Complex.Phase 属性

定义

获取复数的相位。Gets the phase of a complex number.

public:
 property double Phase { double get(); };
public double Phase { get; }
member this.Phase : double
Public ReadOnly Property Phase As Double

属性值

复数的相位(以弧度为单位)。The phase of a complex number, in radians.

示例

下面的示例使用 FromPolarCoordinates 方法基于其极坐标来实例化复数,然后显示其 MagnitudePhase 属性的值。The following example uses the FromPolarCoordinates method to instantiate a complex number based on its polar coordinates, and then displays the value of its Magnitude and Phase properties.

using System;
using System.Numerics;

public class Example
{
   public static void Main()
   {
      Complex c1 = Complex.FromPolarCoordinates(10, 45 * Math.PI / 180);
      Console.WriteLine("{0}:", c1);
      Console.WriteLine("   Magnitude: {0}", Complex.Abs(c1));
      Console.WriteLine("   Phase:     {0} radians", c1.Phase);
      Console.WriteLine("   Phase      {0} degrees", c1.Phase * 180/Math.PI);
      Console.WriteLine("   Atan(b/a): {0}", Math.Atan(c1.Imaginary/c1.Real));
   }
}
// The example displays the following output:
//       (7.07106781186548, 7.07106781186547):
//          Magnitude: 10
//          Phase:     0.785398163397448 radians
//          Phase      45 degrees
//          Atan(b/a): 0.785398163397448
Imports System.Numerics

Module Example
   Public Sub Main()
      Dim c1 As Complex = Complex.FromPolarCoordinates(10, 45 * Math.Pi / 180)
      Console.WriteLine("{0}:", c1)
      Console.WriteLine("   Magnitude: {0}", Complex.Abs(c1))
      Console.WriteLine("   Phase:     {0} radians", c1.Phase)
      Console.WriteLine("   Phase      {0} degrees", c1.Phase * 180/Math.Pi)
      Console.WriteLine("   Atan(b/a): {0}", Math.Atan(c1.Imaginary/c1.Real))
   End Sub
End Module
' The example displays the following output:
'       (7.07106781186548, 7.07106781186547):
'          Magnitude: 10
'          Phase:     0.785398163397448 radians
'          Phase      45 degrees
'          Atan(b/a): 0.785398163397448

注解

对于复数 a + bi,阶段计算为 Math.Atan2(b,a)。For a complex number a + bi, the phase is computed as Math.Atan2(b, a).

您可以通过它在复杂平面上的笛卡尔坐标或其极坐标来标识复数。You can identify a complex number by its Cartesian coordinates on the complex plane or by its polar coordinates. 复数的相位(参数)是从原点(x 轴与 y 轴的交点)绘制的直线到复数所表示的点之间的距离的角度。这是一条直线的起点。The phase (argument) of a complex number is the angle to the real axis of a line drawn from the point of origin (the intersection of the x-axis and the y-axis) to the point represented by the complex number. 量(由 Magnitude 属性表示)是从原点到由复数表示的点之间的距离。The magnitude (represented by the Magnitude property) is the distance from the point of origin to the point that is represented by the complex number.

可以通过调用 FromPolarCoordinates 方法,基于其极坐标而不是笛卡尔坐标来实例化复数。You can instantiate a complex number based on its polar coordinates instead of its Cartesian coordinates by calling the FromPolarCoordinates method.

若要将阶段从弧度转换为度,请将它乘以 180/Math.PITo convert the phase from radians to degrees, multiply it by 180/Math.PI.

适用于

另请参阅