This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Including a
File Upload Option When Adding a New Record

Introduction

In the previous two tutorials we explored techniques for storing binary data that is associated with the application’s
data model, looked at how to use the FileUpload control to send files from the client to the web server, and saw
how to present this binary data in a data Web control. We’ve yet to talk about how to associate uploaded data with
the data model, though.

In this tutorial we will create a web page to add a new category. In addition to TextBoxes for the category’s name
and description, this page will need to include two FileUpload controls — one for the new category’s picture and
one for the brochure. The uploaded picture will be stored directly in the new record’s Picture column, whereas
the brochure will be saved to the ~/Brochures folder with the path to the file saved in the new record’s
BrochurePath column.

Before creating this new web page, we’ll need to update the architecture. The CategoriesTableAdapter’s main
query does not retrieve the picture column. Consequently, the auto-generated Insert method only has inputs for
the CategoryName, Description, and BrochurePath fields. Therefore, we need to create an additional method in
the TableAdapter that prompts for all four Categories fields. The CategoriesBLL class in the Business Logic
Layer will also need to be updated.

Step 1: Adding an InsertwithPicture Method to the
CategoriesTableAdapter

When we created the CategoriesTableAdapter back in the Creating a Data Access Layer tutorial, we configured
it to automatically generate INSERT, UPDATE, and DELETE statements based on the main query. Moreover, we
instructed the TableAdapter to employ the DB Direct approach, which created the methods Insert, Update, and
Delete. These methods execute the auto-generated INSERT, UPDATE, and DELETE statements and, consequently,
accept input parameters based on the columns returned by the main query. In the Uploading Files tutorial we
augmented the CategoriesTableAdapter’s main query to use the Brochurebath column.

Since the CategoriesTableAdapter’s main query does not reference the Picture column, we can neither add a
new record nor update an existing record with a value for the Picture column. In order to capture this information,
we can either create a new method in the TableAdapter that is used specifically to insert a record with binary data
or we can customize the auto-generated INSERT statement. The problem with customizing the auto-generated
INSERT statement is that we risk having our customizations overwritten by the wizard. For example, imagine that
we customized the INSERT statement to include use of the Picture column. This would update the TableAdapter’s
Insert method to include an additional input parameter for the category’s picture’s binary data. We could then
create a method in the Business Logic Layer to use this DAL method and invoke this BLL method through the
Presentation Layer, and everything would work wonderfully. That is, until the next time we configured the
TableAdapter through the TableAdapter Configuration wizard. As soon as the wizard completed, our
customizations to the INSERT statement would be overwritten, the Insert method would revert to its old form, and
our code would no longer compile!

Note: This annoyance is a non-issue when using stored procedures instead of ad-hoc SQL statements. A

1of 17

future tutorial will explore using stored procedures in lieu of ad-hoc SQL statements in the Data Access
Layer.

To avoid this potential headache, rather than customizing the auto-generated SQL statements let’s instead create a
new method for the TableAdapter. This method, named InsertwithPicture, will accept values for the
CategoryName, Description, BrochurePath, and Picture columns and execute an INSERT statement that stores
all four values in a new record.

Open the Typed DataSet and, from the Designer, right-click on the CategoriesTableAdapter’s header and
choose Add Query from the context menu. This launches the TableAdapter Query Configuration Wizard, which
begins by asking us how the TableAdapter query should access the database. Choose “Use SQL statements” and
click Next. The next step prompts for the type of query to be generated. Since we’re creating a query to add a new
record to the Categories table, choose “INSERT” and click Next.

TableAdapter Query Configuration Wizard

Choose a Query Type B s
Choose the bype of query to be generated L 1,

What type of SOL query would you like to use?
() SELECT which returns rows

Returns one or many rows oF Columns.

() SELECT which returns a single value
Returns a single value (For example, Sum, Count, or ary other sggregats Function).

) UPDATE
Changes existing data in a table.

() DELETE

[::Erevh:u.ls][Bk = J

Figure 1: Select the “INSERT” Option

We now need to specify the INSERT SQL statement. The wizard automatically suggests an INSERT statement
corresponding to the TableAdapter’s main query. In this case, it’s an INSERT statement that inserts the
CategoryName, Description, and BrochurePath values. Update the statement so that the Picture column is
included along with a @Picture parameter, like so:

INSERT INTO [Categories]

([CategoryName], [Description], [BrochurePath], [Picturel])
VALUES

(@CategoryName, @Description, @BrochurePath, @Picture)

20f 17

The final screen of the wizard asks us to name the new TableAdapter method. Enter InsertwithPicture and click
Finish.

TableAdapter Query Configuration Wizard

Choose Function Name s
Choose the name of the Function to be generated k q_

Wivhat weould you ke bo name the new Function?
InsertWithPicture]

[{Ereviul.rsj[Mext = J | Finish | [Cancel]

Figure 2: Name the New TableAdapter Method InsertWithPicture

Step 2: Updating the Business Logic Layer

Since the Presentation Layer should only interface with the Business Logic Layer rather than bypassing it to go
directly to the Data Access Layer, we need to create a BLL method that invokes the DAL method we just created
(InsertwithPicture). For this tutorial, create a method in the CategoriesBLL class named InsertWithPicture
that accepts as input three strings and a Byte array. The string input parameters are for the category’s name,
description, and brochure file path, while the Byte array is for the binary contents of the category’s picture. As the
following code shows, this BLL method invokes the corresponding DAL method:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Insert, False)>

Public Sub InsertWithPicture (categoryName As String, description As String,
brochurePath As String, picture() As Byte)

Adapter.InsertWithPicture (categoryName, description, brochurePath, picture)
End Sub

Note: Make sure that you have saved the Typed DataSet before adding the InsertwithPicture method to

the BLL. Since the CategoriesTableAdapter class code is auto-generated based on the Typed DataSet, if
you don’t first save your changes to the Typed DataSet the Adapter property won’t know about the

3of17

InsertWithPicture method.

Step 3: Listing the Existing Categories and their Binary Data

In this tutorial we will create a page that allows an end user to add a new category to the system, providing a
picture and brochure for the new category. In the preceding tutorial we used a GridView with a TemplateField and
ImageField to display each category’s name, description, picture, and a link to download its brochure. Let’s
replicate that functionality for this tutorial, creating a page that both lists all existing categories and allows for new
ones to be created.

Start by opening the DisplayOrDownload.aspx page from the BinaryData folder. Go to the Source view and
copy the GridView and ObjectDataSource’s declarative syntax, pasting it within the <asp:Content> element in
UploadInDetailsView.aspx. Also, don’t forget to copy over the GenerateBrochureLink method from the code-
behind class of DisplayOrDownload.aspx to UploadInDetailsView.aspx.

2 ASPNET Data_Tutorial 56 C5 - Microsaft Visual Studia Edli= =0
Bl Edt Yew ‘Webgite Buid [ebug ool Windew Comsunity Help Addcs
PRSI RN - - I NPT QA - PR e e i
i iEE T Irkeret Exphorer 6.0 = o o
x BmaryDats/ D nlosdDote. srpr | BraryDebaiUpl, sV, st] - 4-'_.-“
= Ohent Dibjects B Events | (B0 Everts) wi| ¥
5 =50 Fage Langusge="CH" Hascer Pa;:f.J-:-"'-.-"-L;-:.be-.;'r\n.-l::ll.:r.* kutoEveneVirsup=erus" Codefi lq.-""[.-'.':'. :'
G <a#piContent ID="Contenci™ ContencPlacealolderIl="NainContent™ Runat="Sgrver">
4 l‘llu:ljiﬂ'pl-:? / Downlosd Binary Daca</ ks :"

muEFnlee™ Darseaei]

" Hesder Texta"Category” SortExpess il

adeE Taxt="Iance] PE Lok 3™ SortEx PE

sl o W B

.I__— I

20 L i [[T om* rupat=Ysaryvact GldislsesParamster

acegoriesBLLY </ amp Objectbacalources

i &
(@ Design | & Source | [=aspecansent #ontonts =

(5 Curput g Error List [Pirdt Fossudes |
Rasty Ln &2 ol Thi NS

Figure 3: Copy and Paste the Declarative Syntax from DisplayOrDownload.aspx t0
UploadInDetailsView.aspx

After copying the declarative syntax and GenerateBrochureLink method over to the
UploadInDetailsView.aspx page, view the page through a browser to ensure that everything was copied over
correctly. You should see a GridView listing the eight categories that includes a link to download the brochure as
well as the category’s picture.

4 of 17

A Untitled Page - Microsoft Internet Explorer r. |'ﬂ|r5_f
Do Dt Yew PFavorbes Took Mol i

Wl al | O aech Favortes) - i [R W
& hictp: {localhst: 31 L4 JASPNET Dats Tuboriasl 56 CS{EnandDat aiiploadindet skimy. acpe - ﬂ a
Wﬂ rking W!'{h Data Tutnnals Homa > Waorking with Einary Data > Addimg New Binary Data
Horme Add a Category with a Picture and Brochure
Basic Reportng
Cale i | HESLrip i | s e |
Simpds Dﬁph‘-’. A d e Goiry Descriplion Brochiare
Eiavarng s Soft drinks, coffess; teas; beers;, o o b
Selfting Parameter : and gles
Walkles
Fitering Reports
Fifter by Drop-£xown
Sweet and sevory sauces,
Master-Detail- Condiments relishes, spresds, and e L
S2a50nings
Confections [restarts, carvlies ard Swest Wiew Brochure
Lonred hreads wiew Brochire
Custony Content in g
Gridwlew
E_T:fl_,m Cheeses Wiew Brochirs i »

Nl Local iniranet

Figure 4: You Should Now See Each Category Along with Its Binary Data

Step 4: Configuring the categoriesbatasource to Support Inserting

The categoriesDataSource ObjectDataSource used by the Categories GridView currently does not provide the
ability to insert data. In order to support inserting through this data source control, we need to map its Insert
method to a method in its underlying object, CategoriesBLL. In particular, we want to map it to the
CategoriesBLL method we added back in Step 2, InsertwithPicture.

Start by clicking the Configure Data Source link from the ObjectDataSource’s smart tag. The first screen shows the
object the data source is configured to work with, CategoriesBLL. Leave this setting as-is and click Next to
advance to the Define Data Methods screen. Move to the INSERT tab and pick the InsertwithPicture method
from the drop-down list. Click Finish to complete the wizard.

50f17

Configure Data Source - CategoriesDataSource

H| Define Data Methods

SELECT | UPDATE | INSERT | DELETE |

| Choose s mathod of the business objeck to associate with ths INSERT operation. The methad should
| accept a parameter for each property of the data object, or a single parameter which is the data object
ko insesk,

Examples: InsertProduct(Product pl, or InsertProduct(Int32 productID, String name, Double price)

Chonss a method:
finsertwithPicture(String c

descriptioics

Method signature:
InsertWithPicture{String categoryflame, String description, Skring brachurePath, Bytel] pickure)

() (o]

Figure 5: Configure the ObjectDataSource to use the InsertWithPicture Method

Note: Upon completing the wizard, Visual Studio may ask if you want to “Refresh Fields and Keys,” which
will regenerate the data Web controls fields. Choose No, because choosing Yes will overwrite any field
customizations you may have made.

After completing the wizard, the ObjectDataSource will now include a value for its InsertMethod property as well
as InsertParameters for the four category columns, as the following declarative markup illustrates:
<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldValuesParameterFormatString="original {0}" SelectMethod="GetCategories"
TypeName="CategoriesBLL" InsertMethod="InsertWithPicture">
<InsertParameters>
<asp:Parameter Name="categoryName" Type="String" />
<asp:Parameter Name="description" Type="String" />
<asp:Parameter Name="brochurePath" Type="String" />
<asp:Parameter Name="picture" Type="Object" />
</InsertParameters>
</asp:0bjectDataSource>

Step 5: Creating the Inserting Interface

As first covered in the An Overview of Inserting, Updating, and Deleting Data, the DetailsView control provides a
built-in inserting interface that can be utilized when working with a data source control that supports inserting.
Let’s add a DetailsView control to this page above the GridView that will permanently render its inserting
interface, allowing a user to quickly add a new category. Upon adding a new category in the DetailsView, the

60f17

GridView beneath it will automatically refresh and display the new category.

Start by dragging a DetailsView from the Toolbox onto the Designer above the GridView, setting its ID property to
NewCategory and clearing out the Height and width property values. From the DetailsView’s smart tag, bind it to
the existing CategoriesDataSource and then check the “Enable Inserting” checkbox.

®% ASPHET_Data_Tuterial_56_C5 - Microsolt Visual Studie

Fie [Vew Webpbe Buld [Debug Fomet Loyout Jools Sindow Community Bl Gddre
@ gl @ & da . b @ v -
mf u - = s =
PR A, ; T &
W ulmu‘ EanaryDiatasUipl. .. ke aspece - ¥ | Fropeities - A om
2! || C=] PaceHolder - A | MewCategory Sribem. Wb, LT Wt orty =
1 Wiew C n]l v | &
1L Substihaion 5 __H.. i
L cic ik DS rpisdae | Lol
&8 e i (o NewCategoey |
G ChickRosaRdaton m : g
£ ot iavebdoion Content - Contentl (Custom i —_—
= Data 8 | El Aternstingfowsty
s Add a Category with a | aasihopitcin
A Griow Picture and Brochure | AR AR T
Y Dt Lot k | Stoseneratelnse Falss
[[totabstions e : I:IEH Detailsview Tasks "!'“f“'EIH
| Formiiew T dlife Foripet., . List
Erpaster - Choose Duta sowre: | Categorieshistatoores. w B
| sdoataswrce | Fioama Diaka Sour e [I Bt Set
p fcoessfistaSource Rofrosh Schesis. e h
L CtiectDubasorce e
2 i I
L, HmilatsSource hidd e Fiakd W -1
i, St DataS TR TR u a
il Beportyiewer it Fand RowStyie
= Walidation w
L[] Erbia Paging
I Poirker af— =D
5 Bguredrskiabistin E7] Ervbis Insasting [of an MrataSaurce that vl b
U Range!uidetor = Felt Teplats dafa source,
‘¥ ReguaExpressiony., . | body> | caspionbentdoonbent]> | <p !:anmm ry _-':I Sl P, '-q” g :,:
| 2] Qweput g Ermor Lint| I, Find Spults |
Romaddy

Figure 6: Bind the DetailsView to the CategoriesDataSource and Enable Inserting

To permanently render the DetailsView in its inserting interface, set its DefaultMode property to Insert.

Note that the DetailsView has five BoundFields — CategoryID, CategoryName, Description,
NumberOfProducts, and BrochurePath — although the CategoryID BoundField is not rendered in the inserting
interface because its InsertVisible property is set to False. These BoundFields exists because they are the
columns returned by the GetCategories () method, which is what the ObjectDataSource invokes to retrieve its
data. For inserting, however, we don’t want to let the user specify a value for NumberofProducts. Moreover, we
need to allow them to upload a picture for the new category as well as upload a PDF for the brochure.

Remove the NumberofProducts BoundField from the DetailsView altogether and then update the HeaderText
properties of the CategoryName and Brochurepath BoundFields to “Category” and “Brochure”, respectively.
Next, convert the Brochurepath BoundField into a TemplateField and add a new TemplateField for the picture,
giving this new TemplateField a HeaderText value of “Picture”. Move the picture TemplateField so that it is
between the Brochurepath TemplateField and CommandField.

7o0f 17

[Fields 2]

Available Fields: TemplateField properties:

BEE _E ; Bru:u:hureF.‘..;th 4:

i
| {7 CheckBoxField i — =
[ﬂ HyperLinkField [B Accessibility :
‘ : .g?lj TrageField | ArcessibleHeaderTe
|
|
|

B Appearance
FookerTe:xk

ConvertEmpkyString True

Insertyisible True

ShowHeader True

SortExpression |
HeaderText
The text within the header of this field,

[] Auto-generate fields

Refresh Schema QK][Cancel]

Figure 7: Bind the DetailsView to the categoriesDataSource and Enable Inserting

If you converted the BrochurePath BoundField into a TemplateField through the Edit Fields dialog box, the
TemplateField includes an ItemTemplate, EditItemTemplate, and InsertItemTemplate. Only the
InsertItemTemplate is needed, however, so feel free to remove the other two templates. At this point your
DetailsView’s declarative syntax should look like the following:

<asp:DetailsView ID="NewCategory" runat="server" AutoGenerateRows="False"
DataKeyNames="CategoryID" DataSourceID="CategoriesDataSource"
DefaultMode="Insert">
<Fields>
<asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
InsertVisible="False" ReadOnly="True"
SortExpression="CategoryID" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
SortExpression="CategoryName" />
<asp:BoundField DataField="Description" HeaderText="Description"
SortExpression="Description" />
<asp:TemplateField HeaderText="Brochure" SortExpression="BrochurePath">
<InsertItemTemplate>
<asp:TextBox ID="TextBoxl" runat="server"
Text="<%# Bind ("BrochurePath") $%>'></asp:TextBox>
</InsertItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Picture"></asp:TemplateField>
<asp:CommandField ShowInsertButton="True" />
</Fields>
</asp:DetailsView>

8of17

Adding FileUpload Controls for the Brochure and Picture Fields

Presently, the Brochurepath TemplateField’s InsertItemTemplate contains a TextBox, while the picture
TemplateField does not contain any templates. We need to update these two TemplateField’s
InsertItemTemplates to use FileUpload controls.

From the DetailsView’s smart tag, choose the “Edit Templates” option and then select the BrochurePath
TemplateField’s InsertItemTemplate from the drop-down list. Remove the TextBox and then drag a FileUpload
control from the Toolbox into the template. Set the FileUpload control’s ID to BrochureUpload. Similarly, add a

FileUpload control to the Picture TemplateField’s InsertItemTemplate. Set this FileUpload control’s ID to
PictureUpload.

B35 ASPHET_Data_Tuterial_56_(C5 - Microsoft Visual Studio

Fie [% Yew ‘Webgts [Buld [Debug Formst Layowst Jook Wndow Community Helo Gddes
e-G-EFdd & D0 P @ oo =
B -r U - — o
% Mhm BiraryDatalLpl, . bview a5 - 3 | [Fropeites T
! _-_ ; o o | ewatogory Fleld IBeochise Insedt I -
L] Trisgeion s [| | &
A Wyperiink *.tl el
TE DropDowndist Fmﬁﬂﬂﬂ__________}"
ik Brodhurelpload
A7 ListBon m 1 '_n_:'_" -
] ChackBes Coavtent - Contantl ({Custom) [;‘:;L;Y B
CheckBolist o = | BorderColor 1
S Sadiikisn A!:Il:l a Category with a | i
P aduddinal st Picture and Brochure | e
Imaga | Cs5
o Trreageiiag ul | Enabled Trig
1 HewiCabagory - Fiekd[31 - Brochine EnabisTheming True
L] Tahie EnsbletiewStabs Trus
+— Bullstedist Insest Them Templata M For
ek F- w=§;;;ﬂ] FoeCioke [
| nrerad Height
7 Cabendse i b
. | TanInde a
ToodTo
Winde Ted b =i
C -:L#qurrél:lt‘! |.|‘i|:|l'il.i|1i Brochure . ()
| o || Progeannisbc nare of the conkrol.
»
o | e [caspdetaleeremateg o [SaspiPleusladefieipioa > ok, [PR, [Myse,. [Ee
T o Lk _ii:..: O syl
tem{s) Saved

Figure 8: Add a FileUpload Control to the InsertItemTemplate

After making these additions, the two TemplateField’s declarative syntax will be:

<asp:TemplateField HeaderText="Brochure" SortExpression="BrochurePath">
<InsertItemTemplate>
<asp:FileUpload ID="BrochureUpload" runat="server" />
</InsertItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Picture">
<InsertItemTemplate>
<asp:FileUpload ID="PictureUpload" runat="server" />
</InsertItemTemplate>
</asp:TemplateField>

When a user adds a new category, we want to ensure that the brochure and picture are of the correct file type. For

90of 17

the brochure, the user must supply a PDF. For the picture, we need the user to upload an image file, but do we
allow any image file or only image files of a particular type, such as GIFs or JPGs? In order to allow for different
file types, we’d need to extend the Categories schema to include a column that captures the file type so that this
type can be sent to the client through Response.ContentType in DisplayCategoryPicture.aspx. Since we don’t
have such a column, it would be prudent to restrict users to only providing a specific image file type. The
Categories table’s existing images are bitmaps, but JPGs are a more appropriate file format for images served
over the web.

If a user uploads an incorrect file type, we need to cancel the insert and display a message indicating the problem.
Add a Label Web control beneath the DetailsView. Set its ID property to UploadWarning, clear out its Text
property, set the CssClass property to “Warning”, and the Visible and EnableViewState properties to False.
The warning CSS class is defined in styles.css and renders the text in a large, red, italicized, bold font.

Note: Ideally, the CategoryName and Description BoundFields would be converted to TemplateFields and
their inserting interfaces customized. The Description inserting interface, for example, would likely be
better suited through a multi-line textbox. And since the categoryName column does not accept NULL values,
a RequiredFieldValidator should be added to ensure the user provides a value for the new category’s name.
These steps are left as an exercise to the reader. Refer back to Customizing the Data Modification Interface
for an in-depth look at augmenting the data modification interfaces.

Step 6: Saving the Uploaded Brochure to the Web Server’s File System

When the user enters the values for a new category and clicks the Insert button, a postback occurs and the inserting
workflow unfolds. First, the DetailsView’s ItemInserting event fires. Next, the ObjectDataSource’s Insert ()
method is invoked, which results in a new record being added to the Categories table. After that, the
DetailsView’s ItemInserted event fires.

Before the ObjectDataSource’s Insert () method is invoked, we must first ensure that the appropriate file types
were uploaded by the user and then save the brochure PDF to the web server’s file system. Create an event handler
for the DetailsView’s ItemInserting event and add the following code:

' Reference the FileUpload controls
Dim BrochureUpload As FileUpload = _
CType (NewCategory.FindControl ("BrochureUpload"), FileUpload)
If BrochureUpload.HasFile Then
' Make sure that a PDF has been uploaded
If String.Compare (System.IO.Path.GetExtension
(BrochureUpload.FileName), ".pdf", True) <> 0 Then
UploadWarning.Text =
"Only PDF documents may be used for a category's brochure."
UploadWarning.Visible = True
e.Cancel = True
Exit Sub
End If
End If

The event handler starts by referencing the BrochureUpload FileUpload control from the DetailsView’s templates.
Then, if a brochure has been uploaded, the uploaded file’s extension is examined. If the extension is not “.PDF”,
then a warning is displayed, the insert is cancelled, and the execution of the event handler ends.

Note: Relying on the uploaded file’s extension is not a sure-fire technique for ensuring that the uploaded file

is a PDF document. The user could have a valid PDF document with the extension .Brochure, or could have
taken a non-PDF document and given it a .pdf extension. The file’s binary content would need to be

10 of 17

programmatically examined in order to more conclusively verify the file type. Such thorough approaches,
though, are often overkill; checking the extension is sufficient for most scenarios.

As discussed in the Uploading Files tutorial, care must be taken when saving files to the file system so that one
user’s upload does not overwrite another’s. For this tutorial we will attempt to use the same name as the uploaded
file. If there already exists a file in the ~/Brochures directory with that same file name, however, we’ll append a
number at the end until a unique name is found. For example, if the user uploads a brochure file named Meats.pdf,
but there is already a file named Meats.pdf in the ~/Brochures folder, we’ll change the saved file name to
Meats-1.pdf. If that exists, we’ll try Meats-2.pdf, and so on, until a unique file name is found.

The following code uses the File.Exists (path) method to determine if a file already exists with the specified
file name. If so, it continues to try new file names for the brochure until no conflict is found.

Const BrochureDirectory As String = "~/Brochures/"

Dim brochurePath As String = BrochureDirectory & BrochureUpload.FileName

Dim fileNameWithoutExtension As String = _
System.IO.Path.GetFileNameWithoutExtension (BrochureUpload.FileName)

Dim iteration As Integer =1

While System.IO.File.Exists (Server.MapPath (brochurePath))
brochurePath = String.Concat (BrochureDirectory,
fileNameWithoutExtension, "-", iteration, ".pdf")
iteration += 1
End While

Once a valid file name has been found, the file needs to be saved to the file system and the ObjectDataSource’s
brochurePath InsertParameter value needs to be updated so that this file name is written to the database. As we
saw back in the Uploading Files tutorial, the file can be saved using the FileUpload control’s SaveAs (path)
method. To update the ObjectDataSource’s brochurepath parameter, use the e.values collection.

' Save the file to disk and set the value of the brochurePath parameter
BrochureUpload.SaveAs (Server.MapPath (brochurePath))
e.Values ("brochurePath") = brochurePath

Step 7: Saving the Uploaded Picture to the Database

To store the uploaded picture in the new Categories record, we need to assign the uploaded binary content to the
ObjectDataSource’s picture parameter in the DetailsView’s ItemInserting event. Before we make this
assignment, however, we need to first make sure that the uploaded picture is a JPG and not some other image type.
As in Step 6, let’s use the uploaded picture’s file extension to ascertain its type.

While the categories table allows NULL values for the Picture column, all categories currently have a picture.
Let’s force the user to provide a picture when adding a new category through this page. The following code checks
to ensure that a picture has been uploaded and that it has an appropriate extension.

' Reference the FileUpload controls
Dim PictureUpload As FileUpload = _

CType (NewCategory.FindControl ("PictureUpload"), FileUpload)
If PictureUpload.HasFile Then

' Make sure that a JPG has been uploaded

If String.Compare(System.IO.Path.GetExtension (PictureUpload.FileName),

".jpg", True) <> 0 AndAlso _
String.Compare (System.IO.Path.GetExtension (PictureUpload.FileName),

11o0f 17

".jpeg", True) <> 0 Then

UploadWarning.Text =
"Only JPG documents may be used for a category's picture."
UploadWarning.Visible = True
e.Cancel = True
Exit Sub
End If
Else
' No picture uploaded!
UploadWarning.Text =
"You must provide a picture for the new category."
UploadWarning.Visible = True
e.Cancel = True
Exit Sub
End If

This code should be placed before the code from Step 6 so that if there is a problem with the picture upload, the
event handler will terminate before the brochure file is saved to the file system.

Assuming that an appropriate file has been uploaded, assign the uploaded binary content to the picture parameter’s
value with the following line of code:

' Set the value of the picture parameter
e.Values ("picture") = PictureUpload.FileBytes

The Complete 1teminserting Event Handler

For completeness, here is the ItemInserting event handler in its entirety:

Protected Sub NewCategory ItemInserting
(sender As Object, e As DetailsViewInsertEventArgs)
Handles NewCategory.ItemInserting
' Reference the FileUpload controls
Dim PictureUpload As FileUpload = _
CType (NewCategory.FindControl ("PictureUpload"), FileUpload)
If PictureUpload.HasFile Then
' Make sure that a JPG has been uploaded
If String.Compare(System.IO.Path.GetExtension (PictureUpload.FileName),
".jpg", True) <> 0 AndAlso _
String.Compare (System.IO.Path.GetExtension (PictureUpload.FileName),
".jpeg", True) <> 0 Then

UploadWarning.Text =
"Only JPG documents may be used for a category's picture."
UploadWarning.Visible = True
e.Cancel = True
Exit Sub
End If
Else
' No picture uploaded!
UploadWarning.Text =
"You must provide a picture for the new category."
UploadWarning.Visible = True

12 of 17

e.Cancel = True
Exit Sub
End If

' Set the value of the picture parameter
e.Values ("picture") = PictureUpload.FileBytes

' Reference the FileUpload controls
Dim BrochureUpload As FileUpload = _
CType (NewCategory.FindControl ("BrochureUpload"), FileUpload)
If BrochureUpload.HasFile Then
' Make sure that a PDF has been uploaded
If String.Compare (System.IO.Path.GetExtension (BrochureUpload.FileName),
".pdf", True) <> 0 Then

UploadWarning.Text =
"Only PDF documents may be used for a category's brochure."
UploadWarning.Visible = True

e.Cancel = True
Exit Sub
End If
Const BrochureDirectory As String = "~/Brochures/"

Dim brochurePath As String = BrochureDirectory & BrochureUpload.FileName
Dim fileNameWithoutExtension As String = _
System.IO.Path.GetFileNameWithoutExtension (BrochureUpload.FileName)

Dim iteration As Integer =1

While System.IO.File.Exists (Server.MapPath (brochurePath))
brochurePath = String.Concat (BrochureDirectory,
fileNameWithoutExtension, "-", iteration, ".pdf")
iteration += 1
End While

' Save the file to disk and set the value of the brochurePath parameter
BrochureUpload.SaveAs (Server.MapPath (brochurePath))
e.Values ("brochurePath") = brochurePath
End If
End Sub

Step 8: Fixing the DisplayCategoryPicture.aspx Page

Let’s take a moment to test out the inserting interface and ItemInserting event handler that was created over the
last few steps. Visit the UploadInDetailsvView.aspx page through a browser and attempt to add a category, but
omit the picture, or specify a non-JPG picture or a non-PDF brochure. In any of these cases, an error message will
be displayed and the insert workflow cancelled.

13 0f 17

A Untitled Page - Microsoft Internet Explorer E r__F'E"EE
! Fie Edt Wew Favorites Tooks Help [

Qe+ 3 - B B fa | S oeach Faverbas &0 Iv iy [= € = 0 in

Acicrors |48 hbtpflocsbost 131 14/ASFAET _Daba_Tuboriel_56_CSfBinaryData/UplosdinDetsis¥im, asp v)G
A1 204 cgory w

and Brochure

Basic Reparting
Simple Display

Dedaratiye
Parameters

Sertng Farameter
Walues

Picture |_Browse.
[neart Cancel

Only PDF documents may be
used for a category's brochure.

Filtering Reports
Filter by Drop-Dowr:
List
Master-Detalls-
Dietadls

Category |[Description|Brochure|

Master/Detall Across
S e
2 St Arinks L 7S »

€ ¥
&] one %y Local intrarmt

Figure 9: A Warning Message is Displayed If an Invalid File Type is Uploaded

Once you have verified that the page requires a picture to be uploaded and won’t accept non-PDF or non-JPG files,
add a new category with a valid JPG picture, leaving the Brochure field empty. After clicking the Insert button, the
page will postback and a new record will be added to the categories table with the uploaded image’s binary
contents stored directly in the database. The GridView is updated and shows a row for the newly added category,
but, as Figure 10 shows, the new category’s picture is not rendered correctly.

3 Untitied Page - Micrasofll Internet Explorer E“‘E_I r: E?l
Ba Edt ¥ew Faeorbes Took Help [

) Back - # (3] fo O Seach FiFanites £ . | - & ™ g HE

Agdress #'_ hikp:fRoralnst: 31 L4ASPRET _Data_Tutonal_56_C5(EneryDatanipnadinlet slses. s
— J Fethng ExarglEs ST curd. Broctars
Efficlently Pagng
Through Large:
Result Sets
Sortng Data at the

s geafood Sesweed and fish 1o Brochure

CLsteMIZING the Ayallable

Sorhag User
Inkesfacs

2 e GrnEita = e Mo Brochure | —
:_I':_1_|r_ LIstom Veggles vummy vegetables! P
Lizirng ButtenSslds
ared Butbons M

Taawaiend s P o

& e Locad intranet

Figure 10: The New Category’s Picture is not Displayed

The reason the new picture is not displayed is because the DisplayCategoryPicture.aspx page that returns a

14 of 17

specified category’s picture is configured to process bitmaps that have an OLE header. This 78 byte header is
stripped from the pPicture column’s binary contents before they are sent back to the client. But the JPG file we just
uploaded for the new category does not have this OLE header; therefore, valid, necessary bytes are being removed
from the image’s binary data.

Since there are now both bitmaps with OLE headers and JPGs in the Categories table, we need to update
DisplayCategoryPicture.aspx so that it does the OLE header stripping for the original eight categories and
bypasses this stripping for the newer category records. In our next tutorial we’ll examine how to update an existing
record’s image, and we’ll update all of the old category pictures so that they are JPGs. For now, though, use the
following code in DisplayCategoryPicture.aspx to strip the OLE headers only for those original eight

categories:

Protected Sub Page Load(sender As Object, e As EventArgs) Handles Me.Load
Dim categoryID As Integer = Convert.ToInt32 (Request.QueryString("CategoryID"))

' Get information about the specified category

Dim categoryAPI As New CategoriesBLL()

Dim categories As Northwind.CategoriesDataTable =
categoryAPI.GetCategoryWithBinaryDataByCategoryID (categoryID)

Dim category As Northwind.CategoriesRow = categories (0)

If categoryID <= 8 Then
' Output HTTP headers providing information about the binary data

Response.ContentType = "image/bmp"

' Output the binary data

' But first we need to strip out the OLE header

Const OleHeaderLength As Integer = 78

Dim strippedImagelLength As Integer = _
category.Picture.Length - OleHeaderLength

Dim strippedImageData (strippedImagelength) As Byte

Array.Copy (category.Picture, OleHeaderLength,
strippedImageData, 0, strippedImagelength)

Response.BinaryWrite (strippedImageData)

Else
' For new categories, images are JPGs...
' Output HTTP headers providing information about the binary data
Response.ContentType = "image/jpeg"

' Output the binary data
Response.BinaryWrite (category.Picture)
End If
End Sub

With this change, the JPG image is now rendered correctly in the GridView.

150f 17

2 Untitled Page - Microsoft Internet Explorer

Fie Edt View Pavorites Toos Hep
i Back W [@ #) Seanch Favorites 49] € » i 35
A -t": httpoffiocalhost: 31 14JASPMET_Data Tuborial 56 CSBnaryDataUplosdinDetailsVies sspe
Sorting Crata at the No
BLL or BaL
Seafood ?;gwEfd i Brochure
Custormszing the: Ay alable
Sorting Liser
Interface
. . M
Using ButtonFislds \eggies g Brochure
and Buttons in vegetablest o anle
Basic Examples _ : ij
£] Dane %d Local intranet

Figure 11: The JPG Images for New Categories are Correctly Rendered

Step 9: Deleting the Brochure in the Face of an Exception

One of the challenges of storing binary data on the web server’s file system is that it introduces a disconnect
between the data model and its binary data. Therefore, whenever a record is deleted, the corresponding binary data
on the file system must also be removed. This can come into play when inserting, as well. Consider the following
scenario: a user adds a new category, specifying a valid picture and brochure. Upon clicking the Insert button, a
postback occurs and the DetailsView’s ItemInserting event fires, saving the brochure to the web server’s file
system. Next, the ObjectDataSource’s Insert () method is invoked, which calls the CategoriesBLL class’s
InsertWithPicture method, which calls the CategoriesTableAdapter’s InsertWithPicture method.

Now, what happens if the database is offline, or if there is an error in the INSERT SQL statement? Clearly the
INSERT will fail, so no new category row will be added to the database. But we still have the uploaded brochure
file sitting on the web server’s file system! This file needs to be deleted in the face of an exception during the
inserting workflow.

As discussed previously in the Handling BLL- and DAL-Level Exceptions in an ASP.NET Page tutorial, when an
exception is thrown from within the depths of the architecture it is bubbled up through the various layers. At the

Presentation Layer, we can determine if an exception has occurred from the DetailsView’s ItemInserted event.
This event handler also provides the values of the ObjectDataSource’s InsertParameters. Therefore, we can
create an event handler for the ItemInserted event that checks if there was an exception and, if so, deletes the file
specified by the ObjectDataSource’s brochurePath parameter:

Protected Sub NewCategory ItemInserted
(sender As Object, e As DetailsViewInsertedEventArgs)
Handles NewCategory.ItemInserted

If e.Exception IsNot Nothing Then
' Need to delete brochure file, if it exists
If e.Values ("brochurePath") IsNot Nothing Then
System.IO.File.Delete (Server.MapPath

16 of 17

(e.Values ("brochurePath") .ToString()))
End If
End If
End Sub

Summary

There are a number of steps that must be performed in order to provide a web-based interface for adding records
that include binary data. If the binary data is being stored directly into the database, chances are you’ll need to
update the architecture, adding specific methods to handle the case where binary data is being inserted. Once the
architecture has been updated, the next step is creating the inserting interface, which can be accomplished using a
DetailsView that has been customized to include a FileUpload control for each binary data field. The uploaded data
can then be saved to the web server’s file system or assigned to a data source parameter in the DetailsView’s
ItemInserting event handler.

Saving binary data to the file system requires more planning than saving data directly into the database. A naming
scheme must be chosen in order to avoid one user’s upload overwriting another’s. Also, extra steps must be taken
to delete the uploaded file if the database insert fails.

We now have the ability to add new categories to the system with a brochure and picture, but we’ve yet to look at
how to update an existing category’s binary data or how to correctly remove the binary data for a deleted category.
We’ll explore these two topics in the next tutorial.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Dave Gardner,
Teresa Murphy, and Bernadette Leigh. Interested in reviewing my upcoming MSDN articles? If so, drop me a line
at mitchell@4GuysFromRolla.com.

17 of 17

