This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Uploading
Files

Introduction

All of the tutorials we’ve examined so far have worked exclusively with text data. However, many applications
have data models that capture both text and binary data. An online dating site might allow users to upload a picture
to associate with their profile. A recruiting website might let users upload their resume as a Microsoft Word or
PDF document.

Working with binary data adds a new set of challenges. We must decide how the binary data is stored in the
application. The interface used for inserting new records has to be updated to allow the user to upload a file from
their computer and extra steps must be taken to display or provide a means for downloading a record’s associated
binary data. In this tutorial and the next three we’ll explore how to hurdle these challenges. At the end of these
tutorials we’ll have built a fully functional application that associates a picture and PDF brochure with each
category. In this particular tutorial we’ll look at different techniques for storing binary data and explore how to
enable users to upload a file from their computer and have it saved on the web server’s file system.

Note: Binary data that is part of an application’s data model is sometimes referred to as a BLOB, an
acronym for Binary Large OBject. In these tutorials I have chosen to use the terminology “binary data”,
although the term BLOB is synonymous.

Step 1: Creating the Working with Binary Data Web Pages

Before we begin to explore the challenges associated with adding support for binary data, let’s first take a moment
to create the ASP.NET pages in our website project that we’ll need for this tutorial and the next three. Start by
adding a new folder named BinaryData. Next, add the following ASP.NET pages to that folder, making sure to
associate each page with the site.master master page:

Default.aspx
FileUpload.aspx
DisplayOrDownloadData.aspx
UploadInDetailsView.aspx

UpdatingAndDeleting.aspx

1 of 19

Solution Explorer - T, JASPRET _Dat.., - 3 X

'-|_"1 Eall: . 5 @

[E JC:,... .\ ASPNET_Data_Tutorial_54_C5", :
#- L= App_Code

*- [App_Data

& [&pp_Theres

#- [BasicReparting

=~ | BinarvDaka

,;] Default, aspax

,j DisplayorDownloadData, aspx
,j Filellpload. aspx

,j IpdatingAndDeleting. aspx
j ploadInDet ailsYiew, asp:x
[CustomButtons

[CustomButtonsDatalistRepeater
[CustormFarmatting

[DatalistRepeaterBasics

[DataListRepeaterFikering

[EditDeleteDatalisk

[EditInsertDelete

[Enhancedaridyiew

[Filkering

[Paging&ndSarting

[PagingSortingDatalistRepeater
[5qlDataSource

[UserCantraols

H Cefault, asp:x

j Sike.master

Af sbyles.css

b Web.Corfig

| web.sitemap

e o e o o [) o P R o o e
BB

[+

_i:i]Su:uluti...-ié',-"Per... s Serv, . B Class...

Figure 1: Add the ASP.NET Pages for the Binary Data-Related Tutorials

Like in the other folders, Default.aspx in the BinaryData folder will list the tutorials in its section. Recall that
the sectionLevelTutorialListing.ascx User Control provides this functionality. Therefore, add this User
Control to Default.aspx by dragging it from the Solution Explorer onto the page’s Design view.

20f 19

%% ASPMET_Data_Tutorial_54_CS - Microsaft Visual Studia

e Edt View Webste Buld Debug Fomet Lavout Took Window Communky Help Adding
o E W@ s B ok b o oo 2
4] B S P WA _SARI N -
v IS | - x| Sohiion Explors .l x
B = e e e L ~ el Ee
g | il tmage I it | LITOT1Aal: P 5, ASPNET Data_Tutarial_S4_C5Y
i Imageidan & L) dpp_Code
=] Takie # App_Data
s + L dpp_Themss
:= Bullstndiis G [BaskReporting
o HdderRaid = 5 Bpardiata
7| Lkerd Content - Corentd {Custom) *
= - + __'IMJ nadData.aspx
& 3 &, S
= cotare orking with oL - Uiz ST
&) Filelipload Binaw Data &] UploadinetalsView s
b irand 2] ¥ [CustomEiktons
2 i utorials + [CustomiutbonsDiatalistlepester
i & [TustonForal bing
l.,'j'| Hukiien BT T + | DkalistPepeaterfaars
T Pandd Databaund - Databduah v L -
5 & Dafabound - Dakabound : _:; ?idl,: |:I mﬁ::i::hrq
ol ENER A, & Databound - Databaund :
] Wew B e T # [EditlresrtDelets
3 DR s # [Enhancedieidees
;l Subchbobion & Databowund - Databound 4 [Pkeving
it Localze [Pagngandsorting
-ﬂ' CheckBoxValcdator + | PagngSortingDakal st Repeaber
'ﬂ' CheckBin istv.skelate [SgDataSouris
: = o Ut oniols
. + B4 SectiorlevalTuborislisting, sscx
* Panber i [Defauk, aspx
il Gridvies +] Sbemester
1 matalist Aj Stes.css
5] pakadsiiew & _;. Veieb Coriig
= Formiviesr * pidab
Bepesber w| <hodv’>| <aspioontent#conbentl > | | <hEs | ,_-'g';.-.u.___ ﬁr- - -"'1=.--. . ;_ Taes
= Cutpe| gl Ervor List __L_.'lern'ﬂ-'h.'-l.ﬂ aFrnr-ﬁ-'- ks 1
Pk

Figure 2: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add these pages as entries to the web. sitemap file. Specifically, add the following markup after the
“Enhancing the GridView” <siteMapNode>:

<siteMapNode
title="Working with Binary Data"
url="~/BinaryData/Default.aspx"
description="Extend the data model to include collecting binary data.">

<siteMapNode
title="Uploading Files"
url="~/BinaryData/FileUpload.aspx"
description="Examine the different ways to store binary data on the
web server and see how to accept uploaded files from users
with the FileUpload control." />
<siteMapNode
title="Display or Download Binary Data"
url="~/BinaryData/DisplayOrDownloadData.aspx"
description="Let users view or download the captured binary data." />
<siteMapNode
title="Adding New Binary Data"
url="~/BinaryData/UploadInDetailsView.aspx"
description="Learn how to augment the inserting interface to
include a FileUpload control." />

30f 19

<siteMapNode
title="Updating and Deleting Existing Binary Data"
url="~/BinaryData/UpdatingAndDeleting.aspx"
description="Learn how to update and delete existing binary data." />

</siteMapNode>

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on the left
now includes items for the Working with Binary Data tutorials.

3 Home - Micrnsn[E]’E| E' |EJ E'

File Edit Miew Favorites

EINFIRe

: Address !@ hitp:fflocalhost: 1 VI e

Uploading Files

Display or Download
Binary Data

Adding Mew Binary
Cata

Updating and
Deleting Existing
Binary Data :

iiéLDcaHnuanet

Figure 3: The Site Map Now Includes Entries for the Working with Binary Data Tutorials

Step 2: Deciding Where to Store the Binary Data

Binary data that is associated with the application’s data model can be stored in one of two places: on the web
server’s file system with a reference to the file stored in the database; or directly within the database itself (see
Figure 4). Each approach has its own set of pros and cons and merits a more detailed discussion.

4 of 19

Products Database Table

Product|D ProduciMame ImapePath
Option 1: Store the | e magesTea 09
. 2 Cranges =images/Oranges jpg
Binary Data on the 3

Web Server’s File
System with a Path
to the File in the
Database

=/images/Tea.jpg

— —fimages/Oranges jpg

Products Database Table

ProductiD Producthame Imagelata
Option 2: Store the _ we=
Binary Data in a ' o '6_
Table Column S
Directly Within the : O "
Database

Figure 4: Binary Data Can Be Stored On the File System or Directly in the Database

Imagine that we wanted to extend the Northwind database to associate a picture with each product. One option
would be to store these image files on the web server’s file system and record the path in the Products table. With
this approach, we’d add an ImagePath column to the Products table of type varchar (200), perhaps. When a user
uploaded a picture for Chai, that picture might be stored on the web server’s file system at ~/Images/Tea.jpg,
where ~ represents the application’s physical path. That is, if the web site is rooted at the physical path
C:\Websites\Northwind\, ~/Images/Tea.jpg would be equivalent to
C:\Websites\Northwind\Images\Tea.jpg. After uploading the image file, we’d update the Chai record in the
Products table so that its ImagePath column referenced the path of the new image. We could use
“~/Images/Tea.jpg” or just “Tea.jpg” if we decided that all product images would be placed in the application’s
Images folder.

The main advantages of storing the binary data on the file system are:

¢ Ease of implementation — as we’ll see shortly, storing and retrieving binary data stored directly within the
database involves a bit more code than when working with data through the file system. Additionally, in
order for a user to view or download binary data they must be presented with a URL to that data. If the data
resides on the web server’s file system, the URL is straightforward. If the data is stored in the database,
however, a web page needs to be created that will retrieve and return the data from the database.

e Wider access to the binary data —the binary data may need to be accessible to other services or
applications, ones that cannot pull the data from the database. For example, the images associated with each
product might also need to be available to users through FTP, in which case we’d want to store the binary

50f 19

data on the file system.
¢ Performance — if the binary data is stored on the file system, the demand and network congestion between
the database server and web server will be less than if the binary data is stored directly within the database.

The main disadvantage of storing binary data on the file system is that it decouples the data from the database. If a
record is deleted from the Products table, the associated file on the web server’s file system is not automatically
deleted. We must write extra code to delete the file or the file system will become cluttered with unused, orphaned
files. Furthermore, when backing up the database, we must make sure to make backups of the associated binary
data on the file system, as well. Moving the database to another site or server poses similar challenges.

Alternatively, binary data can be stored directly in a Microsoft SQL Server 2005 database by creating a column of
type varbinary. Like with other variable length data types, you can specify a maximum length of the binary data
that can be held in this column. For example, to reserve at most 5,000 bytes use varbinary (5000); varbinary
(Max) allows for the maximum storage size, about 2 GB.

The main advantage of storing binary data directly in the database is the tight coupling between the binary data and
the database record. This greatly simplifies database administration tasks, like backups or moving the database to a
different site or server. Also, deleting a record automatically deletes the corresponding binary data. There are also
more subtle benefits of storing the binary data in the database. See Storing Binary Files Directly in the Database
Using ASP.NET 2.0 for a more in-depth discussion.

Note: In Microsoft SQL Server 2000 and earlier versions, the varbinary data type had a maximum limit of
8,000 bytes. To store up to 2 GB of binary data the image data type needs to be used instead. With the
addition of Max in SQL Server 2005, however, the image data type has been deprecated. It’s still supported
for backwards compatibility, but Microsoft has announced that the image data type will be removed in a
future version of SQL Server.

If you are working with an older data model you may see the image data type. The Northwind database’s
Categories table has a Picture column that can be used to store the binary data of an image file for the
category. Since the Northwind database has its roots in Microsoft Access and earlier versions of SQL Server,
this column is of type image.

For this tutorial and the next three, we’ll use both approaches. The Categories table already has a Picture
column for storing the binary content of an image for the category. We’ll add an additional column,
BrochurePath, to store a path to a PDF on the web server’s file system that can be used to provide a print-quality,
polished overview of the category.

Step 3: Adding the Brochurepath Column to the categories Table

Currently the Categories table has only four columns: CategoryID, CategoryName, Description, and Picture. In
addition to these fields, we need to add a new one that will point to the category’s brochure (if one exists). To add
this column, go to the Server Explorer, drill down into the Tables, right-click on the Categories table and choose
“Open Table Definition” (see Figure 5). If you do not see the Server Explorer, bring it up by selecting the Server
Explorer option from the View menu, or hit Ctrl+Alt+S.

Add a new varchar (200) column to the categories table that is named BrochurePath and allows NULLs and
click the Save icon (or hit Ctrl+S).

6 of 19

%3 ASPNET_Data_Tutorial_54_CS - Microsoft Visual Studio =M =13

Fle Edt 'Yew Project Puld [ebwg Data TableDesigner Jools Window Community Help fddins
W - =" N Fe Y &l - b (# locabost %
R R = B SR | &
% dbo.Categori. ORTHWNDMDF)* 5 X Server Explorer -3 X
oy Codumn Mame [iaka Type Ao Nulls] b |
g ¥ CategorylD int El = [l Bata Connections i
; Cabegoryharma mvarchar(15) E - & MORTHYND, MDF
Dascription ket | - L Dﬂ:ﬂbﬂsﬂ Chiagrams
& [F Tables
A2 L238 [= 1 Categories
{_} BrochurePath] warchar(200]) [+] 7] CategorylD
i | 2] Categoryhlame
Z] Drescrigkion
2] Picture
ol Properties # CustomerCustomerDema
e Y ¥ CustomerDemographics
(5= 8 - | Customers
Bl (General) # #) Emplovess
(Mame) Brochurefath ¥ =l EmgploveaTerriceiss
Alowe baulis Yes ¥ Orcer Dekails
Data Type varchar - Orders
Diefaul Value or Binding £ _2 Products
Length 200 # d Regon
1 Tahle Desioner ¥ # 3 shiepers
(General) + j‘ Suppliers
+ | Tertories
o Views
e 1 Skarsd Drme sk was e
cgsohuti..., | Froy Fmcery,.. |[F3ches
(5] Outpur | @) Ervor List | [Panding Checkins (55 Find Resuls |
Ready

Figure 5: Add a BrochurePath Column to the categories Table

Step 4: Updating the Architecture to Use the Picture and BrochurePath
Columns

The categoriesDataTable in the Data Access Layer (DAL) currently has four Datacolumns defined:
CategoryID, CategoryName, Description, and NumberOfProducts. When we originally designed this DataTable
in the Creating a Data Access Layer tutorial, the CategoriesDataTable only had the first three columns; the
NumberOfProducts column was added in the Master/Detail Using a Bulleted List of Master Records with a Details
Datal ist tutorial.

As discussed in Creating a Data Access Layer, the DataTables in the Typed DataSet make up the business objects.
The TableAdapters are responsible for communicating with the database and populating the business objects with
the query results. The CategoriesDataTable is populated by the CategoriesTableAdapter, which has three data
retrieval methods:

e GetCategories () — executes the TableAdapter’s main query and returns the CategoryID, CategoryName,
and Description fields of all records in the Categories table. The main query is what is used by the auto-
generated Insert and Update methods.

e GetCategoryByCategoryID (categoryID) — returns the CategoryID, CategoryName, and Description
fields of the category whose CategoryID equals categorylD.

e GetCategoriesAndNumberOfProducts () - returns the CategoryID, CategoryName, and Description
fields for all records in the Categories table. Also uses a subquery to return the number of products

7 of 19

associated with each category.

Notice that none of these queries return the Categories table’s Picture or BrochurePath columns; nor does the
CategoriesDataTable provide DataColumns for these fields. In order to work with the Picture and BrochurePath
properties, we need to first add them to the CategoriesDataTable and then update the CategoriesTableAdapter
class to return these columns.

Adding the Picture and BrochurePath DataColumn§

Start by adding these two columns to the CategoriesDataTable. Right-click on the CategoriesbDataTable’s
header, select Add from the context menu and then choose the Column option. This will create a new DataColumn
in the DataTable named Columnl. Rename this column to Picture. From the Properties window, set the
DataColumn’s DataType property to “System.Byte []1” (this is not an option in the drop-down list; you need to

type it in).

#2 ASPMET Data_Tutorial 54 CS - Microsoft Visual Studio

Fle Edt “iew ‘Website Build Debug Data Tools ‘Window Community Help Addins
@i S @ %GB 9 - b oot
b App_Code /DAL /Northwind.xsd*
) 0 Picture Colurn -
& By Categories ::"-‘::_hl =
- ' CategorylD AllowDENJ Tripe
= CategoryMames fugtolncrement Fale
Diescription AutolrcrementSeed 0
Offroducts AurolncrementStep 1
Pichure Caption Bicture
'8l CategoriesTableadapte { DstaType System.Byte[] i
S Fil 'GHCE |E;s {'} DataTimeMode UnspecifiedLocal
sl FilyCategorylD, GetCategoryByCategorylD (DCate. . Defaultvalue <0oh>
B FilbwkhNumberOfProducks, GebCategoriesfndMumber .. Expression
Maedength -1
e Picture:
¥ alue {Throw exception)
ReadOniy False
Source
Liricque False
DataType
Indicabes the Eype of data stored in this column.
w
£ } .."-E.'_'._'{l_t. _'PI-"'PrI:Ip... 'rgf-:: io _q.-; hass
(5] Outpes || gy Ervor List __%F‘E"PEII‘N;I Checkins [S) Find Results 1
Ready

Figure 6: Create a DataColumn Named Picture whose DataType is System.Byte[]
Add another DataColumn to the DataTable, naming it BrochurePath using the default DataType value

(System.String).

Returning the picture and Brochurerath Values from the TableAdapter

8 0f 19

With these two DataColumns added to the CategoriesDataTable, we’re ready to update the
CategoriesTableAdapter. We could have both of these column values returned in the main TableAdapter query,
but this would bring back the binary data every time the GetCategories () method was invoked. Instead, let’s
update the main TableAdapter query to bring back BrochurepPath and create an additional data retrieval method
that returns a particular category’s Picture column.

To update the main TableAdapter query, right-click on the CategoriesTableadapter’s header and choose the
Configure option from the context menu. This brings up the Table Adapter Configuration Wizard, which we’ve
seen in a number of past tutorials. Update the query to bring back the Brochurepath and click Finish.

TableAdapter Configuration Wizard

Enter a SOL Statement h
The TableAdapter uses the data returned by this stakement to fill ks DataTable. .

Type vour SOL statement or use the Query Builder ko construct it, What data should be loaded into the bable?
What data should be loaded into the tahle?

SELECT CakegorvID, CategoryMame, Desoriptionf BrochurePath

FROM Categories

Advanced Optlons, .. Query Builder. .

[‘:Erevh:uus “ Mext = Jl Finish J[Cancel J

Figure 7: Update the Column List in the SELECT Statement to Also Return BrochurePath

When using ad-hoc SQL statements for the TableAdapter, updating the column list in the main query updates the
column list for all of the SELECT query methods in the TableAdapter. That means the GetCategoryByCategoryID
(category1D) method has been updated to return the Brochurepath column, which might be what we intended.
However, it also updated the column list in the GetCategoriesAndNumberOfProducts () method, removing the
subquery that returns the number of products for each category! Therefore, we need to update this method’s
SELECT query. Right-click on the GetCategoriesAndNumberOfProducts () method, choose Configure, and revert
the SELECT query back to its original value:

SELECT CategoryID, CategoryName, Description,
(SELECT COUNT (*)
FROM Products p
WHERE p.CategoryID = c.CategoryID)
as NumberOfProducts
FROM Categories c

90of 19

Next, create a new TableAdapter method that returns a particular category’s Picture column value. Right-click on
the CategoriesTableAdapter’s header and choose the Add Query option to launch the TableAdapter Query
Configuration Wizard. The first step of this wizard asks us if we want to query data using an ad-hoc SQL
statement, a new stored procedure, or an existing one. Select “Use SQL statements” and click Next. Since we will
be returning a row, choose the “SELECT which returns rows” option from the second step.

TableAdapter Query Configuration Wizard

Choose a Command Type » =
TableAdapter query uses SOL statements or a stored procedure,

How should the TableAdapter query access the database?

Speciy a SELECT statement o load data,
() Create new stored procedure

Speciy a SELECT statement, and the wizard will generate a new stored procedure to sslect records.
() Use existing stored procedure

Choose an existing stored procedure,

)| o | o)

Figure 8: Select the “Use SQL statements” Option

10 of 19

TableAdapter Query Configuration Wizard

Choose a Query Type s
Choose the bype of query to be generated : |

What type of SOL guery would you like to use?
(%) SELECT which returns rows |
Feturns one or many rows of ColUmns.
() SELECT which returns a single value
Returns a single value (For exempls, Sum, Count, or any other aggregate function).

) UPDATE
Changes existing data in a table.

) DELETE

Removes rows from a table.
() INSERT

Adds & new row bo a table.

(eporos) Cieen]

Figure 9: Since the Query Will Return a Record from the Categories Table, Choose “SELECT which
returns rows”

In the third step, enter the following SQL query and click Next:

SELECT CategoryID, CategoryName, Description, BrochurePath, Picture
FROM Categories
WHERE CategoryID = (@CategoryID

The last step is to choose the name for the new method. Use FillCategoryWithBinaryDataByCategoryID and
GetCategoryWithBinaryDataByCategoryID for the Fill a DataTable and Return a DataTable patterns,
respectively. Click Finish to complete the wizard.

110f 19

TableAdapter Query Configuration Wizard

Choose Methods to Generate h

The TableAdapter methods kad and save data bebween vour application and the ==
database, :

Which methods do you want to add to the TableAdapter?
Fill a DataTable

Creates a method that takes a DataTable or DataSet as a parameter and executes the S0L statement or
SELECT stored procedurs enterad on the previous pans.

Method name: | FillCateqgory\WithBinaryDat abyCategoryID
Return a DataTable

Creates a method that returns a new DataTsble Filled wikh the results of the SOL statement or SELECT skored
procedure entered on the previous page.

Method name: GetCategorv'ﬁ'ithﬁarﬁataﬂy(atengmi

[{Ereviul.ﬁ j[Mext = Jl_ Finish I[Cancel]

Figure 10: Choose the Names for the TableAdapter’s Methods

Note: After completing the Table Adapter Query Configuration Wizard you may see a dialog box informing
you that “the new command text returns data with schema different from the schema of the main query.” In
short, the wizard is noting that the TableAdapter’s main query — GetCategories () — returns a different
schema than the one we just created. But this is what we want, so you can disregard this message.

Also, keep in mind that if you are using ad-hoc SQL statements and use the wizard to change the
TableAdapter’s main query at some later point in time, it will modify the
GetCategoryWithBinaryDataByCategoryID method’s SELECT statement’s column list to include just those
columns from the main query (that is, it will remove the Picture column from the query). You will have to
manually update the column list to return the picture column, similar to what we did with the
GetCategoriesAndNumberOfProducts () method earlier in this step.

After adding the two DataColumns to the CategoriesDataTable and the

GetCategoryWithBinaryDataByCategoryID method to the CategoriesTableAdapter, these classes in the
Typed DataSet Designer should look like the screenshot in Figure 11.

12 of 19

E. Categories ®]

¥ CategoryID
Categoryiame
Descripkion
MumberOfProducts
Picture
BrochurePath

(o}

[y Fill, GetCateqories ()

s FilleyCateqoryID, GetCategoryByCategoryID (@ CategoryID)

s FillZakeqoryWwithBinaryDataByCateqoryID, GetCategarywithBinaryDataBy CategaryID (@ CategaryID)
sl FillwithMumberOFProducts, GetCategoriesAndMumberOfProducts

Figure 11: The DataSet Designer Includes the New Columns and Method

Updating the Business Logic Layer (BLL)

With the DAL updated, all that remains is to augment the Business Logic Layer (BLL) to include a method for the
new CategoriesTableAdapter method. Add the following method to the CategoriesBLL class:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, False)>

Public Function GetCategoryWithBinaryDataByCategoryID(categoryID As Integer)
As Northwind.CategoriesDataTable

Return Adapter.GetCategoryWithBinaryDataByCategoryID (categoryID)
End Function

Step 5: Uploading a File From the Client to the Web Server

When collecting binary data, oftentimes this data is supplied by an end user. To capture this information, the user
needs to be able to upload a file from their computer to the web server. The uploaded data then needs to be
integrated with the data model, which may mean saving the file to the web server’s file system and adding a path to
the file in the database, or writing the binary contents directly into the database. In this step we’ll look at how to
allow a user to upload files from their computer to the server. In the next tutorial we’ll turn our attention to
integrating the uploaded file with data model.

ASP.NET 2.0’s new FileUpload Web control provides a mechanism for users to send a file from their computer to
the web server. The FileUpload control renders as an <input> element whose type attribute is set to “file”, which
browsers display as a textbox with a Browse button. Clicking the Browse button brings up a dialog box from which
the user can select a file. When the form is posted back, the selected file’s contents are sent along with the
postback. On the server-side, information about the uploaded file is accessible through the FileUpload control’s
properties.

To demonstrate uploading files, open the FileUpload.aspx page in the BinaryData folder, drag a FileUpload
control from the Toolbox onto the Designer, and set the control’s 1D property to UploadTest. Next, add a Button
Web control setting its ID and Text properties to Uploadbutton and “Upload Selected File”, respectively. Finally,
place a Label Web control beneath the Button, clear out its Text property and set its ID property to
UploadDetails

13 of 19

#2 ASPNET Data_Tulorial 54_CS - Microsoft Visual Studio =1 =13
File Edit ‘ew ebsite Buld Debug Fomat Layout Tools Window Community Help Addins
@--Sdd 4D « - 1 - D0 | b o) | [# locahost *

4

Bo7 U LA 7 B |z

SRR, X N N ot i v R
WF Bop_Code DAL Mot - x| Fropertes -0 %

| UploadTest System. Wb LI Webd =

z - CheckdBoxlist

5 § T ETRS

{=} Radobutton Content - Confentl (Custom) ——
= RadioButtond kst - = EpleRling =

Gl tmeoe | Upload a File D) Uekoadres
. =

i Tmagetap BackColr [

=] Table Choose s file | BorderColoe []

e] T,

i= Bullated ist (Browse.. BorderStyle MokSek

' HidderField Bordersiickh

B Lkeral Upload Selectad Fils] Eﬁg:ﬁ T

- i FuE

™ Calendar fuploadoetails] EnablaThering True

AdRotator Erbleiiewsta True

B Font
44 Wizard Forecolr [] .
& #nl (10)
T Mukiview || Pregrammatic name of the cantral,
7] panet ¥
-<) Placetoldar o p= |u¢-:ﬂhmhadluptnadﬁt}: sa... [SPpr... et T;;'.
=] cukpit o Error List |3 Parding Chedkins 5 Find Resuks |
Ready

Figure 12: Add a FileUpload Control to the ASP.NET Page

Figure 13 shows this page when viewed through a browser. Note that clicking the Browse button brings up a file
selection dialog box, allowing the user to pick a file from their computer. Once a file has been selected, clicking the
“Upload Selected File” button causes a postback that sends the selected file’s binary content to the web server.

14 of 19

3 Uniftind Page - Microsoft Internel Explanes
B Ede Mew CFeiiees Took Heb
o F T S sesch MFmeores £ (3 fn - LA NG

s 8] hetp JBocahost TEASPRET Duta_Tetoial_54_CSMsnarCutalFlelziond i

Upload a File

Shoase o Fie: =]
[Cgfvad Slactad Fiz__|
Lok e | 3 Mart Lo o Bt Lk - gl 2006 % 4 (30 0% -
E 13 G LA I _IBE0 NG -,
My Alecent
-, - v e
"r..a
Disikian
! MG _Shed PG Lol
M Drommerid
- | 1 :
M Hietwds Fitm s '.l Doen
S of pee: P -| Cancal |
W
e Local intrane

Figure 13: The User Can Select a File to Upload from their Computer to the Server

On postback, the uploaded file can be saved to the file system or its binary data can be worked with directly
through a Stream. For this example, let’s create a ~/Brochures folder and save the uploaded file there. Start by

adding the Brochures folder to the site as a subfolder of the root directory. Next, create an event handler for the

UploadButton’s Click event and add the following code:
Protected Sub UploadButton Click(sender As Object, e As EventArgs)
Handles UploadButton.Click

If UploadTest.HasFile = False Then
' No file uploaded!
UploadDetails.Text = "Please first select a file to upload..."
Else
' Display the uploaded file's details
UploadDetails.Text = String.Format (_
"Uploaded file: {0}
" & _
"File size (in bytes): {1:NO}
" & _
"Content-type: {2}",
UploadTest.FileName,
UploadTest.FileBytes.Length,
UploadTest.PostedFile.ContentType)

' Save the file

Dim filePath As String = _
Server.MapPath ("~/Brochures/" & UploadTest.FileName)

UploadTest.SaveAs (filePath)
End If

15 of 19

End Sub

The FileUpload control provides a variety of properties for working with the uploaded data. For instance, the
HasFile property indicates whether a file was uploaded by the user, while the FileBytes property provides access
to the uploaded binary data as an array of bytes. The Click event handler starts by ensuring that a file has been
uploaded. If a file has been uploaded, the Label shows the name of the uploaded file, its size in bytes, and its
content-type.

Note: To ensure that the user uploads a file you can check the HasFile property and display a warning if it’s
False, or you may use the RequiredFieldValidator control instead.

The FileUpload’s saveAs (filepPath) saves the uploaded file to the specified filePath. filePath must be a physical
path (C:\Websites\Brochures\SomeFile.pdf) rather than a virtual path (/Brochures/SomeFile.pdf). The
Server.MapPath (virtpath) method takes a virtual path and returns its corresponding physical path. Here, the
virtual path is ~/Brochures/ fileName, Where fileName is the name of the uploaded file. See Using
Server.MapPath for more information on virtual and physical paths and using Server.MapPath.

After completing the c1ick event handler, take a moment to test out the page in a browser. Click the Browse
button and select a file from your hard drive and then click the “Upload Selected File” button. The postback will
send the contents of the selected file to the web server, which will then display information about the file before
saving it to the ~/Brochures folder. After uploading the file, return to Visual Studio and click the Refresh button
in the Solution Explorer. You should see the file you just uploaded in the ~/Brochures folder!

2 Untitled Page - Microsoft Internet Explorer

HE LB

Fle Edt View Favortes Tooks Help

p Back ~] x & 7 | O Search Favarites I g y._rj T & o
Agddress @htl‘n:i.l'lucﬁosl‘!1?231'.'5.SPMET_Data_TMDﬂ§I_54_CS}Binan-'Data,l'Filei_lpﬁ:uad.aSDX " .GD
~
Working with Data Tutorials Heme> werking
with Binary Data >
o ~_Uploading Files
Upload a File
Simple Display Choose a file:
Declarative C\Documents and Sej
Parameters
- ’ E Upload Selected Fila l
Setting Parameter
yalues
. Uploaded file: Evolutionvalley.jpg
. File size {in bytes): 37,039
Filter by Drop-Down Content-type: image/pjpeg
List
v‘
% Local intranet

Figure 14: The File Evolutionvalley.jpg Has Been Uploaded to the Web Server

16 of 19

Solution Explorer

e T

_'? C:h. W ASPNET _Data_Tutorial_54_ 05,
_=| App_Code

3 App_Data

= App_Themes

| BasicR.eparting

.7 BinaryData

= j Default, aspx

j DisplayOrDownloadlata, aspa

j FileLplaad. asp
j pdatingAndDeleting, asp:x
=] UploadInDetailsiew, aspx:

= & Brochures
|8 Ewalutiontalley. jpg

[LEL0MBULLO NS
| CustomButtonsDatalistRepeater
| CustomFarmatting

| DatalistRepeaterBasics

[DataliskRepeaterFiltering

[EditDeleteDatalist

[EditInsertDelete

[EnhancedGridiiewmw

[Filtering

[PagingAnd3orking

| PagingsortingDatalistRepeater
[5SglDatasource

[UserControls

j Default, aspx

] site.master

Al Styles.css

e Weh.Config

|28 Web.siternap

:3'-_: :3'-_: :3'-_: :3'-_:

[H

:E|'-.: :E|'-.: :E|'-.: :E|'-.: :E|'-.: :E|'-.: :Ef-.: :Ef-.: :Ef-.: :Ef-.: :Ef-.: :Ef-.: :Ef-.: :Ef-.: :.:!'-_:

Ssoluti,.. | Prop.,, | Sery.., [BERClass..,

Figure 15: Evolutionvalley. jpg Was Saved to the ~/Brochures Folder

Subtleties with Saving Uploaded Files to the File System

There are several subtleties that must be addressed when saving uploading files to the web server’s file system.
First, there’s the issue of security. To save a file to the file system, the security context under which the ASP.NET
page is executing must have Write permissions. The ASP.NET Development Web Server runs under the context of
your current user account. If you are using Microsoft’s Internet Information Services (IIS) as the web server, the
security context depends on the version of IIS and its configuration.

Another challenge of saving files to the file system revolves around naming the files. Currently, our page saves all
of the uploaded files to the ~/Brochures directory using the same name as the file on the client’s computer. If User
A uploads a brochure with the name Brochure.pdf, the file will be saved as ~/Brochure/Brochure.pdf. But
what if sometime later User B uploads a different brochure file that happens to have the same filename
(Brochure.pdf)? With the code we have now, User A’s file will be overwritten with User B’s upload.

17 of 19

There are a number of techniques for resolving file name conflicts. One option is to prohibit uploading a file if
there already exists one with the same name. With this approach, when User B attempts to upload a file named
Brochure.pdf, the system would not save their file and instead display a message informing User B to rename the
file and try again. Another approach is to save the file using a unique file name, which could be a globally unique
identifier (GUID) or the value from the corresponding database record’s primary key column(s) (assuming that the
upload is associated with a particular row in the data model). In the next tutorial we’ll explore these options in
more detail.

Challenges Involved with Very Large Amounts of Binary Data

These tutorials assume that the binary data captured is modest in size. Working with very large amounts of binary
data — files that are several megabytes or larger — introduces new challenges that are beyond the scope of these
tutorials. For example, by default ASP.NET will reject uploads of more than 4 MB, although this can be configured
through the <httpRuntime> element in Web.config. IIS imposes its own file upload size limitations, too. See IIS
Upload File Size for more information. Furthermore, the time taken to upload large files might exceed the default
110 seconds ASP.NET will wait for a request. There are also memory and performance issues that arise when
working with large files.

The FileUpload control is impractical for large file uploads. As the file’s contents are being posted to the server,
the end user must patiently wait without any confirmation that their upload is progressing. This is not so much an
issue when dealing with smaller files that can be uploaded in a few seconds, but can be an issue when dealing with
larger files that may take minutes to upload. There are a variety of third-party file upload controls that are better
suited for handling large uploads and many of these vendors provide progress indicators and ActiveX upload
managers that present a much more polished user experience.

If your application needs to handle large files, you’ll need to carefully investigate the challenges and find suitable
solutions for your particular needs.

Summary

Building an application that needs to capture binary data introduces a number of challenges. In this tutorial we
explored the first two: deciding where to store the binary data and allowing a user to upload binary content through
a web page. Over the next three tutorials, we’ll see how to associate the uploaded data with a record in the database
as well as how to display the binary data alongside its text data fields.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following resources:

Using Large-Value Data Types

FileUpload Control QuickStarts

The ASP.NET 2.0 FileUpload Server Control
The Dark Side of File Uploads

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or

18 of 19

via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Teresa Murphy
and Bernadette Leigh. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

19 of 19

