Karar Ormanı Regresyonu

Karar ormanı algoritmasını kullanarak regresyon modeli oluşturur

Kategori: model Başlat-gerileme

Not

Için geçerlidir: Machine Learning Studio (klasik)

Bu içerik yalnızca Studio (klasik) ile ilgili. Benzer sürükle ve bırak modülleri bir tasarımcıya Azure Machine Learning eklendi. İki sürümü karşılaştıran bu makalede daha fazla bilgi bulabilirsiniz.

Modüle genel bakış

Bu makalede, karar ağaçlarının bir listesini temel alan bir regresyon modeli oluşturmak için Azure Machine Learning Studio (klasik) ' de karar ormanı gerileme modülünün nasıl kullanılacağı açıklanır.

Modeli yapılandırdıktan sonra, etiketli bir veri kümesi ve model eğitimi modülünü kullanarak modeli eğmeniz gerekir. Daha sonra eğitilen model, tahminleri yapmak için kullanılabilir. Alternatif olarak, bir etiketli veri kümesine karşı çapraz doğrulama için eğitimli olmayan model çapraz doğrulama modeline geçirilebilir.

Karar ormanları, regresyon görevlerinde nasıl çalışır?

Karar ağaçları, her bir örnek için bir dizi basit test gerçekleştiren ve bir yaprak düğümüne (karar) kadar bir ikili ağaç veri yapısına geçiş yapan, parametrik olmayan modellerdir.

Karar ağaçları şu avantajları sunar:

  • Eğitim ve tahmin sırasında hem hesaplama hem de bellek kullanımında etkilidir.

  • Bunlar, doğrusal olmayan karar sınırlarını temsil edebilirler.

  • Tümleşik Özellik seçimi ve sınıflandırması gerçekleştirirler ve gürültülü Özellikler olması halinde esnektir.

Bu regresyon modeli, karar ağaçlarının bir listesini içerir. Regresyon kararı ormanındaki her bir ağaç, bir tahmin olarak bir Gauss dağılımı çıktı. Modeldeki tüm ağaçlar için Birleşik dağıtıma en yakın bir Gauss dağılımı bulmak üzere ağaçları bir toplama işlemi gerçekleştirilir.

Bu algoritmanın ve uygulamasının teorik çerçevesi hakkında daha fazla bilgi için şu makaleye bakın: karar verme ormanları: sınıflandırma, gerileme, yoğunluk tahmini, bildirim, eski öğrenme ve Semi-Supervised öğrenimi Için Birleşik bir çerçeve

Karar ormanı regresyon modelini yapılandırma

  1. Deneme için karar ormanı gerileme modülünü ekleyin. Modülü Machine Learning, modeli Başlat ve gerileme altında Studio 'da (klasik) bulabilirsiniz.

  2. Modül özelliklerini açın ve yeniden örnekleme yöntemi için, bireysel ağaçları oluşturmak için kullanılan yöntemi seçin. Bagging veya çoğaltma seçeneklerinden birini belirleyebilirsiniz.

    • Bagging: Bagging de önyükleme toplama olarak adlandırılır. Regresyon kararı ormanındaki her ağaç, tahmin yöntemiyle bir Gauss dağılımı çıkarır. Toplama, her iki dakika, tek tek ağaçlar tarafından döndürülen tüm Gaussians birleştirilerek verilen Gaussians 'in karışımındaki süre ile eşleşen bir Gauss bulmadır.

      Daha fazla bilgi için bkz. önyükleme toplamaIçin Vikipedi girişi.

    • Çoğaltma: çoğaltmadaki her ağaç, tam olarak aynı giriş verilerinde eğitilir. Her ağaç düğümü için hangi bölünmüş koşulun kullanıldığını belirleme rasgele kalır ve ağaçlar birbirinden farklı olur.

      Çoğalt seçeneğiyle eğitim süreci hakkında daha fazla bilgi için bkz . görüntü işleme ve tıbbi görüntü analizi için karar ormanları. Criminisi ve J. Shotton. Sprte 2013..

  3. Model oluşturma modunu ayarlayarak modelin eğitilme şeklini belirleyin.

    • Tek parametre

      Modeli nasıl yapılandırmak istediğinizi biliyorsanız bağımsız değişken olarak belirli bir değer kümesi sağlayabilirsiniz. Bu değerleri deneme göre öğrenmiş veya bunları kılavuz olarak almış olabilirsiniz.

    • Parametre aralığı

      En iyi parametrelerden emin değilseniz, en iyi yapılandırmayı bulmak için birden çok değer belirterek ve bir parametre süpürme kullanarak en uygun parametreleri bulabilirsiniz.

      Model hiper parametreleri ayarlama , belirttiğiniz ayarların tüm olası birleşimlerinin yineleyeceğini ve en iyi sonuçları üreten ayarların birleşimini belirlemenizi sağlar.

  4. Karar ağaçları sayısı için, tam olarak birleştirmek üzere oluşturulacak karar ağacının toplam sayısını belirtin. Daha fazla karar ağacı oluşturarak daha iyi tedarik sağlayabilirsiniz, ancak eğitim süresi artar.

    İpucu

    Bu değer aynı zamanda eğitilen modeli görselleştirirken gösterilecek ağaç sayısını da denetler. tek bir ağacı görmek veya yazdırmak isterseniz, değeri 1 olarak ayarlayabilirsiniz. Bununla birlikte, bu, yalnızca bir ağacın üretileceği (ilk parametre kümesini içeren ağaç) ve başka bir yinelemenin gerçekleştirilmeyeceği anlamına gelir.

  5. Karar ağaçlarının maksimum derinliği için, herhangi bir karar ağacının maksimum derinliğini sınırlamak üzere bir sayı yazın. Ağacın derinliğini artırmak, bazı fazla sığdırma ve daha fazla eğitim süresi riskinde duyarlık artırabilir.

  6. Düğüm başına rastgele bölme sayısı için, ağacın her düğümünü oluştururken kullanılacak bölme sayısını yazın. Bölünmüş , ağaç (node) düzeyindeki özelliklerin rastgele bölündüğü anlamına gelir.

  7. Yaprak düğüm başına minimum örnek sayısı için, bir ağaçta herhangi bir Terminal düğümü (yaprak) oluşturmak için gereken minimum durum sayısını belirtin.

    Bu değeri artırarak, yeni kurallar oluşturma eşiğini artırırsınız. Örneğin, varsayılan 1 değeri ile tek bir durum bile yeni bir kuralın oluşturulmasına neden olabilir. Değeri 5 ' e artırırsanız eğitim verilerinin aynı koşulları karşılayan en az 5 durum içermesi gerekir.

  8. Eğitim veya doğrulama kümelerinde bilinmeyen değerler için bir grup oluşturmak üzere kategorik özellikler için bilinmeyen değerlere Izin ver seçeneğini belirleyin.

    Bu seçeneğin işaretini kaldırırsanız model yalnızca eğitim verilerinde bulunan değerleri kabul edebilir. Önceki durumda, model bilinen değerler için daha az kesin olabilir, ancak yeni (bilinmeyen) değerler için daha iyi tahminler sağlayabilir.

  9. Etiketli bir veri kümesini bağlayın, en fazla iki sonuç içeren tek bir etiket sütunu seçin ve modeli eğitme veya model hiper parametrelerini ayarla' ya bağlanın.

    • Tek parametreye bir eğitmen modu seçeneği ayarlarsanız, modeli eğitme modülünü kullanarak modeli eğitme.

    • Parametre aralığına oluşturma eğitmen modu seçeneğini ayarlarsanız modeli Ayarla hiper parametrelerinikullanarak modeli eğitme.

  10. Denemeyi çalıştırın.

Sonuçlar

Eğitim tamamlandıktan sonra:

  • Her yinelemede oluşturulan ağacı görmek için eğitim modülünün çıktısına sağ tıklayın ve Görselleştir' i seçin.

  • Her bir düğümün kurallarını görmek için her bir ağaca tıklayın ve bölünmeleri inceleyin.

  • Traind modelinin anlık görüntüsünü kaydetmek için eğitim modülünün çıktısına sağ tıklayın ve eğitilen model olarak kaydet' i seçin. Modelin bu kopyası, denemenin art arda çalıştırmaları üzerinde güncelleştirilmedi.

Örnekler

Regresyon modellerinin örnekleri için Cortana Intelligence GalleryŞu örnek denemeleri bakın:

Teknik notlar

Bu bölümde, sık sorulan soruların uygulama ayrıntıları, ipuçları ve yanıtları yer almaktadır.

  • Modeli Eğiteetmekiçin bir parametre aralığı geçirirseniz, parametre aralığı listesindeki yalnızca ilk değeri kullanır.

  • Tek bir parametre değerleri kümesini ayarlama modeli hiper parametreleri modülüne geçirirseniz, her parametre için bir dizi ayar beklerken, değerleri yoksayar ve öğrenici için varsayılan değerleri kullanın.

  • Parametre aralığı seçeneğini belirleyin ve herhangi bir parametre için tek bir değer girerseniz, belirtilen tek değer, diğer parametrelerin bir değer aralığı üzerinde değişse bile, tarama boyunca kullanılacaktır.

Kullanım ipuçları

Sınırlı veriniz varsa veya modeli eğitmek için harcanan süreyi en aza indirmek istiyorsanız, şu ayarları deneyin:

Sınırlı eğitim kümesi. Eğitim kümesi sınırlı sayıda örnek içeriyorsa:

  • Çok sayıda karar ağacı kullanarak karar ormanını oluşturun (örneğin, 20 ' den fazla)

  • Yeniden örnekleme için Bagging seçeneğini kullanın

  • Düğüm başına çok sayıda rastgele bölme belirtin (örneğin, 1000 ' den fazla)

Sınırlı eğitim süresi. Eğitim kümesi çok sayıda örnek içeriyorsa ve eğitim süresi sınırlıysa:

  • Daha az sayıda karar ağacının kullanıldığı karar ormanını oluşturun (örneğin, 5-10)

  • Yeniden örnekleme için Çoğalt seçeneğini kullanın

  • Düğüm başına az sayıda rastgele bölme belirtin (örneğin, 100 'den az)

Modül parametreleri

Name Aralık Tür Varsayılan Description
Yeniden örnekleme yöntemi herhangi biri ResamplingMethod İlişkilendirme Yeniden örnekleme yöntemi seçin
Karar ağacının sayısı >= 1 Tamsayı 8 Ensede oluşturmak için karar ağacının sayısını belirtin
Karar ağaçlarının maksimum derinliği >= 1 Tamsayı 32 Ensede oluşturulabilecek herhangi bir karar ağacının maksimum derinliğini belirtin
Düğüm başına rastgele bölme sayısı >= 1 Tamsayı 128 En uygun bölünmeden seçilen düğüm başına oluşturulan bölme sayısını belirtin
Yaprak düğüm başına minimum örnek sayısı >= 1 Tamsayı 1 Yaprak düğüm oluşturmak için gereken en düşük eğitim örneği sayısını belirtin
Kategorik özellikler için bilinmeyen değerlere izin ver herhangi biri Boole true Var olan kategorik özelliklerin bilinmeyen değerlerinin yeni, ek bir özellikle eşleştirilemeyeceğini belirtin

Çıkışlar

Ad Tür Description
Eğitilen model ILearner arabirimi Eğitilen regresyon modeli

Ayrıca bkz.

Regresyon

A-Z modül listesi