1of12

This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data in
ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Displaying
Summary Information in the GridView's Footer

Download the code for this sample

Click here for the previous tutorial

Introduction

In addition to seeing each of the products' prices, units in stock, units on order, and reorder levels, a user
might also be interested in aggregate information, such as the average price, the total number of units in stock,
and so on. Such summary information is often displayed at the bottom of the report in a summary row. The
GridView control can include a footer row into whose cells we can programmatically inject aggregate data.

This task presents us with three challenges:

1. Configuring the GridView to display its footer row

2. Determining the summary data; that is, how do we compute the average price or the total of the units in
stock?

3. Injecting the summary data into the appropriate cells of the footer row

In this tutorial we'll see how to overcome these challenges. Specifically, we'll create a page that lists the
categories in a drop-down list with the selected category's products displayed in a GridView. The GridView
will include a footer row that shows the average price and total number of units in stock and on order for
products in that category.

3 Untitled Page - Micresaft Internel Explorer r: Eﬁl
fln fdt Yww Fgeoites fech Belp |
o Bl - & @ | e Faosrites 4 - b -]

i | it oot 23027 oo Ky shone ot ing Hosnmary TiskainFonber ssps " ﬂ (r=

Wﬂrkiﬂg with Data Tutorials Home = Ciustomized Formatting » Summary Dats in

Footar

Displaying Summary Data in the
GridView's Footer

Chooss & category: | Beveragas N
Proeduct | Price Linits In StockUnits On Orde

Chal £18.00 39 i}
Seting Pararnetar Chang ELa.00 7 40
(e Guarana Fantistica $4.50 20 i
Filtering Feports Sagquatcn Ale £14.00 111 (i}
Fier by Drop-Cawn Stealeye Stout $15.00 20 0
LEt Cate de Blays S$263.50 | Brg L]
Chartreiiss varte 1800 69 0
Ipeh Coffes 46,00 17 10
Laughing Lumberjack Lager $14.00 &2 a
Matter/Datal farges Outhack Lager $15.00 15 10
Ehanbrau Kosterbier +7.75 125 L1}
Datall of Sekcted Lk b il i 553 £18.060 ET a

2 0f 12

Figure 1: Summary Information is Displayed in the GridView's Footer Row

This tutorial, with its category to products master/detail interface, builds upon the concepts covered in the
earlier Master/Detail Filtering With a DropDownList tutorial. If you've not yet worked through the earlier
tutorial, please do so before continuing on with this one.

Step 1: Adding the Categories DropDownList and
Products GridView

Before concerning ourselves with adding summary information to the GridView's footer, let's first simply build
the master/detail report. Once we've completed this first step, we'll look at how to include summary data.

Start by opening the summarybDataInFooter.aspx page in the CustomFormatting folder. Add a
DropDownList control and set its 1D to categories. Next, click on the Choose Data Source link from the
DropDownList's smart tag and opt to add a new ObjectDataSource named categoriesbDataSource that
mvokes the categoriesBLL class's GetCategories () method.

r

Data Source Configuration Wizard

Choose a Data Source Type

Where will the application get data from?

14 . lk 7 T
hocess Database Site: Map ML File
Diatabase

Connect to a middle-ber business object o DataSet in the Binor App_Code direchory for the application,

Specify an [D for the data source

Categor el ASource

Figure 2: Add a New ObjectDataSource Named CcategoriesDataSource

30f12

"

Configure Data Source - CalegoriesDalaSource

Define Data Methods

SELECT |UPDATE | INSERT | DELETE

Choose: & method of the busiress object that reburms daka bo assocate with the SELECT operaticn, The
method can return a DataSat, Datafeader, or stronghy-typed collection.

Examphe: GetProducts{Int32 categoryld), retums a DataSet.

Chooss & mathod:

GetCstegories), returns CabegoresDistalsble

(et stegories i, retumns Cabegonsslint aTabls

(et atwgoryByCategorylD{Int 32 categary DY), returns CategoriesDiataTable
GatCategores), raturng CategariesDataTable

Figure 3: Have the ObjectDataSource Invoke the categoriesBLL Class's GetCategories () Method

After configuring the ObjectDataSource, the wizard returns us to the DropDownList's Data Source
Configuration wizard from which we need to specify what data field value should be displayed and which one
should correspond to the value of the DropDownList's ListItems. Have the categoryName field displayed
and use the categoryID as the value.

Data Source Configuration Wizard

J Choose a Data Source

Sedact a datia source:

CabtegoriesliataSource r

Sefact a data feld to dsplyy in the DropDowiniList:
Categor yhame w

Sedect o data Field For the vake of the DropDownlist:

Redfresh Schema

[ox || canes |

Figure 4: Use the categoryName and categoryID Fields as the Text and value for the ListItems,
Respectively

At this point we have a DropDownList (Categories) that lists the categories in the system. We now need to
add a GridView that lists those products that belong to the selected category. Before we do, though, take a

4 of 12

moment to check the Enable AutoPostBack checkbox in the DropDownList's smart tag. As discussed in the
Master/Detail Filtering With a DropDownlList tutorial, by setting the DropDownList's AutoPostBack
property to True the page will be posted back each time the DropDownList value is changed. This will cause
the GridView to be refreshed, showing those products for the newly selected category. If the AutoPostBack
property is set to False (the default), changing the category won't cause a postback and therefore won't
update the listed products.

Y Code - Microsoll Yivusl Sudio

Bl B e Webste Buld (ebep Foma Lapar ook e ety B e

CRAE RN R . o
n] I

~ T | - - i Exprn “h X

p— E A~ gl T e
ol P [e -
A Label & L Cods
wid Fualfio & [21 App_[ata
|2k metton

® Ll A Theses
- - ? 5
[E] rdbdsan Content - Corra] usiom) | o r_"“" SLERT,
- S TemmFamaing

laa] § e L 1 & | Cunborremien .mp
A Hpotrk isplaying Summary 5 Fewga
[] - [wi - g
Ef opmaet Data in the GridView's B Saabitiigacinin
.m.ll Fﬂﬂtc'l' & i T i s
; w——) BRI [e S —
crp i atabound | Dreptcwiat Tasks 3 Feweg
=yt Choede & Categary! Datnhmured M= ’ o i
Sy dminitory e ectDalafsme - Cfequald gty . = etk =qir
i e " W e
i, 1 T AJ Bes o
i lmagebiep i @ b Loy -
s] - ahardy s | dimpocntalNonbeE]y - opo | aipapecrapdouariet sl s oy 1
2 o | g P e

Figure 5: Check the Enable AutoPostBack Checkbox in the DropDownList's Smart Tag

Add a GridView control to the page in order to display the products for the selected category. Set the
GridView's 1D to ProductsInCategory and bind it to a new ObjectDataSource named
ProductsInCategoryDataSource.

r

Data Source Configuration Wizard

J Choose a Data Source Type

YWhere will the application get data from?

q | 1 ¥ |
1 1 IJL 5 g
Aocess Database Site Map ML File
Databuase

Connect to a mddle-ber business object or DataSet in the Binor dpp_Code directory For the application.

Specify an [D for the data source
Productslnd stegory st 8Source

[o || caen |

Figure 6: Add a New ObjectDataSource Named ProductsInCategoryDataSource

Configure the ObjectDataSource so that it invokes the productsBLL class's

GetProductsByCategoryID (categoryID) method.

r

Configure Data Source - ProductsinCategaryDataSource

SELECT | UPDATE | INSERT ! DELETE

(Chioose: & method of the business object that reburns daka bo associate with the: SELECT oper aticn, The
method can return a DataSet, Datafeader, or stronghy-typed collection.

Example: GetProducts{Int32 categoryld), retums a DataSet.

Choose & mathod:

GetProductsByC stegoryID{Int 32 categorylD), reburrns Pr »
GetProductByProduct ID(Int 32 product]D), returnis ProductsDstaTable
GetProductsl), reburns ProductsDataTable

et ProductehaC ategorny [0 Ink3Z categoryID), returns ProguctsDistaTabie
GetProductsBy Supplier ID{Int 32 supplies1D), returns ProductsDistaTable

[{Erm H Mt > I

Figure 7: Have the ObjectDataSource Invoke the GetProductsByCategoryID (categoryID) Method

Since the GetProductsByCategoryID (categoryID) method takes in an input parameter, in the final step of
the wizard we can specify the source of the parameter value. In order to display those products from the
selected category, have the parameter pulled from the categories DropDownList.

r

Configure Data Source - ProductsinCateporyDataSource

Define Parameters

The wizard has detected one or more parsmeters in your SELECT methad. For each parameter in the SELECT
mrethod, chocse & source for the parameter's value,

Praramghars: Parameter gource:
Conbrol
atagories, Sebe bedahe CartrollD:
Categaries
[k ault ahue:

Show advanoed roperties

[Method sgnature:
GetProductsByC stegory ID(INE 32 categorylD), returns ProductsCiataTsbie

Figure 8: Get the categoryrDp Parameter Value from the Selected Categories DropDownList

After completing the wizard the GridView will have a BoundField for each of the product properties. Let's
clean up these BoundFields so that only the ProductName, UnitPrice, UnitsInStock, and UnitsOnOrder

50f12

BoundFields are displayed. Feel free to add any field-level settings to the remaining BoundFields (such as
formatting the unitpPrice as a currency). After making these changes, the GridView's declarative markup
should look similar to the following:

<asp:GridView ID="ProductsInCategory" runat="server"
AutoGenerateColumns="False"
DataKeyNames="ProductID"
DataSourceID="ProductsInCategoryDataSource"
EnableViewState="False">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price"
HtmlEncode="False" SortExpression="UnitPrice">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>
<asp:BoundField DataField="UnitsInStock"
HeaderText="Units In Stock" SortExpression="UnitsInStock">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>
<asp:BoundField DataField="UnitsOnOrder"
HeaderText="Units On Order" SortExpression="UnitsOnOrder">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>
</Columns>
</asp:GridView>

At this point we have a fully functioning master/detail report that shows the name, unit price, units in stock,
and units on order for those products that belong to the selected category.

N Uniitbed Page - Wicrosaft inte et | eploser r-_E|§|
Bla gt Tew Fgeotes Dok Meb
() e - o @ i e Faurrivey & gy M - B 0 8
8] i st E0CC pded st et Pume sy Dt a P ooter. ssg * e

-

Working with Data Tutorials Hame > Customized Farmitting > Summary

Cata im Footer

Displaying Summary Data in the
GridView's Footer

Sample Display

Chooi® & calegory. Beverages -

Dciatalive
Paramarsrs Prodict Units Ini Urits On
— Stock Order
Settng Parameber h 35 r
Vislues Chang #1900 17 40
s anA FanTatnes §4,T0 & [
Fiter by Dvog-Down Sasquatch Ale 14,00 111 0
Lt Creslaye STOUE g18,00 H
- Cote de Blaye $263.50 P 0
M5 ter-Datafs- CRRPT i At $18.0 e
hamls
Doty Ipoh Coffes Bae,00 17 14
Master/D=iad Acrses Laugheng Lirmpsriack £14.0
T Pages Lages >
Detwls of Selected Outbadk' Lager $15,00 IS5 10
R RBioanbray Klostarossr §7.5 125 [
Lk alik O 18,00 57 i
& tirm % iecalrteanst

Figure 9: Get the categoryrDp Parameter Value from the Selected Categories DropDownList

Step 2: Displaying a Footer in the GridView

6 of 12

The GridView control can display both a header and footer row. These rows are displayed depending on the
values of the showHeader and showFooter properties, respectively, with showHeader defaulting to True and
ShowFooter to False. To include a footer in the GridView simply set its ShowFooter property to True.
’ ® Code - Microsoft Visual Sudio

Ble [t Yew Webgte Buid [sbug Lagot Jock Windwe Commnty Meb Addns

[RS RN = | b | Aoplitiskze

CustomFormeakl...Foober . esps™

ProductsinCategory System, Web Ul WebCort =

Choose & category: |Catabound s el

ce - CategonesDiataSource Pagesne
. RowteadarCohgmn
Linits In Units On
Product| Price : I E RosSiyie
LStock Drder Sabechedires

$0.00) o
abc £0.10 :
abc §0.20 ; Skinim
abc $0.30 Unfie

: ToolTp
abc §0.40 UseArcessiblstHnader Trus
wihie Trug

[PERTES

Iwm-hmdslﬂflznmyﬁdﬁw.rm ShoowFouter

o | WTathisr b the chi s controls factes
»
i3 Soued * [cospgrabaevbproductsnc.> | RS, “PProps,.. My

& Error Le | 3] Outout i"r-.'l-:.a" |

Figure 10: Set the GridView's showFooter Property to True

The footer row has a cell for each of the fields defined in the GridView; however, these cells are empty by
default. Take a moment to view our progress in a browser. With the showFooter property now set to True,
the GridView includes an empty footer row.

D Uniftbed Page - Microsoft Imternet Fxplorer r:-!rﬁlri|
P Ek Wew Fogowe ok bk "

Q) back -~) i @ e e Favorban 5 - T o e i8R

W8] i e (02K Do | CustonnPorrost tingy Sormesry Dt sinf noter sepo w ! B Go

-

Working with Data Tutorials Mame > Custamized Fermaming > Summary

Data in Footer

Displaying Summary Data in the
GridView's Footer

Choase & cateqory: | Bevaragas il
5 Units O
Produsct . ; lur
Chal $£18.00 39 L+
Chang 10,00 L7 A
Gusrana Fartéstics 4 0 20 L]
Sasquatch Ale F14.00 111 Q
Srasleye SToLL $15.00 20 O
Céte de Blaye $£263.50 L7 o
Chartreuse yarte $£18.0:0 Eg i
Ipoh Coffes Fobe 0 17 10
Larighing Lumberjack Ly
_a_qEIr ™] $14.00 e
Duthadk Lager F15.00 15 10
Rhnbrau Kiosterbier $7.75 125 i
Lakkalkodn +£18.0:0 57 L]

S Locsl nizanat

Figure 11: The GridView Now Includes a Footer Row

7 of 12

8of 12

The footer row in Figure 11 doesn't stand out, as it has a white background. Let's create a Footerstyle CSS
class in styles.css that specifies a dark red background and then configure the Gridview.skin Skin file in
the patawebControls Theme to assign this CSS class to the GridView's FootersStyle's CssClass property.
If you need to brush up on Skins and Themes, refer back to the Displaying Data With the ObjectDataSource
tutorial.

Start by adding the following CSS class to styles.css:

.FooterStyle

{
background-color: #a33;
color: White;
text-align: right;

}

The Footerstyle CSS class is similar in style to the Headerstyle class, although the Headerstyle's
background color is subtlety darker and its text is displayed in a bold font. Furthermore, the text in the footer
is right-aligned whereas the header's text is centered.

Next, to associate this CSS class with every GridView's footer, open the Gridview.skin file in the
DataWebControls Theme and set the Footerstyle's CssClass property. After this addition the file's markup
should look like:

<asp:GridView runat="server" CssClass="DataWebControlStyle">
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
<RowStyle CssClass="RowStyle" />
<HeaderStyle CssClass="HeaderStyle" />
<FooterStyle CssClass="FooterStyle" />
<SelectedRowStyle CssClass="SelectedRowStyle" />
</asp:GridView>

As the screen shot below shows, this change makes the footer stand out more clearly.

D Untitied Page - Microsoft Iaternet Explorar EEE
Pis Edt ‘¥ew Fpomes Tock Heo o=

3 e - W & Gmart Favoriban 4 - = o e il Bl
W8] i e (02K Do | CustonnPorrost tingy Sormesry Dt sinf noter sepo w .l.'u:u
Working with Data Tutorials Mema > Customized Formattiog > Summary

Data in Footer

Displaying Summary Data in the
GridView's Footer

Samiphe Display
Choose a category: |Bevarages -
o Linits Ohi
Product lur
Setting Farammior Chai H18.00 0
Malles chang $19.00 an
Guerand Fart&stcs $4.50 [
Sa5g ch Ale 4,
Fiter by Grop-Down i B 9
List Srasleye SToLL $15.00 o
Cdte de Blaya $263.50 o
Charreuse varie $18. .00 0
Ipch Coffes F4e .00 16
Master/Detal Aoross Laughimg Lumberjack: $14.00 e F
Two Fages Lager E i
[ratads o Exlecred Duthadk Lager F15.00 15 160
Row #hdnbrau Klosterbier $7.75 125 o
Lakkalkioian $18.00 57 o
w
§] Doem S Local ntranat

Figure 12: The GridView's Footer Row Now Has a Reddish Background Color

9o0f12

Step 3: Computing the Summary Data

With the GridView's footer displayed, the next challenge facing us is how to compute the summary data. There
are two ways to compute this aggregate information:

1. Through a SQL query — we could issue an additional query to the database to compute the summary
data for a particular category. SQL includes a number of aggregate functions along with a Grour BY
clause to specify the data over which the data should be summarized. The following SQL query would
bring back the needed information:

SELECT CategoryID, AVG(UnitPrice), SUM(UnitsInStock),
SUM (UnitsOnOrder)

FROM Products

WHERE CategoryID = categoryID

GROUP BY CategoryID

Of course you wouldn't want to issue this query directly from the summarybataInFooter.aspx page,
but rather by creating a method in the productsTableadapter and the ProductsBLL.

2. Compute this information as it's being added to the GridView — as discussed in Custom Formatting
Based Upon Data tutorial, the GridView's RowDataBound event handler fires once for each row being
added to the GridView after its been databound. By creating an event handler for this event we can keep
a running total of the values we want to aggregate. After the last data row has been bound to the
GridView we have the totals and the information needed to compute the average.

I typically employ the second approach as it saves a trip to the database and the effort needed to implement the
summary functionality in the Data Access Layer and Business Logic Layer, but either approach would suffice.
For this tutorial let's use the second option and keep track of the running total using the RowbataBound event
handler.

Create a RowDataBound event handler for the GridView by selecting the GridView in the Designer, clicking
the lightning bolt icon from the Properties window, and double-clicking the RowDataBound event.
Alternatively, you can select the GridView and its RowDataBound event from the drop-down lists at the top
of the ASP.NET code-behind class file. This will create a new event handler named
ProductsInCategory_RowDataBoundintheSummaryDataInFooter.aspxpagdscodeJmﬂﬂndems

Protected Sub ProductsInCategory RowDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
Handles ProductsInCategory.RowDataBound

End Sub

In order to maintain a running total we need to define variables outside of the scope of the event handler.
Create the following four page-level variables:

_totalUnitPrice, of type Decimal
_totalNonNullUnitPriceCount,Oftype Integer
_totalUnitsInStock, of type Integer
_totalUnitsOnOrder, of type Integer

Next, write the code to increment these three variables for each data row encountered in the RowDataBound

10 of 12

event handler.

' Class-scope, running total variables...

Dim _totalUnitPrice As Decimal = 0

Dim _totalNonNullUnitPriceCount As Integer = 0
Dim _totalUnitsInStock As Integer = 0

Dim _totalUnitsOnOrder As Integer = 0

Protected Sub ProductsInCategory RowDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles ProductsInCategory.RowDataBound

If e.Row.RowType = DataControlRowType.DataRow Then
' Reference the ProductsRow via the e.Row.Dataltem property
Dim product As Northwind.ProductsRow = _
CType (CType (e.Row.Dataltem, System.Data.DataRowView) .Row, _
Northwind.ProductsRow)

' Increment the running totals (if they're not NULL!)

If Not product.IsUnitPriceNull() Then
_totalUnitPrice += product.UnitPrice
_totalNonNullUnitPriceCount += 1

End If

If Not product.IsUnitsInStockNull() Then
_totalUnitsInStock += product.UnitsInStock
End If

If Not product.IsUnitsOnOrderNull () Then
_totalUnitsOnOrder += product.UnitsOnOrder
End If
ElseIf e.Row.RowType = DataControlRowType.Footer Then
' Determine the average UnitPrice
Dim avgUnitPrice As Decimal = _totalUnitPrice /
CType (_totalNonNullUnitPriceCount, Decimal)

' Display the summary data in the appropriate cells

e.Row.Cells (1) .Text = "Avg.: " & avgUnitPrice.ToString("c")
e.Row.Cells(2) .Text = "Total: " & _totalUnitsInStock.ToString()
e.Row.Cells(3) .Text = "Total: " & _totalUnitsOnOrder.ToString()
End If
End Sub

The rowDataBound event handler starts by ensuring that we're dealing with a DataRow. Once that's been
established, the Northwind.ProductsRow instance that was just bound to the GridviewRow object in e.Row is
stored in the variable product. Next, running total variables are incremented by the current product's
corresponding values (assuming that they don't contain a database NuLL value). We keep track of both the
running UnitPrice total and the number of non-NULL UnitPrice records because the average price is the
quotient of these two numbers.

Step 4: Displaying the Summary Data in the Footer

With the summary data totaled, the last step is to display it in the GridView's footer row. This task, too, can be
accomplished programmatically through the RowDataBound event handler. Recall that the RowDataBound
event handler fires for every row that's bound to the GridView, including the footer row. Therefore, we can
augment our event handler to display the data in the footer row using the following code:

Protected Sub ProductsInCategory RowDataBound(ByVal sender As Object, _

11 0of 12

ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles ProductsInCategory.RowDataBound

If e.Row.RowType = DataControlRowType.DataRow Then
Increment the running totals
ElseIf e.Row.RowType = DataControlRowType.Footer
Display the summary data in the footer ...
End If
End Sub

Since the footer row is added to the GridView after all of the data rows have been added, we can be confident
that by the time we're ready to display the summary data in the footer the running total calculations will have
completed. The last step, then, is to set these values in the footer's cells.

To display text in a particular footer cell, use e.Row.Cells (index) .Text = value, Where the cells
indexing starts at 0. The following code computes the average price (the total price divided by the number of
products) and displays it along with the total number of units in stock and units on order in the appropriate
footer cells of the GridView.

Protected Sub ProductsInCategory RowDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
Handles ProductsInCategory.RowDataBound

If e.Row.RowType = DataControlRowType.DataRow Then
Increment the running totals
ElseIf e.Row.RowType = DataControlRowType.Footer
' Determine the average UnitPrice
Dim avgUnitPrice As Decimal = _totalUnitPrice / _
CType (_totalNonNullUnitPriceCount, Decimal)

Display the summary data in the appropriate cells

e.Row.Cells (1) .Text = "Avg.: " & avgUnitPrice.ToString("c")
e.Row.Cells(2) .Text = "Total: " & _totalUnitsInStock.ToString()
e.Row.Cells(3) .Text = "Total: " & _totalUnitsOnOrder.ToString()
End If
End Sub

Figure 13 shows the report after this code has been added. Note how the Tostring ("c") causes the average
price summary information to be formatted like a currency.

12 of 12

[Untitled Page - Micressft Internel Eaplorer r._ Eﬁ|
fin fdt Yew Fpeoim fech Hep 1
i back o (@ R sewd 7Y Freete b - -]

8] i e shost 23021 Crde it pmustting o DabainF oot s »| e

Working with Data Tutorials Home » Customited Formatting > SUmmary Dsta in

Displaying Summary Data in the
GridView's Footer

Cheoes & category: |Baveragas ¥
Proeduct | Price Units In StackUnits On Orde
Cha £18.00 33 i
Hetting Parametar Chang 19,00 17 40
Guarars Fantastica $£4.50 20 a
Fitering Feports Sanquatcn ole £14.00 111 (i}
Fiter by Drop-Cown Stealeye Stout $15.00 20 Q
Lig] Cdte de Blays 263,50 B a
Chartreuss yarte £18.00 £9 il
Ipoh Coffes $45.00 17 10
Laughing Lumb-rjack Lager $£14.00 g2 Q
Qutback Lager £15.00 15 10
Ehanbrau Kosterbier +7.75 125 L]
Ltk sl i £18.00 &7 a

S Local intraret

Figure 13: The GridView's Footer Row Now Has a Reddish Background Color

Summary

Displaying summary data is a common report requirement, and the GridView control makes it easy to include
such information in its footer row. The footer row is displayed when the GridView's showFooter property is
set to True and can have the text in its cells set programmatically through the RowDataBound event handler.
Computing the summary data can either be done by re-querying the database or by using code in the
ASP.NET page's code-behind class to programmatically compute the summary data.

This tutorial concludes our examination of custom formatting with the GridView, DetailsView, and FormView
controls. Our next tutorial kicks off our exploration of inserting, updating, and deleting data using these same
controls.

Happy Programming!

Click here for the next tutorial

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

