在 SQL Server Native Client 中使用大型值类型

适用于:SQL ServerAzure SQL 数据库Azure SQL 托管实例Azure Synapse AnalyticsAnalytics Platform System (PDW)

重要

已从 SQL Server 2022 (16.x) 和 SQL Server Management Studio 19 (SSMS) 中删除SQL Server Native Client(通常缩写为 SNAC)。 不建议在新应用程序开发工作中使用 SQL Server Native Client(SQLNCLI 或 SQLNCLI11)和旧版 Microsoft OLE DB Provider for SQL Server (SQLOLEDB)。 请在此后切换为使用新版 Microsoft OLE DB Driver (MSOLEDBSQL) for SQL Server 或最新版的 Microsoft OLE DB Driver for SQL Server。 对于作为 SQL Server 数据库引擎组件附带的 SQLNCLI (版本 2012 到 2019) ,请参阅此支持生命周期异常

在 SQL Server 2005 (9.x) 之前,若要使用大值数据类型,必须进行特殊的处理。 大值数据类型是超过最大行大小 8 KB 的数据类型。 SQL Server 2005 (9.x) 引入了 varcharnvarcharvarbinary 数据类型的最大说明符,以允许存储高达 2^31 -1 字节的值。 表列和 Transact-SQL 变量可以指定 varchar (max) nvarchar (max) varbinary (max) 数据类型。

注意

大值数据类型的最大大小可以介于 1 到 8 KB 之间,也可以指定为不限制其大小。

以前,只有SQL Server数据类型(如文本ntextimage)才能达到这样的长度。 varcharnvarcharvarbinary的最大说明符使这些数据类型变得冗余。 但是,由于仍然提供长数据类型,因而大多数 OLE DB 和 ODBC 数据访问组件的接口将保持不变。 为了与以前的版本向后兼容,SQL Server Native Client OLE DB 提供程序中的DBCOLUMNFLAGS_ISLONG标志以及 SQL Server Native Client ODBC 驱动程序中的SQL_LONGVARCHAR仍处于使用状态。 针对 SQL Server 2005 (9.x) 和更高版本编写的访问接口和驱动程序可以继续使用这些字词将新类型设置为最大长度不受限制。

注意

还可以将 varchar(max)、nvarchar(max) 和 varbinary(max) 数据类型指定为存储过程的输入和输出参数类型、函数返回类型或者用在 CAST 和 CONVERT 函数中 。

注意

如果复制数据,可能需要将 max text repl size 服务器配置选项 配置为 -1。

SQL Server Native Client OLE DB 访问接口

SQL Server Native Client OLE DB 提供程序分别将 varchar (max) varbinary (max) nvarchar (max) 类型公开为 DBTYPE_STR、DBTYPE_BYTES 和 DBTYPE_WSTR。

如果列中的 varchar(max)、varbinary(max) 和 nvarchar(max) 数据类型的 max 大小设置为不受限制,则这些数据类型会通过返回列数据类型的核心 OLE DB 架构行集和接口表示为 ISLONG 。

命令对象的 IAccessor 实现已更改为允许绑定为 DBTYPE_IUNKNOWN。 如果使用者指定 DBTYPE_IUNKNOWN 并将 pObject 设置为 Null,则提供程序将向使用者返回 ISequentialStream 接口,以便使用者可以对输出变量之外的 varchar(max)、nvarchar(max) 或 varbinary(max) 数据进行流式处理 。

将在所有结果行之后返回经过流式处理的输出参数值。 如果应用程序尝试通过调用 IMultipleResults::GetResult 移动到下一个结果集并且没有使用返回的所有输出参数值,则将返回 DB_E_OBJECTOPEN 。

为了支持流式处理,SQL Server Native Client OLE DB 访问接口要求按顺序访问可变长度参数。 也就是说,只要 varchar(max)、nvarchchar(max) 或 varbinary(max) 列或输出参数绑定到 DBTYPE_IUNKNOWN,DBPROP_ACCESSORDER 就必须设置为 DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS 或 DBPROPVAL_AO_SEQUENTIAL 。 如果不遵守此访问顺序限制,对 IRowset::GetData 的调用将失败,并出现 DBSTATUS_E_UNAVAILABLE 。 如果不存在使用 DBTYPE_IUNKNOWN 的任何输出绑定,则不会应用此限制。

SQL Server Native Client OLE DB 访问接口还支持将输出参数绑定为大值数据类型的DBTYPE_IUNKNOWN,以便于存储过程将大值类型作为返回值作为返回值公开给客户端DBTYPE_IUNKNOWN。

若要使用这些类型,应用程序可以使用以下选项:

  • 绑定为支持与列的基类型进行绑定的类型(例如,对于 nvarchar(max),绑定为可绑定到 nvarchar 的类型)。 如果缓冲区不够大,将发生截断,以便与基类型完全相同,虽然现在可以使用更大的值。

  • 绑定为支持与列的基类型进行转换的类型,同时还指定 DBTYPE_BYREF。

  • 绑定为 DBTYPE_IUNKNOWN 并使用流处理。

报告列的最大大小时,SQL Server Native Client OLE DB 提供程序将报告:

  • 定义的最大大小(例如,varchar (2000) 列)为 2000,或者

  • “unlimited”值,如果 varchar(max) 列等于 ~0 。 此值是为 DBCOLUMN_COLUMNSIZE 元数据属性设置的。

将向 varchar(max) 列应用的标准转换规则,也就是说,对于 varchar(2000) 列有效的任何转换对于 varchar(max) 列也有效。 这也适用于 nvarchar(max) 和 varbinary(max) 列 。

在检索大值类型时,最有效的方法是绑定为 DBTYPE_IUNKNOWN 并将行集属性 DBPROP_ACCESSORDER 设置为 DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS。 这会导致该值直接从网络上进行流式处理,而不进行中间缓冲处理,如下例所示:

#define UNICODE  
#define _UNICODE  
#define DBINITCONSTANTS  
#define INITGUID  
#define OLEDBVER 0x0250  // To include the correct interfaces.  
  
#include <stdio.h>  
#include <tchar.h>  
#include <stddef.h>  
#include <iostream>  
  
using std::cout;  
using std::endl;  
  
#include <windows.h>  
  
#include <oledb.h>  
#include "sqlncli.h"  
#include <oledberr.h>  
  
#define CHKHR_GOTO(hr, errMsg, Label) \  
   if (FAILED(hr)) \  
   { \  
      cout << errMsg << endl; \  
      goto Label; \  
   }  
  
#define MAX_COL_SIZE 8000  
  
// ROUNDUP on all platforms pointers must be aligned properly.  
#define ROUNDUP_AMOUNT 8  
#define ROUNDUP_(size,amount) (((ULONG)(size)+((amount)-1))&~((amount)-1))  
#define ROUNDUP(size) ROUNDUP_(size, ROUNDUP_AMOUNT)  
  
HRESULT InitializeAndEstablishConnection(IDBInitialize** ppIDBInitialize);  
void UnInitializeConnection(IDBInitialize* pIDBInitialize);  
HRESULT CreateAndSetCommand(IDBInitialize* pIDBInitialize, ICommandText** ppICommandText);  
HRESULT ProcessResultSet(IRowset* pIRowset);  
  
void DisplayTime()  
{  
   SYSTEMTIME st;  
   GetSystemTime(&st);  
   cout<< st.wHour << ":" << st.wMinute << ":" << st.wSecond << "." << st.wMilliseconds << endl;  
}  
  
void main()  
{  
   HRESULT hr;  
   IDBInitialize* pIDBInitialize = NULL;  
   ICommandText* pICommandText = NULL;  
   IMultipleResults* pIMultipleResults = NULL;  
   IRowset* pIRowset = NULL;  
  
   hr = InitializeAndEstablishConnection(&pIDBInitialize);  
   CHKHR_GOTO(hr, L"Failed to establish connection.", _ExitMain);  
  
   hr = CreateAndSetCommand(pIDBInitialize, &pICommandText);  
   CHKHR_GOTO(hr, L"Failed to set up command object.", _ExitMain);  
  
   DisplayTime();  
  
   hr = pICommandText->Execute(NULL,   
      IID_IMultipleResults,   
      NULL,   
      NULL,   
     (IUnknown **) &pIMultipleResults);  
  
   CHKHR_GOTO(hr, L"Failed to execute command.", _ExitMain);  
  
   while (1)  
   {  
      hr = pIMultipleResults->GetResult(  
         NULL,   
         DBRESULTFLAG_DEFAULT,   
         IID_IRowset,   
         NULL,   
         (IUnknown**)&pIRowset);  
  
   CHKHR_GOTO(hr, L"Failed to obtain a results from MR object.", _ExitMain);  
  
   if (hr == DB_S_NORESULT)  
      break;  
  
      if (pIRowset)  
      {  
         hr = ProcessResultSet(pIRowset);   
         CHKHR_GOTO(hr, L"Failed to process the current Rowset.", _ExitMain);  
  
         pIRowset->Release();  
         pIRowset = NULL;  
      }  
   }  
  
   DisplayTime();  
  
_ExitMain:  
  
   if (pIRowset)  
   {  
      pIRowset->Release();  
      pIRowset = NULL;  
   }  
  
   if (pIMultipleResults)  
   {  
      pIMultipleResults->Release();  
      pIMultipleResults = NULL;  
   }  
  
   if (pICommandText)  
   {  
      pICommandText->Release();  
      pICommandText = NULL;  
   }  
  
   UnInitializeConnection(pIDBInitialize);  
   return;  
};  
  
HRESULT InitializeAndEstablishConnection(IDBInitialize** ppIDBInitialize)  
{  
   HRESULT hr;  
   IDBInitialize* pIDBInitialize = NULL;  
   IDBProperties* pIDBProperties = NULL;  
  
   const int NUM_DBINIT_PROPS = 3;  
   const wchar_t* const g_wszServer = L".";  
   const wchar_t* const g_wszCatalog = L"AdventureWorks";  
   const wchar_t* const g_wszSecurity = L"SSPI";  
  
   DBPROPSET rgdbPropSetInit[1];  
   DBPROP rgdbPropInit [NUM_DBINIT_PROPS];  
  
   *ppIDBInitialize = NULL;  
   hr = CoInitialize(NULL);  
   CHKHR_GOTO(hr, L"Failed to initialize COM.", _ExitInitialize);  
  
   hr = CoCreateInstance(CLSID_SQLNCLI11,   
      NULL,   
      CLSCTX_INPROC_SERVER,  
      IID_IDBInitialize,   
      (void**)&pIDBInitialize);  
  
   CHKHR_GOTO(hr, L"Failed to create SQLNCLI11 DataSource object.", _ExitInitialize);  
  
   for(int idxProp = 0; idxProp < NUM_DBINIT_PROPS; idxProp++)   
   {  
      VariantInit(&rgdbPropInit[idxProp].vValue);  
   }  
  
   rgdbPropInit[0].dwPropertyID = DBPROP_INIT_DATASOURCE;  
   rgdbPropInit[0].vValue.vt = VT_BSTR;  
   rgdbPropInit[0].vValue.bstrVal= SysAllocString(g_wszServer);  
   rgdbPropInit[0].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgdbPropInit[0].colid = DB_NULLID;  
  
   if (rgdbPropInit[0].vValue.bstrVal == NULL)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitInitialize;  
   }  
  
   rgdbPropInit[1].dwPropertyID = DBPROP_INIT_CATALOG;  
   rgdbPropInit[1].vValue.vt = VT_BSTR;  
   rgdbPropInit[1].vValue.bstrVal= SysAllocString(g_wszCatalog);  
   rgdbPropInit[1].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgdbPropInit[1].colid = DB_NULLID;  
  
   if (rgdbPropInit[1].vValue.bstrVal == NULL)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitInitialize;  
   }  
  
   rgdbPropInit[2].dwPropertyID = DBPROP_AUTH_INTEGRATED;  
   rgdbPropInit[2].vValue.vt = VT_BSTR;  
   rgdbPropInit[2].vValue.bstrVal= SysAllocString(g_wszSecurity);  
   rgdbPropInit[2].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgdbPropInit[2].colid = DB_NULLID;  
  
   if (rgdbPropInit[2].vValue.bstrVal == NULL)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitInitialize;  
   }  
  
   rgdbPropSetInit[0].guidPropertySet = DBPROPSET_DBINIT;  
   rgdbPropSetInit[0].cProperties = NUM_DBINIT_PROPS;  
   rgdbPropSetInit[0].rgProperties = rgdbPropInit;  
  
   hr = pIDBInitialize->QueryInterface(IID_IDBProperties, (void **)&pIDBProperties);  
   CHKHR_GOTO(hr, L"Failed to QI DataSource object for IDBProperties.", _ExitInitialize);  
  
   hr = pIDBProperties->SetProperties(1, rgdbPropSetInit);   
   CHKHR_GOTO(hr, L"Failed to set DataSource object Properties.", _ExitInitialize);  
  
   pIDBProperties->Release();  
   pIDBProperties = NULL;  
  
   hr = pIDBInitialize->Initialize();  
   CHKHR_GOTO(hr, L"Failed to establish connection with the server.", _ExitInitialize);  
  
_ExitInitialize:  
  
   if (pIDBProperties)  
   {  
      pIDBProperties->Release();  
      pIDBProperties = NULL;  
   }  
  
   if (FAILED(hr))  
   {  
      if (pIDBInitialize)  
      {  
         pIDBInitialize->Release();  
         pIDBInitialize = NULL;  
      }  
   }  
  
   *ppIDBInitialize = pIDBInitialize;  
   return hr;  
}  
  
void UnInitializeConnection(IDBInitialize* pIDBInitialize)  
{  
   if (pIDBInitialize)  
   {  
      pIDBInitialize->Uninitialize();  
      pIDBInitialize->Release();  
      pIDBInitialize = NULL;  
   }  
   CoUninitialize();  
}  
  
HRESULT CreateAndSetCommand(IDBInitialize* pIDBInitialize, ICommandText** ppICommandText)  
{  
   HRESULT hr;  
   IDBCreateSession* pIDBCreateSession = NULL;  
   IDBCreateCommand* pIDBCreateCommand = NULL;  
   ICommandText* pICommandText = NULL;  
   ICommandProperties* pICommandProperties = NULL;  
   DBPROPSET rgCmdPropSet[1];  
   DBPROP rgCmdProperties[1];  
  
const wchar_t* const g_wCmdString = L"declare @x xml, @y nvarchar(max); select @x = (SELECT * FROM Sales.SalesOrderHeader FOR XML AUTO); select @x;";  
  
   *ppICommandText = NULL;  
  
   if (!pIDBInitialize)  
   {  
      hr = E_FAIL;  
      goto _ExitCreateAndSetCommand;  
   }  
  
   hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession, (void**) &pIDBCreateSession);  
   CHKHR_GOTO(hr, L"Failed to obtain IDBCreateSession interface from DSO.", _ExitCreateAndSetCommand);  
  
   hr = pIDBCreateSession->CreateSession(  
      NULL,   
      IID_IDBCreateCommand,   
      (IUnknown**) &pIDBCreateCommand);  
  
   CHKHR_GOTO(hr, L"Failed to Create a Session for command execution.", _ExitCreateAndSetCommand);  
  
   hr = pIDBCreateCommand->CreateCommand(  
      NULL,   
      IID_ICommandText,   
      (IUnknown**)&pICommandText);  
  
   CHKHR_GOTO(hr, L"Failed to Create a Command object.", _ExitCreateAndSetCommand);  
  
   hr = pICommandText->SetCommandText(DBGUID_DBSQL, g_wCmdString);  
   CHKHR_GOTO(hr, L"Failed to Set Command Text.", _ExitCreateAndSetCommand);  
  
   hr = pICommandText->QueryInterface(IID_ICommandProperties, (void**) &pICommandProperties);  
   CHKHR_GOTO(hr, L"Failed to obtain ICommandProperties interface from the command object.", _ExitCreateAndSetCommand);  
  
   rgCmdProperties[0].dwPropertyID = DBPROP_ACCESSORDER;  
   rgCmdProperties[0].vValue.vt = VT_I4;  
   rgCmdProperties[0].vValue.lVal = DBPROPVAL_AO_SEQUENTIAL;  
   rgCmdProperties[0].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgCmdProperties[0].colid = DB_NULLID;  
  
   rgCmdPropSet[0].guidPropertySet = DBPROPSET_ROWSET;  
   rgCmdPropSet[0].cProperties = 1;  
   rgCmdPropSet[0].rgProperties = rgCmdProperties;  
  
   hr = pICommandProperties->SetProperties(1, rgCmdPropSet);   
   CHKHR_GOTO(hr, L"Failed to Set Command object Properties.", _ExitCreateAndSetCommand);  
  
_ExitCreateAndSetCommand:  
  
   if (pICommandProperties)  
   {  
      pICommandProperties->Release();  
      pICommandProperties = NULL;  
   }  
  
   if (pIDBCreateCommand)  
   {  
      pIDBCreateCommand->Release();  
      pIDBCreateCommand = NULL;  
   }  
  
   if (pIDBCreateSession)  
   {  
      pIDBCreateSession->Release();  
      pIDBCreateSession = NULL;  
   }  
  
   if (FAILED(hr))  
   {  
      if (pICommandText)  
      {  
         pICommandText->Release();  
         pICommandText = NULL;  
      }  
   }  
  
   *ppICommandText = pICommandText;  
   return hr;  
}  
  
HRESULT ProcessResultSet(IRowset* pIRowset)  
{  
   HRESULT hr;  
  
   IColumnsInfo* pIColumnsInfo = NULL;  
   DBCOLUMNINFO* pDBColumnInfo = NULL;  
   ULONG lNumCols = 0;  
   wchar_t* pStringsBuffer = NULL;  
  
   DBBINDING* pBindings = NULL;  
   DBOBJECT dbobj;  
   ULONG idxBinding;  
   IAccessor* pIAccessor = NULL;  
   HACCESSOR hAccessor = DB_NULL_HACCESSOR;  
   HROW hRows[1] = {DB_NULL_HROW};  
   HROW* pRow = &hRows[0];  
   BYTE* pBuffer = NULL;  
  
   ULONG lNumRowsRetrieved;  
   DBLENGTH dwOffset = 0;  
  
   hr = pIRowset->QueryInterface(IID_IColumnsInfo, (void **)&pIColumnsInfo);  
   CHKHR_GOTO(hr, L"Failed to QI Rowset for IColumnsInfo.", _ExitProcessResultSet);  
  
   hr = pIColumnsInfo->GetColumnInfo(&lNumCols, &pDBColumnInfo, &pStringsBuffer);  
   CHKHR_GOTO(hr, L"Failed to obtain Column Information.", _ExitProcessResultSet);  
  
   pBindings = new DBBINDING[lNumCols];  
  
   if (!pBindings)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitProcessResultSet;  
   }  
  
   memset(pBindings, 0, sizeof(DBBINDING) * lNumCols);  
  
   dbobj.dwFlags = STGM_READ;  
   dbobj.iid = IID_ISequentialStream;  
  
   for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)   
   {  
      pBindings[idxBinding].iOrdinal = idxBinding + 1;  
      pBindings[idxBinding].obStatus = dwOffset;  
      pBindings[idxBinding].obLength = dwOffset + sizeof(DBSTATUS);  
      pBindings[idxBinding].obValue = dwOffset + sizeof(DBSTATUS) + sizeof(DBLENGTH);  
  
      pBindings[idxBinding].pTypeInfo = NULL;  
      pBindings[idxBinding].pBindExt = NULL;  
      pBindings[idxBinding].dwPart = DBPART_VALUE | DBPART_LENGTH | DBPART_STATUS;  
      pBindings[idxBinding].dwMemOwner = DBMEMOWNER_CLIENTOWNED;  
      pBindings[idxBinding].eParamIO = DBPARAMIO_NOTPARAM;  
      pBindings[idxBinding].bPrecision = pDBColumnInfo[idxBinding].bPrecision;  
      pBindings[idxBinding].bScale = pDBColumnInfo[idxBinding].bScale;  
  
      pBindings[idxBinding].cbMaxLen = 0;  
      pBindings[idxBinding].wType = DBTYPE_WSTR;  
  
   // Determine the maximum number of bytes required in our buffer to  
   // contain the Unicode string representation of the provider's native  
   // data type, including room for the NULL-termination character  
   switch( pDBColumnInfo[idxBinding].wType )  
   {  
      case DBTYPE_NULL:  
      case DBTYPE_EMPTY:  
      case DBTYPE_I1:  
      case DBTYPE_I2:  
      case DBTYPE_I4:  
      case DBTYPE_UI1:  
      case DBTYPE_UI2:  
      case DBTYPE_UI4:  
      case DBTYPE_R4:  
      case DBTYPE_BOOL:  
      case DBTYPE_I8:  
      case DBTYPE_UI8:  
      case DBTYPE_R8:  
      case DBTYPE_CY:  
      case DBTYPE_ERROR:  
      // When the above types are converted to a string, they  
      // will all fit into 25 characters, so use that plus space  
      // for the NULL-terminator.  
  
      pBindings[idxBinding].cbMaxLen = (25 + 1) * sizeof(WCHAR);  
      break;  
  
      case DBTYPE_DECIMAL:  
      case DBTYPE_NUMERIC:  
      case DBTYPE_DATE:  
      case DBTYPE_DBDATE:  
      case DBTYPE_DBTIMESTAMP:  
      case DBTYPE_GUID:  
      // Converted to a string, the above types will all fit into  
      // 50 characters, so use that plus space for the terminator.  
  
      pBindings[idxBinding].cbMaxLen = (50 + 1) * sizeof(WCHAR);  
      break;  
  
      case DBTYPE_BYTES:  
      // In converting DBTYPE_BYTES to a string, each byte  
      // becomes two characters (e.g. 0xFF -> "FF"), so we  
      // will use double the maximum size of the column plus  
      // include space for the NULL-terminator.  
  
      pBindings[idxBinding].cbMaxLen = (pDBColumnInfo[idxBinding].ulColumnSize * 2 + 1) * sizeof(WCHAR);  
      break;  
  
      case DBTYPE_STR:  
      case DBTYPE_WSTR:  
      case DBTYPE_BSTR:  
      // Going from a string to our string representation,  
      // we can just take the maximum size of the column,  
      // a count of characters, and include space for the  
      // terminator, which is not included in the column size.  
  
      pBindings[idxBinding].cbMaxLen = (pDBColumnInfo[idxBinding].ulColumnSize + 1) * sizeof(WCHAR);  
      break;  
  
      default:  
      // For any other type, we will simply use our maximum  
      // column buffer size, since the display size of these  
      // columns may be variable (e.g. DBTYPE_VARIANT) or  
      // unknown (e.g. provider-specific types).  
      pBindings[idxBinding].cbMaxLen = MAX_COL_SIZE;  
      break;  
   }  
  
   // If the provider's native data type for this column is  
   // DBTYPE_IUNKNOWN or this is a BLOB column and the user  
   // has requested that we bind BLOB columns as ISequentialStream  
   // objects, bind this column as an ISequentialStream object if  
   // the provider supports our creating another ISequentialStream  
   // binding.  
   if(pDBColumnInfo[idxBinding].dwFlags & DBCOLUMNFLAGS_ISLONG)  
   {  
      pBindings[idxBinding].wType = DBTYPE_IUNKNOWN;  
  
      pBindings[idxBinding].cbMaxLen = sizeof(ISequentialStream*);  
  
      pBindings[idxBinding].pObject = (DBOBJECT *)CoTaskMemAlloc(sizeof(DBOBJECT));  
  
      if (!pBindings[idxBinding].pObject)  
      {  
         hr = E_OUTOFMEMORY;  
         goto _ExitProcessResultSet;  
      }  
  
      // Direct the provider to create an ISequentialStream  
      // object over the data for this column.  
      pBindings[idxBinding].pObject->iid = IID_ISequentialStream;  
  
      // We want read access on the ISequentialStream  
      // object that the provider will create for us  
      pBindings[idxBinding].pObject->dwFlags = STGM_READ;  
      }  
  
      // Ensure that the bound maximum length is no more than the  
      // maximum column size in bytes that we've defined.  
      pBindings[idxBinding].cbMaxLen = min(pBindings[idxBinding].cbMaxLen, MAX_COL_SIZE);  
  
      // Update the offset past the end of this column's data, so  
      // that the next column will begin in the correct place in  
      // the buffer.  
      dwOffset = pBindings[idxBinding].cbMaxLen + pBindings[idxBinding].obValue;  
  
      // Ensure that the data for the next column will be correctly  
      // aligned for all platforms, or, if we're done with columns,  
      // that if we allocate space for multiple rows that the data  
      // for every row is correctly aligned.  
      dwOffset = ROUNDUP(dwOffset);  
   }  
  
   hr = pIRowset->QueryInterface(IID_IAccessor, (void **) &pIAccessor);  
   CHKHR_GOTO(hr, L"Failed to obtain Accessor interface", _ExitProcessResultSet);  
  
   hr = pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,  
      lNumCols,  
      pBindings,  
      0,  
      &hAccessor,  
      NULL);  
  
   CHKHR_GOTO(hr, L"Failed to create Accessor", _ExitProcessResultSet);  
   for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)   
   {  
      cout << pDBColumnInfo[idxBinding].pwszName << endl;  
   }  
  
   lNumRowsRetrieved = 0;  
  
   hr = pIRowset->GetNextRows(  
      NULL,  
      0,  
      1,  
      &lNumRowsRetrieved,  
      &pRow);  
  
   CHKHR_GOTO(hr, L"Failed to fetch a row from the rowset", _ExitProcessResultSet);  
  
   pBuffer = new BYTE[sizeof(DBSTATUS) + sizeof(DBLENGTH) + sizeof(IUnknown*)];  
  
   if (!pBuffer)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitProcessResultSet;  
   }  
  
   while(lNumRowsRetrieved && hr != DB_S_ENDOFROWSET)   
   {  
      memset(pBuffer, 0, sizeof(DBSTATUS) + sizeof(DBLENGTH) + sizeof(IUnknown*));  
  
      hr = pIRowset->GetData(hRows[0], hAccessor, pBuffer);  
      CHKHR_GOTO(hr, L"Failed to obtain row data", _ExitProcessResultSet);  
  
      for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)  
      {  
         if (pBindings[idxBinding].wType == DBTYPE_IUNKNOWN)  
         {  
            BYTE pbBuff[3000];  
            ULONG cbNeeded = sizeof(pbBuff)/sizeof(BYTE);  
            ULONG cbRead;  
            ULONG cbReadTotal = 0;  
            ISequentialStream* pISequentialStream = NULL;  
  
            IUnknown* pIUnknown = *((IUnknown**)(pBuffer + pBindings[idxBinding].obValue));  
            pIUnknown->QueryInterface(IID_ISequentialStream, (void**)&pISequentialStream);  
  
            do  
            {  
               hr = pISequentialStream->Read(pbBuff, cbNeeded, &cbRead);  
               cbReadTotal += cbRead;  
            }  
            while (SUCCEEDED(hr) && hr != S_FALSE && cbRead == cbNeeded);  
  
               cout << "Total Bytes Read: " << cbReadTotal << endl;  
  
               pISequentialStream->Release();  
               pISequentialStream = NULL;  
               pIUnknown->Release();  
               pIUnknown = NULL;  
            }  
         }  
  
         pIRowset->ReleaseRows(1, pRow, NULL, NULL, NULL);  
  
         hr = pIRowset->GetNextRows(NULL,  
            0,  
            1,  
            &lNumRowsRetrieved,  
            &pRow);  
  
         CHKHR_GOTO(hr, L"Failed to fetch a row from the rowset.", _ExitProcessResultSet);  
   }  
  
_ExitProcessResultSet:  
  
   pIRowset->ReleaseRows(1, pRow, NULL, NULL, NULL);  
   delete [] pBuffer;  
  
   if (pIAccessor)  
   {  
      if (hAccessor != DB_NULL_HACCESSOR)  
      {  
         pIAccessor->ReleaseAccessor(hAccessor, NULL);  
      }  
  
      pIAccessor->Release();  
      pIAccessor = NULL;  
   }  
  
   if (pBindings)  
   {  
      for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)  
      {  
         if (pBindings[idxBinding].pObject)  
         CoTaskMemFree(pBindings[idxBinding].pObject);  
      }  
   }  
  
   delete [] pBindings;  
  
   CoTaskMemFree(pDBColumnInfo);  
   CoTaskMemFree(pStringsBuffer);  
  
   if (pIColumnsInfo)  
   {  
      pIColumnsInfo->Release();  
      pIColumnsInfo = NULL;  
   }  
  
   return hr;  
}  

有关 SQL Server Native Client OLE DB 访问接口如何公开大型值数据类型的详细信息,请参阅 BLOB 和 OLE 对象

SQL Server Native Client ODBC 驱动程序

SQL Server Native Client ODBC 驱动程序将 varchar (max) varbinary (max) nvarchar (max) 类型公开为接受或返回 ODBC SQL 数据类型的 SQL_VARCHAR、SQL_VARBINARY 和 SQL_WVARCHAR。

在报告列的最大大小时,该驱动程序将报告以下两个值之一:

  • 定义的最大大小(例如,varchar (2000) 列)为 2000 ,或

  • 值“unlimited”,在 varchar (最大) 列等于 0。

标准转换规则适用于 varchar (max) 列,这意味着任何对 varchar (2000) 列有效的转换也将对 varchar (max) 列有效。 这也适用于 nvarchar(max) 和 varbinary(max) 列 。

下面列出了经过增强以便使用大值数据类型的 ODBC API 函数:

另请参阅

SQL Server Native Client 功能