OrderablePartitioner<TSource> 类

定义

表示将可排序数据源拆分为多个分区的特定方式。

generic <typename TSource>
public ref class OrderablePartitioner abstract : System::Collections::Concurrent::Partitioner<TSource>
public abstract class OrderablePartitioner<TSource> : System.Collections.Concurrent.Partitioner<TSource>
type OrderablePartitioner<'Source> = class
    inherit Partitioner<'Source>
Public MustInherit Class OrderablePartitioner(Of TSource)
Inherits Partitioner(Of TSource)

类型参数

TSource

集合中的元素的类型。

继承
OrderablePartitioner<TSource>

示例

以下示例演示如何实现一次返回一个元素的可排序分区程序:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.Concurrent;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace OrderablePartitionerDemo
{

    // Simple partitioner that will extract one (index,item) pair at a time,
    // in a thread-safe fashion, from the underlying collection.
    class SingleElementOrderablePartitioner<T> : OrderablePartitioner<T>
    {
        // The collection being wrapped by this Partitioner
        IEnumerable<T> m_referenceEnumerable;

        // Class used to wrap m_index for the purpose of sharing access to it
        // between an InternalEnumerable and multiple InternalEnumerators
        private class Shared<U>
        {
            internal U Value;

            public Shared(U item)
            {
                Value = item;
            }
        }

        // Internal class that serves as a shared enumerable for the
        // underlying collection.
        private class InternalEnumerable : IEnumerable<KeyValuePair<long, T>>, IDisposable
        {
            IEnumerator<T> m_reader;
            bool m_disposed = false;
            Shared<long> m_index = null;

            // These two are used to implement Dispose() when static partitioning is being performed
            int m_activeEnumerators;
            bool m_downcountEnumerators;

            // "downcountEnumerators" will be true for static partitioning, false for
            // dynamic partitioning.
            public InternalEnumerable(IEnumerator<T> reader, bool downcountEnumerators)
            {
                m_reader = reader;
                m_index = new Shared<long>(0);
                m_activeEnumerators = 0;
                m_downcountEnumerators = downcountEnumerators;
            }

            public IEnumerator<KeyValuePair<long, T>> GetEnumerator()
            {
                if (m_disposed)
                    throw new ObjectDisposedException("InternalEnumerable: Can't call GetEnumerator() after disposing");

                // For static partitioning, keep track of the number of active enumerators.
                if (m_downcountEnumerators) Interlocked.Increment(ref m_activeEnumerators);

                return new InternalEnumerator(m_reader, this, m_index);
            }

            IEnumerator IEnumerable.GetEnumerator()
            {
                return ((IEnumerable<KeyValuePair<long, T>>)this).GetEnumerator();
            }

            public void Dispose()
            {
                if (!m_disposed)
                {
                    // Only dispose the source enumerator if you are doing dynamic partitioning
                    if (!m_downcountEnumerators)
                    {
                        m_reader.Dispose();
                    }
                    m_disposed = true;
                }
            }

            // Called from Dispose() method of spawned InternalEnumerator.  During
            // static partitioning, the source enumerator will be automatically
            // disposed once all requested InternalEnumerators have been disposed.
            public void DisposeEnumerator()
            {
                if (m_downcountEnumerators)
                {
                    if (Interlocked.Decrement(ref m_activeEnumerators) == 0)
                    {
                        m_reader.Dispose();
                    }
                }
            }
        }

        // Internal class that serves as a shared enumerator for
        // the underlying collection.
        private class InternalEnumerator : IEnumerator<KeyValuePair<long, T>>
        {
            KeyValuePair<long, T> m_current;
            IEnumerator<T> m_source;
            InternalEnumerable m_controllingEnumerable;
            Shared<long> m_index = null;
            bool m_disposed = false;

            public InternalEnumerator(IEnumerator<T> source, InternalEnumerable controllingEnumerable, Shared<long> index)
            {
                m_source = source;
                m_current = default(KeyValuePair<long, T>);
                m_controllingEnumerable = controllingEnumerable;
                m_index = index;
            }

            object IEnumerator.Current
            {
                get { return m_current; }
            }

            KeyValuePair<long, T> IEnumerator<KeyValuePair<long, T>>.Current
            {
                get { return m_current; }
            }

            void IEnumerator.Reset()
            {
                throw new NotSupportedException("Reset() not supported");
            }

            // This method is the crux of this class.  Under lock, it calls
            // MoveNext() on the underlying enumerator, grabs Current and index,
            // and increments the index.
            bool IEnumerator.MoveNext()
            {
                bool rval = false;
                lock (m_source)
                {
                    rval = m_source.MoveNext();
                    if (rval)
                    {
                        m_current = new KeyValuePair<long, T>(m_index.Value, m_source.Current);
                        m_index.Value = m_index.Value + 1;
                    }
                    else
                    {
                        m_current = default(KeyValuePair<long, T>);
                    }
                }
                return rval;
            }

            void IDisposable.Dispose()
            {
                if (!m_disposed)
                {
                    // Delegate to parent enumerable's DisposeEnumerator() method
                    m_controllingEnumerable.DisposeEnumerator();
                    m_disposed = true;
                }
            }
        }

        // Constructor just grabs the collection to wrap
        public SingleElementOrderablePartitioner(IEnumerable<T> enumerable)
            : base(true, true, true)
        {
            // Verify that the source IEnumerable is not null
            if (enumerable == null)
                throw new ArgumentNullException("enumerable");

            m_referenceEnumerable = enumerable;
        }

        // Produces a list of "numPartitions" IEnumerators that can each be
        // used to traverse the underlying collection in a thread-safe manner.
        // This will return a static number of enumerators, as opposed to
        // GetOrderableDynamicPartitions(), the result of which can be used to produce
        // any number of enumerators.
        public override IList<IEnumerator<KeyValuePair<long, T>>> GetOrderablePartitions(int numPartitions)
        {
            if (numPartitions < 1)
                throw new ArgumentOutOfRangeException("NumPartitions");

            List<IEnumerator<KeyValuePair<long, T>>> list = new List<IEnumerator<KeyValuePair<long, T>>>(numPartitions);

            // Since we are doing static partitioning, create an InternalEnumerable with reference
            // counting of spawned InternalEnumerators turned on.  Once all of the spawned enumerators
            // are disposed, dynamicPartitions will be disposed.
            var dynamicPartitions = new InternalEnumerable(m_referenceEnumerable.GetEnumerator(), true);
            for (int i = 0; i < numPartitions; i++)
                list.Add(dynamicPartitions.GetEnumerator());

            return list;
        }

        // Returns an instance of our internal Enumerable class.  GetEnumerator()
        // can then be called on that (multiple times) to produce shared enumerators.
        public override IEnumerable<KeyValuePair<long, T>> GetOrderableDynamicPartitions()
        {
            // Since we are doing dynamic partitioning, create an InternalEnumerable with reference
            // counting of spawned InternalEnumerators turned off.  This returned InternalEnumerable
            // will need to be explicitly disposed.
            return new InternalEnumerable(m_referenceEnumerable.GetEnumerator(), false);
        }

        // Must be set to true if GetDynamicPartitions() is supported.
        public override bool SupportsDynamicPartitions
        {
            get { return true; }
        }
    }

    class Program
    {
        static void Main()
        {
            //
            // First a fairly simple visual test
            //
            var someCollection = new string[] { "four", "score", "and", "twenty", "years", "ago" };
            var someOrderablePartitioner = new SingleElementOrderablePartitioner<string>(someCollection);
            Parallel.ForEach(someOrderablePartitioner, (item, state, index) =>
            {
                Console.WriteLine("ForEach: item = {0}, index = {1}, thread id = {2}", item, index, Thread.CurrentThread.ManagedThreadId);
            });

            //
            // Now a test of static partitioning, using 2 partitions and 2 tasks
            //
            var staticPartitioner = someOrderablePartitioner.GetOrderablePartitions(2);

            // staticAction will consume the shared enumerable
            int partitionerListIndex = 0;
            Action staticAction = () =>
            {
                int myIndex = Interlocked.Increment(ref partitionerListIndex) - 1;
                var enumerator = staticPartitioner[myIndex];
                while (enumerator.MoveNext())
                    Console.WriteLine("Static partitioning: item = {0}, index = {1}, thread id = {2}",
                        enumerator.Current.Value, enumerator.Current.Key, Thread.CurrentThread.ManagedThreadId);
                enumerator.Dispose();
            };

            // Now launch two of them
            Parallel.Invoke(staticAction, staticAction);

            //
            // Now a more rigorous test of dynamic partitioning (used by Parallel.ForEach)
            //
            Console.WriteLine("OrderablePartitioner test: testing for index mismatches");
            List<int> src = Enumerable.Range(0, 100000).ToList();
            SingleElementOrderablePartitioner<int> myOP = new SingleElementOrderablePartitioner<int>(src);

            int counter = 0;
            bool mismatch = false;
            Parallel.ForEach(myOP, (item, state, index) =>
            {
                if (item != index) mismatch = true;
                Interlocked.Increment(ref counter);
            });

            if (mismatch) Console.WriteLine("OrderablePartitioner Test: index mismatch detected");

            Console.WriteLine("OrderablePartitioner test: counter = {0}, should be 100000", counter);
        }
    }
}
Imports System.Collections.Concurrent
Imports System.Threading
Imports System.Threading.Tasks

Module OrderablePartitionerDemo


    ' Simple partitioner that will extract one (index,item) pair at a time, 
    ' in a thread-safe fashion, from the underlying collection.
    Class SingleElementOrderablePartitioner(Of T)
        Inherits OrderablePartitioner(Of T)
        ' The collection being wrapped by this Partitioner
        Private m_referenceEnumerable As IEnumerable(Of T)

        ' Class used to wrap m_index for the purpose of sharing access to it
        ' between an InternalEnumerable and multiple InternalEnumerators
        Private Class [Shared](Of U)
            Friend Value As U

            Public Sub New(ByVal item As U)
                Value = item
            End Sub
        End Class

        ' Internal class that serves as a shared enumerable for the
        ' underlying collection.
        Private Class InternalEnumerable
            Implements IEnumerable(Of KeyValuePair(Of Long, T))
            Implements IDisposable

            Private m_reader As IEnumerator(Of T)
            Private m_disposed As Boolean = False
            Private m_index As [Shared](Of Long) = Nothing

            ' These two are used to implement Dispose() when static partitioning is being performed
            Private m_activeEnumerators As Integer
            Private m_downcountEnumerators As Boolean

            ' "downcountEnumerators" will be true for static partitioning, false for
            ' dynamic partitioning. 
            Public Sub New(ByVal reader As IEnumerator(Of T), ByVal downcountEnumerators As Boolean)
                m_reader = reader
                m_index = New [Shared](Of Long)(0)
                m_activeEnumerators = 0
                m_downcountEnumerators = downcountEnumerators
            End Sub

            Public Function GetEnumerator() As IEnumerator(Of KeyValuePair(Of Long, T)) _
                Implements IEnumerable(Of System.Collections.Generic.KeyValuePair(Of Long, T)).GetEnumerator

                If m_disposed Then
                    Throw New ObjectDisposedException("InternalEnumerable: Can't call GetEnumerator() after disposing")
                End If

                ' For static partitioning, keep track of the number of active enumerators.
                If m_downcountEnumerators Then
                    Interlocked.Increment(m_activeEnumerators)
                End If

                Return New InternalEnumerator(m_reader, Me, m_index)
            End Function

            Private Function GetEnumerator2() As IEnumerator Implements IEnumerable.GetEnumerator
                Return DirectCast(Me, IEnumerable(Of KeyValuePair(Of Long, T))).GetEnumerator()
            End Function

            Public Sub Dispose() Implements IDisposable.Dispose
                If Not m_disposed Then
                    ' Only dispose the source enumerator if you are doing dynamic partitioning
                    If Not m_downcountEnumerators Then
                        m_reader.Dispose()
                    End If
                    m_disposed = True
                End If
            End Sub

            ' Called from Dispose() method of spawned InternalEnumerator. During
            ' static partitioning, the source enumerator will be automatically
            ' disposed once all requested InternalEnumerators have been disposed.
            Public Sub DisposeEnumerator()
                If m_downcountEnumerators Then
                    If Interlocked.Decrement(m_activeEnumerators) = 0 Then
                        m_reader.Dispose()
                    End If
                End If
            End Sub
        End Class

        ' Internal class that serves as a shared enumerator for 
        ' the underlying collection.
        Private Class InternalEnumerator
            Implements IEnumerator(Of KeyValuePair(Of Long, T))
            Private m_current As KeyValuePair(Of Long, T)
            Private m_source As IEnumerator(Of T)
            Private m_controllingEnumerable As InternalEnumerable
            Private m_index As [Shared](Of Long) = Nothing
            Private m_disposed As Boolean = False


            Public Sub New(ByVal source As IEnumerator(Of T), ByVal controllingEnumerable As InternalEnumerable, ByVal index As [Shared](Of Long))
                m_source = source
                m_current = Nothing
                m_controllingEnumerable = controllingEnumerable
                m_index = index
            End Sub

            Private ReadOnly Property Current2() As Object Implements IEnumerator.Current
                Get
                    Return m_current
                End Get
            End Property

            Private ReadOnly Property Current() As KeyValuePair(Of Long, T) Implements IEnumerator(Of KeyValuePair(Of Long, T)).Current
                Get
                    Return m_current
                End Get
            End Property

            Private Sub Reset() Implements IEnumerator.Reset
                Throw New NotSupportedException("Reset() not supported")
            End Sub

            ' This method is the crux of this class. Under lock, it calls
            ' MoveNext() on the underlying enumerator, grabs Current and index, 
            ' and increments the index.
            Private Function MoveNext() As Boolean Implements IEnumerator.MoveNext
                Dim rval As Boolean = False
                SyncLock m_source
                    rval = m_source.MoveNext()
                    If rval Then
                        m_current = New KeyValuePair(Of Long, T)(m_index.Value, m_source.Current)
                        m_index.Value = m_index.Value + 1
                    Else
                        m_current = Nothing
                    End If
                End SyncLock
                Return rval
            End Function

            Private Sub Dispose() Implements IDisposable.Dispose
                If Not m_disposed Then
                    ' Delegate to parent enumerable's DisposeEnumerator() method
                    m_controllingEnumerable.DisposeEnumerator()
                    m_disposed = True
                End If
            End Sub

        End Class

        ' Constructor just grabs the collection to wrap
        Public Sub New(ByVal enumerable As IEnumerable(Of T))
            MyBase.New(True, True, True)

            ' Verify that the source IEnumerable is not null
            If enumerable Is Nothing Then
                Throw New ArgumentNullException("enumerable")
            End If

            m_referenceEnumerable = enumerable
        End Sub

        ' Produces a list of "numPartitions" IEnumerators that can each be
        ' used to traverse the underlying collection in a thread-safe manner.
        ' This will return a static number of enumerators, as opposed to
        ' GetOrderableDynamicPartitions(), the result of which can be used to produce
        ' any number of enumerators.
        Public Overloads Overrides Function GetOrderablePartitions(ByVal numPartitions As Integer) As IList(Of IEnumerator(Of KeyValuePair(Of Long, T)))
            If numPartitions < 1 Then
                Throw New ArgumentOutOfRangeException("NumPartitions")
            End If

            Dim list As New List(Of IEnumerator(Of KeyValuePair(Of Long, T)))(numPartitions)

            ' Since we are doing static partitioning, create an InternalEnumerable with reference
            ' counting of spawned InternalEnumerators turned on. Once all of the spawned enumerators
            ' are disposed, dynamicPartitions will be disposed.
            Dim dynamicPartitions = New InternalEnumerable(m_referenceEnumerable.GetEnumerator(), True)
            For i As Integer = 0 To numPartitions - 1
                list.Add(dynamicPartitions.GetEnumerator())
            Next

            Return list
        End Function

        ' Returns an instance of our internal Enumerable class. GetEnumerator()
        ' can then be called on that (multiple times) to produce shared enumerators.
        Public Overloads Overrides Function GetOrderableDynamicPartitions() As IEnumerable(Of KeyValuePair(Of Long, T))
            ' Since we are doing dynamic partitioning, create an InternalEnumerable with reference
            ' counting of spawned InternalEnumerators turned off. This returned InternalEnumerable
            ' will need to be explicitly disposed.
            Return New InternalEnumerable(m_referenceEnumerable.GetEnumerator(), False)
        End Function

        ' Must be set to true if GetDynamicPartitions() is supported.
        Public Overloads Overrides ReadOnly Property SupportsDynamicPartitions() As Boolean
            Get
                Return True
            End Get
        End Property
    End Class

    Class Program
        Shared Sub Main()
            '
            ' First a fairly simple visual test
            '
            Dim someCollection = New String() {"four", "score", "and", "twenty", "years", "ago"}
            Dim someOrderablePartitioner = New SingleElementOrderablePartitioner(Of String)(someCollection)
            Parallel.ForEach(someOrderablePartitioner,
                             Sub(item, state, index)
                                 Console.WriteLine("ForEach: item = {0}, index = {1}, thread id = {2}", item, index, Thread.CurrentThread.ManagedThreadId)
                             End Sub)

            '
            ' Now a test of static partitioning, using 2 partitions and 2 tasks
            '
            Dim staticPartitioner = someOrderablePartitioner.GetOrderablePartitions(2)

            ' staticAction will consume the shared enumerable
            Dim partitionerListIndex As Integer = 0
            Dim staticAction As Action =
                Sub()
                    Dim myIndex As Integer = Interlocked.Increment(partitionerListIndex) - 1
                    Dim enumerator = staticPartitioner(myIndex)
                    While enumerator.MoveNext()
                        Console.WriteLine("Static partitioning: item = {0}, index = {1}, thread id = {2}", enumerator.Current.Value, enumerator.Current.Key, Thread.CurrentThread.ManagedThreadId)
                    End While
                    enumerator.Dispose()
                End Sub

            ' Now launch two of them
            Parallel.Invoke(staticAction, staticAction)

            '
            ' Now a more rigorous test of dynamic partitioning (used by Parallel.ForEach)
            '
            Console.WriteLine("OrderablePartitioner test: testing for index mismatches")
            Dim src As List(Of Integer) = Enumerable.Range(0, 100000).ToList()
            Dim myOP As New SingleElementOrderablePartitioner(Of Integer)(src)

            Dim counter As Integer = 0
            Dim mismatch As Boolean = False
            Parallel.ForEach(myOP,
                             Sub(item, state, index)
                                 If item <> index Then
                                     mismatch = True
                                 End If
                                 Interlocked.Increment(counter)
                             End Sub)

            If mismatch Then
                Console.WriteLine("OrderablePartitioner Test: index mismatch detected")
            End If



            Console.WriteLine("OrderablePartitioner test: counter = {0}, should be 100000", counter)
        End Sub
    End Class
End Module

注解

派生类的实现负责以任何适当方式将元素排序为键值对。 有关详细信息,请参阅 PLINQ 和 TPL 的自定义分区程序

构造函数

OrderablePartitioner<TSource>(Boolean, Boolean, Boolean)

从派生类中的构造函数进行调用以便使用索引键上指定的约束初始化 OrderablePartitioner<TSource> 类。

属性

KeysNormalized

获取是否规范化顺序键。

KeysOrderedAcrossPartitions

获取前一分区中的元素是否始终排在后一分区中的元素之前。

KeysOrderedInEachPartition

获取是否按键增加的顺序生成每个分区中的元素。

SupportsDynamicPartitions

获取是否可以动态创建附加分区。

(继承自 Partitioner<TSource>)

方法

Equals(Object)

确定指定对象是否等于当前对象。

(继承自 Object)
GetDynamicPartitions()

创建一个可将基础集合分区成可变数目的分区的对象。

GetHashCode()

作为默认哈希函数。

(继承自 Object)
GetOrderableDynamicPartitions()

创建一个可将基础集合分区成可变数目的分区的对象。

GetOrderablePartitions(Int32)

将基础集合分区成指定数目的可排序分区。

GetPartitions(Int32)

将基础集合分区成给定数目的可排序分区。

GetType()

获取当前实例的 Type

(继承自 Object)
MemberwiseClone()

创建当前 Object 的浅表副本。

(继承自 Object)
ToString()

返回表示当前对象的字符串。

(继承自 Object)

扩展方法

AsParallel<TSource>(Partitioner<TSource>)

启用查询的并行化,并由负责将输入序列拆分成各个分区的自定义分区程序指明其出处。

适用于

线程安全性

所有公共成员 OrderablePartitioner<TSource> 都是线程安全的,可以同时从多个线程调用。

另请参阅