GC.GetGeneration 方法

定义

返回对象的当前代数。Returns the current generation number of an object.

重载

GetGeneration(Object)

返回指定对象的当前代数。Returns the current generation number of the specified object.

GetGeneration(WeakReference)

返回指定弱引用的目标的当前代数。Returns the current generation number of the target of a specified weak reference.

GetGeneration(Object)

返回指定对象的当前代数。Returns the current generation number of the specified object.

public:
 static int GetGeneration(System::Object ^ obj);
public static int GetGeneration (object obj);
static member GetGeneration : obj -> int
Public Shared Function GetGeneration (obj As Object) As Integer

参数

obj
Object

检索其代信息的对象。The object that generation information is retrieved for.

返回

obj 的当前代数。The current generation number of obj.

示例

下面的示例演示如何使用 GetGeneration 方法来确定对象的时间。The following example demonstrates how to use the GetGeneration method to determine the age of an object. 然后,该示例执行垃圾回收以清理内存,并在控制台中比较 pre 和 post 收集的内存总计。The example then performs garbage collections to clean up memory and compare the pre and post collection memory totals in the console.

using namespace System;
const long maxGarbage = 1000;
ref class MyGCCollectClass
{
public:
   void MakeSomeGarbage()
   {
      Version^ vt;
      for ( int i = 0; i < maxGarbage; i++ )
      {
         
         // Create objects and release them to fill up memory
         // with unused objects.
         vt = gcnew Version;

      }
   }

};

int main()
{
   MyGCCollectClass^ myGCCol = gcnew MyGCCollectClass;
   
   // Determine the maximum number of generations the system
   // garbage collector currently supports.
   Console::WriteLine( "The highest generation is {0}", GC::MaxGeneration );
   myGCCol->MakeSomeGarbage();
   
   // Determine which generation myGCCol object is stored in.
   Console::WriteLine( "Generation: {0}", GC::GetGeneration( myGCCol ) );
   
   // Determine the best available approximation of the number
   // of bytes currently allocated in managed memory.
   Console::WriteLine( "Total Memory: {0}", GC::GetTotalMemory( false ) );
   
   // Perform a collection of generation 0 only.
   GC::Collect( 0 );
   
   // Determine which generation myGCCol object is stored in.
   Console::WriteLine( "Generation: {0}", GC::GetGeneration( myGCCol ) );
   Console::WriteLine( "Total Memory: {0}", GC::GetTotalMemory( false ) );
   
   // Perform a collection of all generations up to and including 2.
   GC::Collect( 2 );
   
   // Determine which generation myGCCol object is stored in.
   Console::WriteLine( "Generation: {0}", GC::GetGeneration( myGCCol ) );
   Console::WriteLine( "Total Memory: {0}", GC::GetTotalMemory( false ) );
}

using System;

namespace GCCollectIntExample
{
    class MyGCCollectClass
    {
        private const long maxGarbage = 1000;
      
        static void Main()
        {
            MyGCCollectClass myGCCol = new MyGCCollectClass();

            // Determine the maximum number of generations the system
        // garbage collector currently supports.
            Console.WriteLine("The highest generation is {0}", GC.MaxGeneration);
            
            myGCCol.MakeSomeGarbage();

            // Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol));
            
            // Determine the best available approximation of the number 
        // of bytes currently allocated in managed memory.
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(false));
            
            // Perform a collection of generation 0 only.
            GC.Collect(0);
            
            // Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol));
            
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(false));
            
            // Perform a collection of all generations up to and including 2.
            GC.Collect(2);
            
            // Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol));
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(false));
            Console.Read();
        }

        void MakeSomeGarbage()
        {
            Version vt;

            for(int i = 0; i < maxGarbage; i++)
            {
                // Create objects and release them to fill up memory
        // with unused objects.
                vt = new Version();
            }
        }
    }
}
Namespace GCCollectInt_Example
    Class MyGCCollectClass
        Private maxGarbage As Long = 10000

        Public Shared Sub Main()
            Dim myGCCol As New MyGCCollectClass

            'Determine the maximum number of generations the system
            'garbage collector currently supports.
            Console.WriteLine("The highest generation is {0}", GC.MaxGeneration)

            myGCCol.MakeSomeGarbage()

            'Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol))

            'Determine the best available approximation of the number 
            'of bytes currently allocated in managed memory.
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(False))

            'Perform a collection of generation 0 only.
            GC.Collect(0)

            'Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol))

            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(False))

            'Perform a collection of all generations up to and including 2.
            GC.Collect(2)

            'Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol))
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(False))
            Console.Read()

        End Sub


        Sub MakeSomeGarbage()
            Dim vt As Version

            Dim i As Integer
            For i = 0 To maxGarbage - 1
                'Create objects and release them to fill up memory
                'with unused objects.
                vt = New Version
            Next i
        End Sub
    End Class
End Namespace

注解

使用此方法来确定对象的使用期限,然后将该信息与 Collect 方法一起使用,以强制垃圾回收器收集同一代中的对象。Use this method to determine the age of an object, and then use that information with the Collect method to force the garbage collector to collect objects in the same generation. 例如,如果有一组对象以组的形式创建,且同时变为不可访问,则可使用此方法。For example, use this method when you have a set of objects that are created as a group and that become inaccessible at the same time.

另请参阅

GetGeneration(WeakReference)

返回指定弱引用的目标的当前代数。Returns the current generation number of the target of a specified weak reference.

public:
 static int GetGeneration(WeakReference ^ wo);
public static int GetGeneration (WeakReference wo);
static member GetGeneration : WeakReference -> int
Public Shared Function GetGeneration (wo As WeakReference) As Integer

参数

wo
WeakReference

引用要确定其代数的目标对象的 WeakReferenceA WeakReference that refers to the target object whose generation number is to be determined.

返回

wo 的目标的当前代数。The current generation number of the target of wo.

异常

已经对 wo 执行了垃圾回收。Garbage collection has already been performed on wo.

示例

下面的示例演示如何使用 GetGeneration 方法来确定弱引用对象的时间。The following example demonstrates the use of the GetGeneration method to determine the age of a weak reference object.

using namespace System;
ref class MyGCCollectClass
{
private:
   static const long maxGarbage = 1000;

public:
   void MakeSomeGarbage()
   {
      Version^ vt;
      for ( int i = 0; i < maxGarbage; i++ )
      {
         
         // Create objects and release them to fill up memory
         // with unused objects.
         vt = gcnew Version;

      }
   }

};

int main()
{
   
   // Create a strong reference to an Object.
   MyGCCollectClass^ myGCCol = gcnew MyGCCollectClass;
   
   // Put some objects in memory.
   myGCCol->MakeSomeGarbage();
   
   // Get the generation of managed memory where myGCCol is stored.
   Console::WriteLine( "The object is in generation: {0}", GC::GetGeneration( myGCCol ) );
   
   // Perform a full garbage collection.
   // Because there is a strong reference to myGCCol, it will
   // not be garbage collected.
   GC::Collect();
   
   // Get the generation of managed memory where myGCCol is stored.
   Console::WriteLine( "The object is in generation: {0}", GC::GetGeneration( myGCCol ) );
   
   // Create a WeakReference to myGCCol.
   WeakReference^ wkref = gcnew WeakReference( myGCCol );
   
   // Remove the strong reference to myGCCol.
   myGCCol = nullptr;
   
   // Get the generation of managed memory where wkref is stored.
   Console::WriteLine( "The WeakReference to the object is in generation: {0}", GC::GetGeneration( wkref ) );
   
   // Perform another full garbage collection.
   // A WeakReference will not survive a garbage collection.
   GC::Collect();
   
   // Try to get the generation of managed memory where wkref is stored.
   // Because it has been collected, an exception will be thrown.
   try
   {
      Console::WriteLine( "The WeakReference to the object is in generation: {0}", GC::GetGeneration( wkref ) );
      Console::Read();
   }
   catch ( Exception^ e ) 
   {
      Console::WriteLine( "The WeakReference to the object has been garbage collected: ' {0}'", e );
   }

}

using System;

namespace GCGetGenerationWeakExample
{
    public class MyGCCollectClass
    {
        private const long maxGarbage = 1000;
      
        static void Main()
        {
            // Create a strong reference to an object.
            MyGCCollectClass myGCCol = new MyGCCollectClass();

            // Put some objects in memory.
            myGCCol.MakeSomeGarbage();
            
            // Get the generation of managed memory where myGCCol is stored.
            Console.WriteLine("The object is in generation: {0}", GC.GetGeneration(myGCCol));
                        
            // Perform a full garbage collection.
            // Because there is a strong reference to myGCCol, it will
            // not be garbage collected.
            GC.Collect();
            
            // Get the generation of managed memory where myGCCol is stored.
            Console.WriteLine("The object is in generation: {0}", GC.GetGeneration(myGCCol));
            
            // Create a WeakReference to myGCCol.
            WeakReference wkref = new WeakReference(myGCCol);
            // Remove the strong reference to myGCCol.
            myGCCol = null;
            
            // Get the generation of managed memory where wkref is stored.
            Console.WriteLine("The WeakReference to the object is in generation: {0}", GC.GetGeneration(wkref));
            
            // Perform another full garbage collection.
            // A WeakReference will not survive a garbage collection.
            GC.Collect();
        
            // Try to get the generation of managed memory where wkref is stored.
            // Because it has been collected, an exception will be thrown.
            try
            {
                Console.WriteLine("The WeakReference to the object is in generation: {0}", GC.GetGeneration(wkref));
                Console.Read();
            }
            catch(Exception e)
            {
                Console.WriteLine("The WeakReference to the object has been garbage collected: '{0}'", e);
                Console.Read();
            }
        }

        void MakeSomeGarbage()
        {
            Version vt;

            for(int i = 0; i < maxGarbage; i++)
            {
                // Create objects and release them to fill up memory
                // with unused objects.
                vt = new Version();
            }
        }
    }
}
Namespace GCGetGenerationWeakExample

   Class MyGCCollectClass
      Private maxGarbage As Long = 1000

      Public Shared Sub Main()
         ' Create a strong reference to an object.
         Dim myGCCol As New MyGCCollectClass

         ' Put some objects in memory.
         myGCCol.MakeSomeGarbage()

         ' Get the generation of managed memory where myGCCol is stored.
         Console.WriteLine("The object is in generation: {0}", _
                            GC.GetGeneration(myGCCol))

         ' Perform a full garbage collection.
         ' Because there is a strong reference to myGCCol, it will
         ' not be garbage collected.
         GC.Collect()

         ' Get the generation of managed memory where myGCCol is stored.
         Console.WriteLine("The object is in generation: {0}", _
                            GC.GetGeneration(myGCCol))

         ' Create a WeakReference to myGCCol.
         Dim wkref As New WeakReference(myGCCol)
         ' Remove the strong reference to myGCCol.
         myGCCol = Nothing

         ' Get the generation of managed memory where wkref is stored.
         Console.WriteLine("The WeakReference to the object is in generation: {0}", _
                           GC.GetGeneration(wkref))

         ' Perform another full garbage collection.
         ' A WeakReference will not survive a garbage collection.
         GC.Collect()

         ' Try to get the generation of managed memory where wkref is stored.
         ' Because it has been collected, an exception will be thrown.
         Try
            Console.WriteLine("The WeakReference to the object is in generation: {0}", _
                               GC.GetGeneration(wkref))
            Console.Read()
         Catch e As Exception
            Console.WriteLine("The WeakReference to the object " & _
                              "has been garbage collected: '{0}'", e)
            Console.Read()
         End Try
      End Sub


      Sub MakeSomeGarbage()
         Dim vt As Version

         Dim i As Integer
         For i = 0 To maxGarbage - 1
            ' Create objects and release them to fill up memory
            ' with unused objects.
            vt = New Version
         Next i
      End Sub
   End Class
End Namespace

另请参阅

适用于