This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Caching Data
in the Architecture

Introduction

As we saw in the preceding tutorial, caching the ObjectDataSource’s data is as simple as setting a couple of
properties. Unfortunately, the ObjectDataSource applies caching at the Presentation Layer, which tightly couples
the caching policies with the ASP.NET page. One of the reasons for creating a layered architecture is to allow such
couplings to be broken. The Business Logic Layer, for instance, decouples the business logic from the ASP.NET
pages, while the Data Access Layer decouples the data access details. This decoupling of business logic and data
access details is preferred, in part, because it makes the system more readable, more maintainable, and more
flexible to change. It also allows for domain knowledge and division of labor — a developer working on the
Presentation Layer doesn’t need to be familiar with the database’s details in order to do her job. Decoupling the
caching policy from the Presentation Layer offers similar benefits.

In this tutorial we will augment our architecture to include a Caching Layer (or CL for short) that employs our
caching policy. The Caching Layer will include a ProductscL class that provides access to product information
with methods like GetProducts (), GetProductsByCategoryID (categoryID), and so forth, that, when invoked,
will first attempt to retrieve the data from the cache. If the cache is empty, these methods will invoke the
appropriate ProductsBLL method in the BLL, which would in turn get the data from the DAL. The ProductsCL
methods cache the data retrieved from the BLL before returning it.

As Figure 1 shows, the CL resides between the Presentation and Business Logic Layers.

1 of 13

Presentation Layer
(ASP.NET Pages)

Caching Layer

k
% EYEE
Products

CL

[Eusinnss Logic Laynrj

[Data Access Layer J

gg- =3
Emm———

Figure 1: The Caching Layer (CL) is Another Layer in Our Architecture

Step 1: Creating the Caching Layer Classes

In this tutorial we will create a very simple CL with a single class — ProductsCL — that has only a handful of
methods. Building a complete Caching Layer for the entire application would require creating CategoriescCL,
EmployeesCL, and SuppliersCL classes, and providing a method in these Caching Layer classes for each data
access or modification method in the BLL. As with the BLL and DAL, the Caching Layer should ideally be
implemented as a separate Class Library project; however, we will implement it as a class in the App_Code folder.

To more cleanly separate the CL classes from the DAL and BLL classes, let’s create a new subfolder in the

App_Code folder. Right-click on the App_Code folder in the Solution Explorer, choose New Folder, and name the
new folder cL. After creating this folder, add to it a new class named ProductsCL. vb.

20f 13

'uun::-::|:|I|:|rer'-'IZZ:'I,...'l,ﬂSF'r'-JET_IZZI... - 1 X

=) .ﬂ 5 03

> C:'...\ ASPNET_Data_Tutorial_59_VYB",

= L= App_Code
- CF BLL
B & CL
2] ProductsCL.vb
- C3 DAL
_1 App_Data

& App_Themes

|__1 BasicR.eporting

| BinaryData

[Brochures

[Caching

| CustomButkons

| CustomButtonsDatalistRepeater
| CustomFormatking

| DatalistRepeaterBasics
[DatalistRepeaterFiltering
[EditDeleteDatalisk

[EditInsertDelete

[EnhancedGridview

[Filtering

[PagingAndSorting

| PagingSortingCratalistRepeaker
[5qiDataSource

[UserZontrols

j Default, aspx

j Sike. master

Jﬂ Skyles,css

_:. Web. Config

ﬂ Web, sitemap

cysolut... [F&prop.., |SmSery.., |BClas .,

Figure 2: Add a New Folder Named cL and a Class Named ProductsCL.vb

The productscL class should include the same set of data access and modification methods as found in its
corresponding Business Logic Layer class (ProductsBLL). Rather than creating all of these methods, let’s just
build a couple here to get a feel for the patterns used by the CL. In particular, we’ll add the GetProducts () and
GetProductsByCategoryID (categoryID) methods in Step 3 and an UpdateProduct overload in Step 4. You can
add the remaining ProductsCL methods and CategoriesCL, EmployeesCL, and SuppliersCL classes at your
leisure.

Step 2: Reading and Writing to the Data Cache

The ObjectDataSource caching feature explored in the preceding tutorial internally uses the ASP.NET data cache
to store the data retrieved from the BLL. The data cache can also be accessed programmatically from ASP.NET
pages’ code-behind classes or from the classes in the web application’s architecture. To read and write to the data
cache from an ASP.NET page’s code-behind class, use the following pattern:

' Read from the cache

30f 13

Dim value as Object = Cache ("key")

' Add a new item to the cache

Cache ("key") = value

Cache.Insert (key, value)

Cache.Insert (key, value, CacheDependency)

Cache.Insert (key, value, CacheDependency, DateTime, TimeSpan)

The cache class’s Insert method has a number of overloads. Cache ("key") = value and Cache.Insert (key,
value) are synonymous and both add an item to the cache using the specified key without a defined expiry.
Typically, we want to specify an expiry when adding an item to the cache, either as a dependency, a time-based
expiry, or both. Use one of the other Insert method’s overloads to provide dependency- or time-based expiry
information.

The Caching Layer’s methods need to first check if the requested data is in the cache and, if so, return it from there.
If the requested data is not in the cache, the appropriate BLL method needs to be invoked. Its return value should
be cached and then returned, as the following sequence diagram illustrates.

ObjectDataSource
or Caching Layer
Code-Behind Class
' Select ' '
i " |
| i | |
[|
[|
Results |
L,r___f____ Data in |
I Yes Cache? |
[|
[|
[i |
I = |
[o |
[|
: Invoke Appropriate :
| BLL Method |
I I *|
[| Results |
[e e — I
[| |
[|
[Store |
I Reasults in
[Cache :
|
[Results |
|
|
|
|

Figure 3: The Caching Layer’s Methods Return Data from the Cache if it’s Available

The sequence depicted in Figure 3 is accomplished in the CL classes using the following pattern:

Dim instance As Type = TryCast (Cache ("key"), Type)
If instance Is Nothing Then
instance = BllMethodToGetInstance ()
Cache.Insert (key, instance, ...)

4 of 13

End If

Return instance

Here, Type is the type of data being stored in the cache — Northwind.ProductsDataTable, for example — while
key is the key that uniquely identifies the cache item. If the item with the specified key is not in the cache, then
instance will be Nothing and the data will be retrieved from the appropriate BLL method and added to the cache.
By the time Return instance is reached, instance contains a reference to the data, either from the cache or pulled
from the BLL.

Be sure to use the above pattern when accessing data from the cache. The following pattern, which, at first glance,
looks equivalent, contains a subtle difference that introduces a race condition. Race conditions are difficult to
debug because they reveal themselves sporadically and are difficult to reproduce.

If Cache("key") Is Nothing Then
Cache.Insert (key, BllMethodToGetInstance(), ...)
End If

Return Cache ("key")

The difference in this second, incorrect code snippet is that rather than storing a reference to the cached item in a
local variable, the data cache is accessed directly in the conditional statement and in the Return. Imagine that
when this code is reached, Cache ("key") is not Nothing, but before the Return statement is reached, the system
evicts key from the cache. In this rare case, the code will return Nothing rather than an object of the expected type.
For an anecdote on how using the incorrect caching pattern can lead to sporadic unexpected behavior, see this blog
entry by Scott Cate.

Note: The data cache is thread-safe, so you don’t need to synchronize thread access for simple reads or
writes. However, if you need to perform multiple operations on data in the cache that need to be atomic, you
are responsible for implementing a lock or some other mechanism to ensure thread safety. See Synchronizing
Access to the ASP.NET Cache for more information.

An item can be programmatically evicted from the data cache using the Remove method like so:

Cache.Remove (key)

Step 3: Returning Product Information from the productscr Class

For this tutorial let’s implement two methods for returning product information from the ProductscCL class:
GetProducts () and GetProductsByCategoryID (categoryID). Like with the ProductsBL class in the Business
Logic Layer, the GetProducts () method in the CL returns information about all of the products as a
Northwind.ProductsDataTable(ﬂﬁeCL\VhﬂeGetProductsByCategoryID(categoryID)reuﬂnsaﬂ(ﬂWhe
products from a specified category.

The following code shows a portion of the methods in the ProductscCL class:

<System.ComponentModel.DataObject ()>
Public Class ProductsCL
Private productsAPI As ProductsBLL = Nothing
Protected ReadOnly Property API() As ProductsBLL
Get
If productsAPI Is Nothing Then
_productsAPI = New ProductsBLL ()

50f13

End If

Return productsAPI
End Get
End Property

<System.ComponentModel.DataObjectMethodAttribute

(DataObjectMethodType.Select, True)>

Public Function GetProducts () As Northwind.ProductsDataTable
Const rawKey As String = "Products"

' See i1f the item is in the cache
Dim products As Northwind.ProductsDataTable = _
TryCast (GetCachelItem(rawKey), Northwind.ProductsDataTable)
If products Is Nothing Then
' Ttem not found in cache - retrieve it and insert it into the cache
products = API.GetProducts ()
AddCachelItem(rawKey, products)
End If

Return products
End Function

<System.ComponentModel.DataObjectMethodAttribute
(DataObjectMethodType.Select, False)>
Public Function GetProductsByCategoryID(ByVal categoryID As Integer)
As Northwind.ProductsDataTable
If (categoryID < 0) Then
Return GetProducts|()
Else
Dim rawKey As String = String.Concat ("ProductsByCategory-", categorylD)

' See 1f the item is in the cache

Dim products As Northwind.ProductsDataTable = _
TryCast (GetCacheItem(rawKey), Northwind.ProductsDataTable)

If products Is Nothing Then
' Ttem not found in cache - retrieve it and insert it into the cache
products = API.GetProductsByCategoryID(categoryID)
AddCachelItem(rawKey, products)

End If

Return products
End If
End Function
End Class

First, note the Dataobject and DataObjectMethodAttribute attributes applied to the class and methods. These
attributes provide information to the ObjectDataSource’s wizard, indicating what classes and methods should
appear in the wizard’s steps. Since the CL classes and methods will be accessed from an ObjectDataSource in the
Presentation Layer, I added these attributes to enhance the design-time experience. Refer back to the Creating a
Business Logic Layer tutorial for a more thorough description on these attributes and their effects.

In the GetProducts () and GetProductsByCategoryID (categoryID) methods, the data returned from the
GetCacheItem (key) method is assigned to a local variable. The GetCacheItem (key) method, which we’ll
examine shortly, returns a particular item from the cache based on the specified key. If no such data is found in
cache, it is retrieved from the corresponding ProductsBLL class method and then added to the cache using the

6 of 13

AddCacheTltem (key, value) method.

The GetCacheItem(key) and AddCacheItem(key, value) methods interface with the data cache, reading and
writing values, respectively. The GetCacheItem (key) method is the simpler of the two. It simply returns the value
from the Cache class using the passed-in key:

Private Function GetCacheItem(ByVal rawKey As String) As Object
Return HttpRuntime.Cache (GetCacheKey (rawKey))
End Function

Private ReadOnly MasterCacheKeyArray() As String = {"ProductsCache"}

Private Function GetCacheKey (ByVal cacheKey As String) As String
Return String.Concat (MasterCacheKeyArray(0), "-", cacheKey)

End Function

GetCacheItem (key) does not use key value as supplied, but instead calls the GetCacheKey (key) method, which
returns the key prepended with “ProductsCache-". The MasterCacheKeyArray, which holds the string
“ProductsCache”, is also used by the AddCacheItem (key, value) method, as we’ll see momentarily.

From an ASP.NET page’s code-behind class, the data cache can be accessed using the pPage class’s Cache
property, and allows for syntax like Cache ("key") = value, as discussed in Step 2. From a class within the
architecture, the data cache can be accessed using either Ht tpRuntime.Cache Or HttpContext.Current.Cache.
Peter Johnson’s blog entry HttpRuntime.Cache vs. HttpContext.Current.Cache notes the slight performance
advantage in using HttpRuntime instead of HttpContext.Current; consequently, ProductsCL uses
HttpRuntime,

Note: If your architecture is implemented using Class Library projects then you will need to add a reference
to the System.Web assembly in order to use the HttpRuntime and HttpContext classes.

If the item is not found in the cache, the ProductscCL class’s methods get the data from the BLL and add it to the
cache using the AddCacheItem (key, value) method. To add value to the cache we could use the following code,
which uses a 60 second time expiry:

Const CacheDuration As Double = 60.0

Private Sub AddCachelItem(ByVal rawKey As String, ByVal value As Object)
DataCache.Insert (GetCacheKey(rawKey), value, Nothing,
DateTime.Now.AddSeconds (CacheDuration),
System.Web.Caching.Cache.NoSlidingExpiration)
End Sub

DateTime.Now.AddSeconds (CacheDuration) specifies the time-based expiry — 60 seconds in the future — while
System.Web.Caching.Cache.NoSlidingExpiration indicates that there’s no sliding expiration. While this
Insert method overload has input parameters for both an absolute and sliding expiry, you can only provide one of
the two. If you attempt to specify both an absolute time and a time span, the Insert method will throw an
ArgumentException exception.

Note: This implementation of the AddCacheItem (key, value) method currently has some shortcomings.
We’ll address and overcome these issues in Step 4.

Step 4: Invalidating the Cache When the Data is Modified Through the
Architecture

7of 13

Along with data retrieval methods, the Caching Layer needs to provide the same methods as the BLL for inserting,
updating, and deleting data. The CL’s data modification methods do not modify the cached data, but rather call the
BLL’s corresponding data modification method and then invalidate the cache. As we saw in the preceding tutorial,
this is the same behavior that the ObjectDataSource applies when its caching features are enabled and its Insert,
Update, or Delete methods are invoked.

The following UpdateProduct overload illustrates how to implement the data modification methods in the CL:

<DataObjectMethodAttribute (DataObjectMethodType.Update, False)>
Public Function UpdateProduct (productName As String,
unitPrice As Nullable (Of Decimal), productID As Integer)
As Boolean
Dim result As Boolean = API.UpdateProduct (productName, unitPrice, productID)

' TODO: Invalidate the cache

Return result
End Function

The appropriate data modification Business Logic Layer method is invoked, but before its response is returned we
need to invalidate the cache. Unfortunately, invalidating the cache is not straightforward because the ProductscL
class’s GetProducts () and GetProductsByCategoryID (categoryID) methods each add items to the cache with
different keys, and the GetProductsByCategoryID (categoryID) method adds a different cache item for each
unique categorylD.

When invalidating the cache, we need to remove a// of the items that may have been added by the ProductscL
class. This can be accomplished by associating a cache dependency with the each item added to the cache in the
AddCacheItem(key, value) method. In general, a cache dependency can be another item in the cache, a file on
the file system, or data from a Microsoft SQL Server database. When the dependency changes or is removed from
the cache, the cache items it is associated with are automatically evicted from the cache. For this tutorial, we want
to create an additional item in the cache that serves as a cache dependency for all items added through the
ProductsCL class. That way, all of these items can be removed from the cache by simply removing the cache
dependency.

Let’s update the AddCacheItem(key, value) method so that each item added to the cache through this method is
associated with a single cache dependency:

Private Sub AddCachelItem(ByVal rawKey As String, ByVal value As Object)
Dim DataCache As System.Web.Caching.Cache = HttpRuntime.Cache

' Make sure MasterCacheKeyArray[0] is in the cache - if not, add it
If DataCache (MasterCacheKeyArray(0)) Is Nothing Then

DataCache (MasterCacheKeyArray(0)) = DateTime.Now
End If

' Add a CacheDependency
Dim dependency As New Caching.CacheDependency (Nothing, MasterCacheKeyArray)
DataCache.Insert (GetCacheKey (rawKey), value, dependency,
DateTime.Now.AddSeconds (CacheDuration),
System.Web.Caching.Cache.NoSlidingExpiration)
End Sub

MasterCacheKeyArray is a string array that holds a single value, “ProductsCache”. First, a cache item is added to
the cache and assigned the current date and time. If the cache item already exists, it is updated. Next, a cache

8o0f13

dependency is created. The CacheDependency class’s constructor has a number of overloads, but the one being
used in here expects two string array inputs. The first one specifies the set of files to be used as dependencies.
Since we don’t want to use any file-based dependencies, a value of Nothing is used for the first input parameter.
The second input parameter specifies the set of cache keys to use as dependencies. Here we specify our single
dependency, MasterCacheKeyArray. The CacheDependency is then passed into the Insert method.

With this modification to AddCacheItem (key, value), invaliding the cache is as simple as removing the
dependency.

<DataObjectMethodAttribute (DataObjectMethodType.Update, False)>
Public Function UpdateProduct (ByVal productName As String,
ByVal unitPrice As Nullable (Of Decimal), ByVal productID As Integer)
As Boolean
Dim result As Boolean = API.UpdateProduct (productName, unitPrice, productID)

' Invalidate the cache
InvalidateCache ()

Return result
End Function

Public Sub InvalidateCache ()
' Remove the cache dependency
HttpRuntime.Cache.Remove (MasterCacheKeyArray (0))
End Sub

Step 5: Calling the Caching Layer from the Presentation Layer

The Caching Layer’s classes and methods can be used to work with data using the techniques we’ve examined
throughout these tutorials. To illustrate working with cached data, save your changes to the ProductscCL class and
then open the FromTheArchitecture.aspx page in the Caching folder and add a GridView. From the GridView’s
smart tag, create a new ObjectDataSource. In the wizard’s first step you should see the ProductscL class as one of
the options from the drop-down list.

9 of 13

Configure Data Source - ProductsDataSource

J Choose a Business Object

.-

=

Select a business object that can be used ko retrieve or update data (for example, an object defined in the Bin
or App_Code directory for this application).

Choose your business object:
ProductsCL > Show only data components

Morthawind T ableadapters. CategoriesTableadapter P
MorkhwindT able Adapter s.Emplovess Tableddapter B
Morthwiind T ableAdapters ProductsTableAdapter

Morthevind T ableddapters. SuppliersTablaAdapter

ProductsBLL

ProducksCL
ProductsOptimisticConcurrencyBLL
SupplisrsBLL e

Figure 4: The ProductscL Class is Included in the Business Object Drop-Down List

After selecting ProductscCL, click Next. The drop-down list in the SELECT tab has two items - GetProducts ()
and GetProductsByCategoryID (categoryID) —and the UPDATE tab has the sole UpdateProduct overload.
Choose the GetProducts () method from the SELECT tab and the UpdateProducts method from the UPDATE
tab and click Finish.

10 of 13

Configure Data Source - ProductsDataSource @@ @E|

J Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that rekurns daka bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 cateooryld), returns a DataSet,

Chanse a method:
| GetProducks(), returns ProducksDataTable W

GetProducksi), reburns ProductsDiataTable
GetProductsByvC ategoryID{Ink32 categorviD), returns ProductsDataTable

etPraducks(), returns ProductsDataTable

o)) (oot]

Figure 5: The productscL Class’s Methods are Listed in the Drop-Down Lists

After completing the wizard, Visual Studio will set the ObjectDataSource’s 01dvValuesParameterFormatString
property to original {0} and add the appropriate fields to the GridView. Change the
OldValuesParameterFormatString property back to its default value, {0}, and configure the GridView to
support paging, sorting, and editing. Since the UploadProducts overload used by the CL accepts only the edited
product’s name and price, limit the GridView so that only these fields are editable.

In the preceding tutorial we defined a GridView to include fields for the ProductName, CategoryName, and
UnitPrice fields. Feel free to replicate this formatting and structure, in which case your GridView and
ObjectDataSource’s declarative markup should look similar to the following:

<asp:GridView ID="Products" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourcelID="ProductsDataSource"
AllowPaging="True" AllowSorting="True">
<Columns>
<asp:CommandField ShowEditButton="True" />
<asp:TemplateField HeaderText="Product" SortExpression="ProductName">
<EditItemTemplate>
<asp:TextBox ID="ProductName" runat="server"
Text='<%# Bind("ProductName") %>' />
<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"
ControlToValidate="ProductName" Display="Dynamic"
ErrorMessage="You must provide a name for the product.”
SetFocusOnError="True"
runat="server">*</asp:RequiredFieldvValidator>
</EditItemTemplate>

110f13

<ItemTemplate>
<asp:Label ID="Label2" runat="server"
Text="<%# Bind ("ProductName") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:TemplateField HeaderText="Price" SortExpression="UnitPrice">
<EditItemTemplate>
$<asp:TextBox ID="UnitPrice" runat="server" Columns="8"
Text="<%# Bind ("UnitPrice", "{0:N2}") %>'></asp:TextBox>
<asp:CompareValidator ID="CompareValidatorl" runat="server"
ControlToValidate="UnitPrice" Display="Dynamic"
ErrorMessage="You must enter a valid currency value with
no currency symbols. Also, the value must be greater than
or equal to zero."
Operator="GreaterThanEqual" SetFocusOnError="True"
Type="Currency" ValueToCompare="0">*</asp:CompareValidator>
</EditItemTemplate>
<ItemStyle HorizontalAlign="Right" />
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text='<%# Bind("UnitPrice", "{0:c}") %>' />
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldValuesParameterFormatString="{0}" SelectMethod="GetProducts"
TypeName="ProductsCL" UpdateMethod="UpdateProduct">
<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="productID" Type="Int32" />
</UpdateParameters>
</asp:0bjectDataSource>

At this point we have a page that uses the Caching Layer. To see the cache in action, set breakpoints in the
ProductsCL class’s GetProducts () and UpdateProduct methods. Visit the page in a browser and step through
the code when sorting and paging in order to see the data pulled from the cache. Then update a record and note that
the cache is invalidated and, consequently, it is retrieved from the BLL when the data is rebound to the GridView.

Note: The Caching Layer provided in the download accompanying this article is not complete. It contains
only one class, ProductscL, which only sports a handful of methods. Moreover, only a single ASP.NET
page uses the CL (~/Caching/FromTheArchitecture.aspx) — all others still reference the BLL directly. If
you plan on using a CL in your application, all calls from the Presentation Layer should go to the CL, which
would require that the CL’s classes and methods covered those classes and methods in the BLL currently
used by the Presentation Layer.

Summary

While caching can be applied at the Presentation Layer with ASP.NET 2.0’s SqlDataSource and ObjectDataSource
controls, ideally caching responsibilities would be delegated to a separate layer in the architecture. In this tutorial
we created a Caching Layer that resides between the Presentation Layer and the Business Logic Layer. The

12 0of 13

Caching Layer needs to provide the same set of classes and methods that exist in the BLL and are called from the
Presentation Layer.

The Caching Layer examples we explored in this and the preceding tutorials exhibited reactive loading. With
reactive loading, the data is loaded into the cache only when a request for the data is made and that data is missing
from the cache. Data can also be proactively loaded into the cache, a technique that loads the data into the cache
before it is actually needed. In the next tutorial we’ll see an example of proactive loading when we look at how to
store static values into the cache at application startup.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Teresa Murphy.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

13 of 13

