when I talk about the Data Access Layer I’m referring to the Northwind DataSet,

17 of 20

the one that we first created in the Creating a Data Access Layer tutorial.

Open the Northwind DataSet, select the CategoriesTableAdapter, and go to the Properties window. The
Properties window lists the InsertCommand, UpdateCommand, DeleteCommand, and SelectCommand used by the
TableAdapter, as well as its name and connection information. Expand the DeleteCommand property to see its
details. As Figure 15 shows, the DeleteCommand’s ComamndType property is set to Text, which instructs it to send
the text in the CommandText property as an ad-hoc SQL query.

Properkies
CategoriesTableAdapter Tableadapter -
e ﬂ =

BaseClass System. ComponentModel, Component
Conneckion NORTHWNDConnectionString {(Web.

ConneckionModifier Assembly
(DeleteCommand) »

CommandText DELETE FROM [Categories] WHERE
CommandType Text
Parameters {Collection)
GenerateDEDIrectMethods True
InsertCommand {InsertCommand}
Madifier Autolayaut, AnsiClass, Class, Public
Marme CateqgoriesTableAdapter
SelectCommand {SelectCommand)
IUpdateCommand {UpdateCommand)

DeleteCommand
S0L command used to delete rows

L:‘_?SD'UHDI’I Explorer | #8AProperties |58 Server Explorer '_f'%CIass Wi

Figure 15: Select the categoriesTableAdapter in the Designer to View Its Properties in the Properties
Window

To change these settings, select the “(DeleteCommand)” text in the Properties window and choose “(New)” from
the drop-down list. This will clear out the settings for the CommandText, CommandType, and Parameters properties.
Next, set the CommandType property to StoredProcedure and then type in the name of the stored procedure for the
CommandText (dbo.Categories Delete). If you make sure to enter the properties in this order - first the
CommandType and then the CommandText - Visual Studio will automatically populate the Parameters collection. If
you do not enter these properties in this order, you will have to manually add the parameters through the
Parameters Collection Editor. In either case, it’s prudent to click on the ellipses in the Parameters property to bring
up the Parameters Collection Editor to verify that the correct parameter settings changes have been made (see
Figure 16). If you do not see any parameters in the dialog box, add the @CategoryID parameter manually (you do
not need to add the GRETURN VALUE parameter).

18 of 20

Parameters Collection Editor

Members: @i_ategoryID properties:

| 0| @RETURN_YALLE | . 4
e ——

(] [5]

B Data
AllowDbrull True
ColumnMame
DbTvpe Int32
Direction Input
Precision 10
ProviderType Int
Scale n
Size 4
Sourceolumn
Sourceolumniul False
SourceWersion Zurrent

B Misc

&dd] [Remove ParameterMame @CategoryID

[Ok l [Zancel

Figure 16: Ensure That the Parameters Settings are Correct

Once the DAL has been updated, deleting a category will automatically delete all of its associated products and do
so under the umbrella of a transaction. To verify this, return to the Updating and Deleting Existing Binary Data
page and click the Delete button for one of the categories. With one single click of the mouse, the category and all
of its associated products will be deleted.

Note: Before testing the Categories Delete stored procedure, which will delete a number of products
along with the selected category, it might be prudent to make a backup copy of your database. If you are
using the NORTHWND . MDF database in App_Data, simply close Visual Studio and copy the MDF and LDF files
in App_Data to some other folder. After testing the functionality, you can “restore” the database by closing
Visual Studio and replacing the current MDF and LDF files in App_Data with the backup copies.

Summary

While the TableAdapter’s wizard will automatically generate stored procedures for us, there are times when we
might already have such stored procedures created or want to create them manually or with other tools instead. To
accommodate such scenarios, the TableAdapter can also be configured to point to an existing stored procedure. In
this tutorial we looked at how to manually add stored procedures to a database through the Visual Studio
environment and how to wire the TableAdapter’s methods to these stored procedures. We also examined the T-
SQL commands and script pattern used for starting, committing, and rolling back transactions from within a stored
procedure.

Happy Programming!

About the Author

19 of 20

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Hilton
Geisenow, Seren Jacob Lauritsen, and Teresa Murphy. Interested in reviewing my upcoming MSDN articles? If so,
drop me a line at mitchell@4GuysFromRolla.com.

20 of 20

